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Abstract 

An innovative model titled as Exponentiated stretched exponential distribution is introduced. The 

main statistical properties of subject distribution are derived and special models are particularized. 

The most general technique of maximum likelihood estimation is focused to obtain the parameter 

estimates of new innovative model. A simulation study is presented to evaluate the behavior of 

the proposed estimators. Asymptotic confidence intervals for unknown parameters of new model 

are also suggested. The characterization of model is also checked. The competency of the subject 

distribution is demonstrated by fitting four real data sets through evaluation criteria. 
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1. INTRODUCTION 

 

Specification to Generalization of discrete probability distributions as well as continuous probability 

densities covers  huge dimension of Statistical literature based on Modeling and interpretation of real-life 

data. Innovatively, unifying approach of Modeling and interpretation is leading mechanism in probability 

theory. It provides knowledge that helps to draw conclusion about crucial characteristics of random 

occurrence of phenomena. Particularly, baseline probability models are required for this purpose. As a 

result, numerous classical and existing probability models have been generalized to pick up flexibility 

through fitness of natural real life data sets. This significant innovation contributes stretchy proficiency.  

 

Indeed, new innovative distribution holds a stronger structure than the baseline distribution and thus it 

yields much better performance. Johnson et al. [1] stated that a distribution with four parameters is sufficient 

for most of the practical purposes. Therefore, according to description of Johnson et al. alongwith at least 

three parameters, noticeable improvements are evaluated about the new model. Hence,  induction of one or 

more parameter(s) in baseline model is one of the famous innovations for improvement the analysis of 

baseline  probability models. Motivationaly, the baseline distribution generators are occupying interesting 

role for developing probablity models.  These generators are frequently available for Modeling and 

interpretion. Some of these generators are listed in this regard. 

Eugene et al. [2] created a generator on the basis of Beta distribution and named it beta generated 

distribution: ( ) ( ) ( )0
 

G x
F x b x dx= 

; 
𝐺(𝑥)  denotes 𝑐𝑑𝑓 of any arbitrary probability model; and 
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𝑏(𝑥) denotes 𝑝𝑑𝑓 of beta distribution. Jones [3] gave the idea of creating a generator for mixing any 

arbitrary continuous distribution with Kumaraswamy distribution by: 

 ( ) ( )1 1  ; 0, 0;F x G x


  = − −       
𝐺(𝑥) denotes 𝑐𝑑𝑓 of any arbitrary continuous distribution, 𝛼 and 𝛽 are two additional shape parameters. 

Zografos and Balakrishnan [4] suggested generator of univariate distributions’ family based on gamma 

random variable:  

𝐹(𝑥) = ∫ 𝑔(𝑥)𝑑(𝑥)
−𝑙𝑜𝑔[1−𝐺(𝑥)]

0

; 𝑥 ∈ 𝑅,
 

𝐺(𝑥) denotes any baseline cdf for 𝑥 and 𝑔(𝑥)is derivative of 𝐺(𝑥). Kareema and Abdalhussain [5] 

introduced a generator depending on survival function of any arbitrary continuous distribution and 𝑝𝑑𝑓 of 

baseline distribution:  

( ) ( ) ( )1

1

2
     ;

R x
F x f x dx

−
=    

𝑓2(𝑥) represents 𝑝𝑑𝑓 belonging to parent distribution and 𝑅1(𝑥)represents survival function belonging to 

distribution used for mixture. Alzaatreh et al. [6] introduced the T-X family cdf:  

( ) ( )( ) ( ) ,
W F x

F x g x dx
−

=   
𝑔(𝑥) denotes probability density function of a random variable 𝑋 > 0 and 𝑊(𝐹(𝑥))denotes function of 

cumulative distribution function that satisfies three conditions. Bourguignon et al. [7] contributed a 

generator based on Weibull G-distributions:  

𝐹(𝑥) = ∫ 𝑤(𝑥)𝑑(𝑥)
𝐺(𝑥,ɕ) 1−𝐺(𝑥,ɕ)⁄

0
,
 

𝑤(𝑥) denotes 𝑝𝑑𝑓 of Weibull distribution with positive parameters  and 𝐺(𝑥; ɕ) is a baseline cumulative 

distribution function depending on vector of parameter ɕ. Moreover, some researchers adopted mixture 

techniques for developing probability densities such as: [8-12], etc. Logically, there are adequate methods 

for introducing more flexible and stretchy probability models by additional of shape parameter(s). Hence, 

the main goal of this study is to extend from baseline distribution to new model through simple technique 

of Exponentiation, called Exponentiated Stretched Exponential Distribution. Gupta et al. [13] endorsed a 

proposal to add an auxiliary shape parameter in the baseline model to expose a new family of distributions. 

The cdf for Exponentiated family is 

 

𝐹(𝑥) = [𝐺(𝑥)]𝛼, 𝑥 ∈ 𝑅, 𝛼 > 0.
                                                                                                              

(1) 

 

The corresponding pdf for Exponentiated family is 

 

𝑓(𝑥) = 𝛼[𝐺(𝑥)]𝛼−1𝑔(𝑥).
                                                                                                                        

(2) 

 

Progressively, a variety of several statistical distributions have been introduced as Exponentiated models 

with applications. The Exponentiated models seem more flexible than its classical models via 

demonstration of real data. Therefore, the statistical literature is engaged with interesting and demanding 

Exponentiated distributions along with applications. Moreover, to extend this effort, numerous distributions 

have been obtained, see [14- 23] and among others. Having kept in view the flexibility of these models, the 

collective contribution of this study is outlined as follows: (i) selection of baseline distribution due to its 

importance in nature via review of literature, named Stretched Exponential distribution (SED), (see 

Laherr`ere and Sornette [24]). (ii) transformation of baseline distribution into exponentiated model by 

adding a positive shape parameter.  Then the new innovative model, Exponentiated Stretched Exponential 

Distribution (ESED) introduces. (iii) specification of its sub models and provide properties. (iv) 

investigation of its parameters through most popular technique of estimation, known as maximum 

likelihood method. (v) demonstration and fitness of this model through climate data of three zones of 

Pakistan collected from Met. office and confirmed cases of COVID-19 observed by John Hopkins CSSE. 

 

Accordingly, this paper has been organized as follows: Firstly, ESED is defined with graphical 

presentations. Secondly, the special models of ESED are presented in form of specific models. Thirdly, the 

statistical properties of ESED are derived. Fourthly, the most famous method of maximum likelihood  is 

used to estimate parameters of ESED. The asymptotic confidence intervals for unknown parameters are 
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suggested. Fifthly, the characterization of new model is also confirmed before data analyses. Sixthly, the 

applicability of ESED is demonstrated via real life data sets. Its comparison with other existing models is 

also elaborated numerically as well as graphically. Seventhly, the simulated values of ESED’s parameters 

for purpose of evaluation is discussed in simulation section. Finally concluding remarks about ESED are 

quoted. Now, modeling of ESED is followed next. 

 

2.  EXPONENTIATED STRETCHED EXPONENTIAL DISTRIBUTION 

 

Probability density function and cumulative distribution function is defined in this section with general 

shapes of model. 

 

2.1. Probability Density and Cumulative Distribution Functions 

 

A random variable 𝑋 is said to have Exponentiated Stretched Exponential distribution with distribution 

function (𝑐𝑑𝑓), 𝐺(𝑥; 𝜆, 𝜃, 𝛼), corresponding to its probability density function (𝑝𝑑𝑓), 𝑔(𝑥; 𝜆, 𝜃, 𝛼), are 

defined, respectively by 

 

𝐺(𝑥; 𝜆, 𝜃, 𝛼) = [1 − 𝑒
−(

𝑥

𝜆
)
𝜃

]

𝛼

                                                                                                                     

(3) 

𝑔(𝑥; 𝜆, 𝜃, 𝛼) =
𝜃𝛼

|𝜆|
(
𝑥

𝜆
)
𝜃−1

𝑒
−(

𝑥

𝜆
)
𝜃

[1 − 𝑒
−(

𝑥

𝜆
)
𝜃

]

𝛼−1

 ; 𝑥 > 0, 𝜆 ∈ 𝑅, 𝜃 > 0, 𝛼 > 0.                                      (4) 

By using binomial series expansion, (1 − 𝑥)𝑛 = ∑ (
𝑛
𝑖
) (−1)𝑖𝑥𝑖∞

𝑖=0 , the cdf and pdf of ESED can be written 

as  

 

𝐺(𝑥; 𝜆, 𝜃, 𝛼) = ∑ (−1)𝑚 (
𝛼
𝑚
)∞

𝑚=0 𝑒
−𝑚(

𝑥

𝜆
)
𝜃

                                                                                                 

(5) 

𝑔(𝑥; 𝜆, 𝜃, 𝛼) =
𝜃𝛼

|𝜆|
(
𝑥

𝜆
)
𝜃−1

∑ (−1)𝑚 (
𝛼 − 1
𝑚

)∞
𝑚=0 𝑒

−(𝑚+1)(
𝑥

|𝜆|
)
𝜃
 
; 𝑥 > 0, 𝜆 ∈ 𝑅, 𝜃 > 0, 𝛼 > 0.                    (6) 

Thus, ESED consists of a real scale parameter 𝜆 and two shape parameters 𝜃 and 𝛼. If 𝜆 is negative then 

ESED is inverse ESED. Figures 1(a) and 2(c) show that the ESED is unimodal. 

 

 
Figure 1. Plots of 𝑔(𝑥; 𝜆, 𝜃, 𝛼) and 𝐺(𝑥; 𝜆, 𝜃, 𝛼) for fixed values of 𝜃 = 2, 𝛼 = 1 with different values of 

𝜆 
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Figure 2. Plots of 𝑔(𝑥; 𝜆, 𝜃, 𝛼) and 𝐺(𝑥; 𝜆, 𝜃, 𝛼) for fixed values of 𝜆 = 2, 𝛼 = 2 with different values of 

𝜃 

 

Figures 1(a), 1(b), 2(c) and 2(d) remark the possible shapes of the ESED with distinct values of 𝜆, 𝜃 and 𝛼 

respectively. We have observed the following effects on the basis of pdf plots: For fixed 𝜃 and 𝛼with 𝜆 >
0, the peak of the curve flatters, presenting an exponential and positively skewed shapes in Figure 1(a): For 

fixed 𝜆 and 𝛼 with 𝜃 > 0, the peakedness of the curve decreases gradually in Figure 2(c). 

 

3. SPECIAL MODELS 

 

With suitable selection of parameters, different classical and existing models are configured. Accordingly, 

following special models of ESED are given by 

• For |𝜆| = 𝜆, 𝜃 = 𝜃 𝑎𝑛𝑑 𝛼 = 1, we get two parameter stretched exponential distribution (SED) which 

is also resembled two parameter Weibull distribution  and the pdf is given by 

𝑔(𝑥; 𝜆, 𝜃, 1) =
𝜃

𝜆
(
𝑥

𝜆
)
𝜃−1

𝑒
−(

𝑥

𝜆
)
𝜃

; 𝑥 > 0, 𝜆 ∈ 𝑅, 𝜃 > 0.                                                   (7)  

 

• For |𝜆| = 1, 𝜃 = 𝜃 𝑎𝑛𝑑 𝛼 = 1, we get one parameter exponential distribution (ED) with rate 

parameter which is special case of Weibull distribution and the pdf is obtained as 

𝑔(𝑥; 1, 𝜃, 1) = 𝜃𝑒−𝑥
𝜃
; 𝑥 > 0, 𝜃 > 0.                             (8) 

 

• For |𝜆| = 𝜆, 𝜃 = 1 and 𝛼 = 1, we get one parameter exponential distribution with scale parameter 

(also known as negative exponential distribution) and the density function is obtained as 

𝑔(𝑥; 𝜆, 1,1) =
1

𝜆
𝑒
−𝑥

𝜆 ; 𝑥 > 0, 𝜆 > 0.
                                                                                                    

(9) 

• For |𝜆| = 1, 𝜃 = 1 and 𝛼 = 1, we get the standard exponential distribution and the density function is 

given by 

𝑔(𝑥; 1,1,1) = 𝑒−𝑥; 𝑥 > 0.                                                                                                               (10)

           

4.  STATISTICAL PROPERTIES 

 

Important statistical properties for ESED are settled in this section. 

 

4.1. Non-Central Moments   

 

Moment is defined as specific statistical quantity of shape of a function that form a set of quantities. The 

properties of a density function can be conveniently characterized through the technique of moments. The 

expected value of specified quantity power of deviation from central location (commonly from mean) of a 
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random variable is defined as central moments. The central moments of higher order narrate the dispersion 

as well as shape of the distribution.  On the other hand, non-central moments are defined as the expected 

value of specified quantity power of a random variable. Hence, the rth non-central moment of ESED is given 

by 

𝜇𝑟
′ = 𝐸(𝑋𝑟) = 𝜆𝑟𝛼𝛤 (

𝑟

𝜃
+ 1)∑ (−1)𝑚 (

𝛼 − 1
𝑚

)
1

(𝑚+1)
𝑟
𝜃
+1

∞
𝑚=0  , 𝑟 = 0,1,2,…                                   (11) 

Since (11) is a convergent series for all 𝑟 ≥ 0. Then, the moment generating function (m.g.f) of X is given 

by 

𝑀𝑋(𝑡) = ∑
𝑡𝑟

𝑟!
∞
𝑟=0 {𝜆𝑟𝛼𝛤 (

𝑟

𝜃
+ 1)∑ (−1)𝑚 (

𝛼 − 1
𝑚

)
1

(𝑚+1)
𝑟
𝜃
+1

∞
𝑚=0 }                                                (12) 

and the cumulant generating function, 𝑙𝑛𝑀𝑋(𝑡), and  negative moments are given, respectively, by  

𝐾𝑋(𝑡) = 𝑙𝑛 [∑
𝑡𝑟

𝑟!
∞
𝑟=0 {𝜆𝑟𝛼𝛤 (

𝑟

𝜃
+ 1)∑ (−1)𝑚 (

𝛼 − 1
𝑚

)
1

(𝑚+1)
𝑟
𝜃
+1

∞
𝑚=0 }]                                                (13) 

𝐸[𝑋−𝑟] = 𝜆−𝑟𝛼𝛤 (1 −
𝑟

𝜃
)∑(−1)𝑚 (

𝛼 − 1

𝑚
)

∞

𝑚=0

1

(𝑚 + 1)1−𝑟 𝜃⁄
 . 

 

4.2. Incomplete Moments 

 

The incomplete moments of the ESED can be expressed as 

𝑀𝑟(𝑢) = ∫ 𝑥𝑟𝑔(𝑥; 𝜆, 𝜃, 𝛼)𝑑𝑥
𝑢

0

 . 

From (6), by substituting ( ); , ,g x    in above expression, we get 

𝑀𝑟(𝑢) = 𝛼∫ 𝑥𝑟
𝜃

|𝜆|
(
𝑥

𝜆
)
𝜃−1

∑(−1)𝑚 (
𝛼 − 1
𝑚

)

∞

𝑚=0

𝑒
−(𝑚+1)(

𝑥

𝜆
)
𝜃

𝑑𝑥
𝑢

0

 

     = 𝛼 ∑(−1)𝑚 (
𝛼 − 1
𝑚

)

∞

𝑚=0

∫ 𝑥𝑟
𝜃

|𝜆|
(
𝑥

𝜆
)
𝜃−1

𝑒
−(𝑚+1)(

𝑥

𝜆
)
𝜃

𝑑𝑥
𝑢

0

 . 

By using lower incomplete gamma function, 𝛾(𝑠, 𝑥) = ∫ 𝑡𝑠−1𝑒−𝑡𝑑𝑡
𝑥

0
, the incomplete moments of ESED 

is given by 

𝑀𝑟(𝑢) = 𝛼∑ (−1)𝑚 (
𝛼 − 1
𝑚

)∞
𝑚=0 [𝛤 (

𝑟

𝜃
+ 1) − 𝛤 (

𝑟

𝜃
+ 1, (𝑚 + 1) (

𝑢

𝜆
)
1 𝜃⁄
)].

                                        

(14) 

 

4.3. Quantile Function 

 

The quantile function, 𝑞, specifies the probability of the random variable that is less than or equal to that 

value equivalents to the specified probability. By definition, the 𝑞𝑡ℎ quantile of any arbitrary pdf of 𝑥𝑞 is 

given by 𝑞 = 𝑃(𝑋 ≤ 𝑥𝑞) = 𝐹(𝑥𝑞) , 𝑥𝑞 > 0,0 < 𝑞 < 1 

For ESED: 

 𝑞 = [1 − 𝑒
−(

𝑥

𝜆
)
𝜃

]

𝛼

, 𝑥 > 0, 𝜆 ∈ 𝑅 , 𝜃 > 0, 𝛼 > 0, after simplification, we get  

𝑥𝑞 = |𝜆|√𝑙𝑛(1 − √𝑞
𝛼 )

−1𝜃

.                                                                                         (15) 

By substituting 𝑞 = 0.25, 0.5 𝑎𝑛𝑑 0.75, we get 1st, 2nd and 3rdquartiles respectively as 

𝑥0.25 = |𝜆|√𝑙𝑛(1 − √0.25
𝛼

)
−1𝜃

,
 
𝑥0.5 = |𝜆|√𝑙𝑛(1 − √0.5

𝛼
)
−1
,

𝜃

 
 𝑥0.75 = |𝜆|√𝑙𝑛(1 − √0.75

𝛼
)
−1𝜃

.     
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4.4. Mode  

Let X~ESED(𝑥: 𝜆, θ,α).Then, the mode of ‘X’ is  𝑥𝑜 = √
𝜆𝜃

(𝑖+1)
(1 −

1

𝜃
)

𝜃
 . 

Proof: The 𝑝𝑑𝑓 of ESED is 

𝑔(𝑥; 𝜆, 𝜃, 𝛼) =
𝜃𝛼

|𝜆|
(
𝑥

𝜆
)
𝜃−1

∑(−1)𝑚 (
𝛼 − 1
𝑚

)

∞

𝑚=0

𝑒
−(𝑚+1)(

𝑥

|𝜆|
)
𝜃

 

𝑔(𝑥; 𝜆, 𝜃, 𝛼) =
𝜃𝛼

|𝜆|
(
𝑥

𝜆
)
𝜃−1

𝐸1𝑒
−(𝑚+1)(

𝑥

|𝜆|
)
𝜃

.                                                   (16) 

Here 𝐸1 = ∑ (−1)𝑚 (
𝛼 − 1
𝑚

)∞
𝑚=0  

Taking “𝑙𝑛” on both sides of the Equation (16), we have 𝑙𝑛𝑔𝐸(𝑥; 𝜆, 𝜃, 𝛼), mode will exist if 
𝑑2

𝑑𝑥2
𝑙𝑛𝑔(𝑥; 𝜆, 𝜃, 𝛼) < 0, and mode exists at a point where 

𝑑

𝑑𝑥
𝑙𝑛𝑔𝐸(𝑥; 𝜆, 𝜃, 𝛼) = 0.

,  

Now for mode, differentiate 𝑙𝑛𝑔𝐸(𝑥; 𝜆, 𝜃, 𝛼) with respect to 𝑥,  we obtain 
𝑏−1

𝑥
−
𝑏(𝑖+1)

𝑎
(
𝑥

𝑎
)
𝑏−1

, equating 

this expression to zero and after simplification, we get 

 𝑥𝑜 = √
𝜆𝜃

(𝑖+1)
(1 −

1

𝜃
)

𝜃
, 𝜃 > 0, 𝑖 ≥ 0.                                        (17) 

It is computationally observed that for fixed 𝜃 and 𝛼 with 𝜆 > 0, the mode of ESED increases, for fixed 𝜆 

and 𝛼 with 𝜃 > 1, the mode of ESED increases, for fixed value of 𝑎 and 𝜃 with different values of 𝛼 ≥ 0, 
the mode of ESED remains fixed. 

 

4.5. Entropies 

 

The amount of uncertainty is referred to the entropy of a random variable 𝑋. Let 𝑋 be the random variable 

of the ESED, then the Rényi entropy are given by using the following relation 

 𝐼(𝑒̀) =
1

1−𝑒̀
𝑙𝑜𝑔 ∫ 𝑔𝑒̀(𝑥; 𝜆, 𝜃, 𝛼)𝑑𝑥

∞

0
;     𝑒̀ > 0 𝑎𝑛𝑑 𝑒̀ ≠ 1 

𝐼(𝑒̀) =
1

1−𝑒̀
𝑙𝑜𝑔 {

(𝜃𝛼)𝑒̀

|𝜆|𝑒̀−1𝜃(𝑒̀+𝑚)𝑒̀(𝜃−1)+1 𝜃⁄
∑ (−1)𝑚 (𝑒̀

(𝛼 − 1)
𝑚

)𝛤 (
𝑒̀

𝜃
(𝜃 − 1) +

1

𝜃
)∞

𝑚=0 }.

                              

(18) 

The Shannon entropy and generalized entropy for 𝛿 ≥ 1 , 𝛿 ≠ 𝛽 , 𝛽 − 1 < 𝛿 < 𝛽of ESED are given, 

respectively, by 

𝐸[−log( 𝑔(𝑥; 𝜆, 𝜃, 𝛼))] = −𝑙𝑜𝑔 (
𝜃α

|𝜆|
) + (𝜃 − 1)α𝛾 ∑(−1)𝑚 (

α − 1
𝑚

)
1

(m + 1)1+1/𝜃

∞

𝑚=0

+ α∑(−1)𝑚 (
α − 1
𝑚

)

∞

𝑚=0

 

here 𝛾 = 0.57722 is Euler gamma constant. 

𝑉𝛿,𝛽(𝑋) =
1

𝛽 − 𝛿
𝑙𝑜𝑔 [α (

𝜃α

|𝜆|
)
𝛿+𝛽−2 Γ((1 − 1/𝜃)(𝛿 + 𝛽 − 2) + 1)

(𝛿 + 𝛽 − 1)(1−1/𝜃)(𝛿+𝛽−2)+1
[∑(−1)𝑚 (

α − 1
𝑚

)

∞

𝑚=0

]

𝛿+𝛽−1

1

(m + 1)(1−1/𝜃)(𝛿+𝛽−2)+1
] 

;𝛽 ≥ 1  ;𝛿 ≠ 𝛽  ;𝛽 − 1 < 𝛿 < 𝛽. 

4.6. Reliability Analyses 

 

This section is based on survival, hazard, reverse hazard, cumulative hazard with explicit expressions and 

graphical presentation. In addition, mean residual life with reverse mean residual life of ESED are also 

specified. 

The survival function and correspondingly hazard function of the ESED are given, respectively by 

 

𝑆(𝑥; 𝜆, 𝜃, 𝛼) = 1 − ∑ (−1)𝑚 (
𝛼
𝑚
)∞

𝑚=0 𝑒
−𝑚(

𝑥

𝜆
)
𝜃

                                                                           (19) 

ℎ(𝑥; 𝜆, 𝜃, 𝛼) =
𝜃𝛼

|𝜆|
(
𝑥

𝜆
)
𝛾−1 ∑ (−1)𝑚(𝛼−1𝑚 )∞

𝑚=0 𝑒
−(𝑚+1)(

𝑥
𝜆
)
𝜃

1−∑ (−1)𝑚(
𝛼
𝑖 )

∞
𝑚=0 𝑒

−𝑚(
𝑥
𝜆
)
𝜃  .                                                              (20) 
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The graphical behavior of survival and hazard functions of the ESED are observed and presented in Figures 

3 and 4 respectively with remarks, (i). If 𝜃 = 2, 𝛼 = 1,the failure rate is constant and increases for 𝜆 > 0, 

(ii), If 𝜆 = 2, 𝛼 = 2, the failure rate is constant, decreases and increases for 𝜃 > 0. 
 

 
Figure 3. Plots Survival and hazard functions of ESED when 𝜃 = 2, 𝛼 = 1 with different values of 𝜆 

 

 
Figure 4. Plots Survival and hazard functions of ESED when (𝜆, 𝛼) = (2,2) with different values of 𝜃 

 

The reverse hazard function, 𝜏(𝑥; 𝜆, 𝜃, 𝛼), cumulative hazard function, 𝐻𝑥(𝑡), and mean residual life, 𝑀(𝑥), 

of the ESED are given, respectively by 

 

 𝜏(𝑥; 𝜆, 𝜃, 𝛼) =
𝜃𝛼

|𝜆|
(
𝑥

𝜆
)
𝜃−1 ∑ (−1)𝑚(𝛼−1𝑚 )∞

𝑚=0 𝑒
−(𝑚+1)(

𝑥
𝜆
)
𝜃

∑ (−1)𝑚(𝛼𝑚)
∞
𝑚=0 𝑒

−𝑚(
𝑥
𝜆
)
𝜃  

 

𝐻𝑥(𝑡) = −ln (1 − ∑ (−1)𝑚 (
𝛼
𝑚
)∞

𝑚=0 𝑒−𝑚(
𝑥
𝑎⁄ )𝑏)                                                                                    (21) 

 

𝑀(𝑥) =
𝜆𝛼

1−∑ (−1)𝑚(𝛼𝑚)
∞
𝑚=0 𝑒

−𝑚(𝑥 𝜆⁄ )𝜃
∑

(−1)𝑚

(𝑚+1)
1
𝜃
+1
(
𝛼 − 1
𝑚

)𝛤 (
1

𝜃
+ 1, (𝑚 + 1) (

𝑥

𝜆
)
𝜃

)∞
𝑚=0 − 𝑥   

                                           (22) 
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where 𝛤 (
1

𝜃
+ 1, (𝑖 + 1) (

𝑥

𝜆
)
𝜃
) is the upper incomplete gamma function. Then, the mean waiting time also 

called reverse mean residual life of X is  

𝑀1(𝑥) = 𝑥 −
𝜆𝛼

1−∑ (−1)𝑚(𝛼𝑚)
𝛼
𝑚=0 𝑒

−𝑚(𝑥 𝜆⁄ )𝜃
∑

(−1)𝑚

(𝑚+1)
1

𝜃
+1
(
𝛼 − 1
𝑚

)𝛾 (
1

𝑏
+ 1, (𝑚 + 1) (

𝑥

𝜆
)
𝜃
)∞

𝑚=0

                              

(23) 

 

where 𝛾 (
1

𝜃
+ 1, (𝑚 + 1) (

𝑥

𝜆
)
𝜃
) is the lower incomplete gamma function. 

 

4.7. Order Statistics 

 

The ESED proposed as a lifetime model, so minimum and maximum order statistics are very useful in the 

lifetimes of the series and parallel systems. Therefore, this subsection makes this section better and more 

informative about the distribution. 

Let 𝑋(1),  𝑋(2), … , 𝑋(𝑛)be the order statistics from a random sample of 𝑋1, 𝑋2, …𝑋𝑛 from a population. Then, 

𝑝𝑑𝑓 of 𝑗𝑡ℎ order statistic, say 𝑋(𝑗) = 𝑥 of ESED is given by 

𝑓𝑗:𝑛(𝑥) =
𝑛!

(𝑗 − 1)! (𝑛 − 𝑗)! 
(
𝑏𝛼
|𝑎|

(
𝑥
𝑎
)
𝑏−1

𝑒−(
𝑥
𝑎⁄ )
𝑏
[1− 𝑒−(

𝑥
𝑎⁄ )
𝑏
]
𝛼−1

) ([1− 𝑒−(
𝑥
𝑎⁄ )
𝑏
]
𝛼

)

𝑗−1

(1 − [1− 𝑒−(
𝑥
𝑎⁄ )
𝑏
]
𝛼

)

𝑛−𝑗

 

, 0 ≤ 𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑛) ≤ +∞ . 

For ESED, the distribution of minimum order statistic, say 𝑋(1) = 𝑥 is given by 

𝑓1;𝑛(𝑥) =
𝑛𝑏𝛼
|𝑎|

(
𝑥
𝑎
)
𝑏−1

𝑒−(
𝑥
𝑎⁄ )
𝑏
[1− 𝑒−(

𝑥
𝑎⁄ )
𝑏
]
𝛼−1

(1 − [1− 𝑒−(
𝑥
𝑎⁄ )
𝑏
]
𝛼

)

𝑛−1

  ,0 ≤ 𝑥(1) ≤ +∞ . 

Similarly, the distribution of maximum order statistic, say 𝑋(𝑛) = 𝑥 is given by 

𝑓𝑛;𝑛(𝑥) =
𝑛𝑏𝛼

|𝑎|
(
𝑥

𝑎
)
𝑏−1

𝑒−(
𝑥
𝑎⁄ )
𝑏

[1 − 𝑒−(
𝑥
𝑎⁄ )
𝑏

]
𝛼−1

([1 − 𝑒−(
𝑥
𝑎⁄ )𝑏]

𝛼

)
𝑛−1

  ,0 ≤ 𝑥(𝑛) ≤ +∞ .                        

 

5. ESTIMATION  

 

The method of maximum likelihood estimation is used for the purpose of parameters estimates for ESED. 

Let 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛be a random sample of size 𝑛 from the ESED given by (4). Then,𝑙𝑜𝑔𝐿(𝑋;𝛺) =
𝑙(𝑋; 𝛺) = 𝑙(𝛺) 
with derivatives 

 
𝜕𝑙(𝑋;𝛺)

𝜕𝜆
,
𝜕𝑙(𝑋;𝛺)

𝜕𝜃
 and 

𝜕𝑙(𝑋;𝛺)

𝜕𝛼
 

are shown below  

 

𝑙(𝛺) = 𝑛𝑙𝑜𝑔𝜃 + 𝑛𝑙𝑜𝑔𝛼 − 𝑛𝑙𝑜𝑔|𝜆| + (𝜃− 1)∑𝑙𝑜𝑔 (
𝑥𝑖

𝜆
) + (𝛼 − 1)∑𝑙𝑜𝑔 (1 − 𝑒−(𝑥𝑖 𝜆⁄ )

𝜃
) +

𝑛

𝑖=1

∑(
𝑥𝑖

𝜆
)
𝜃

𝑛

𝑖=1

𝑛

𝑖=1

 

𝜕𝑙(𝑋;𝛺)

𝜕𝜆
=
−1

𝜆
−
𝑛(𝜃 − 1)

𝜆
+
𝜃(𝛼− 1)

𝜆2
∑

𝑥𝑖 (
𝑥𝑖

𝜆
)
𝜃−1

𝑒−(𝑥𝑖 𝜆⁄ )𝜃

1 − 𝑒−(𝑋𝑖 𝜆⁄ )𝜃
+
𝜃

𝜆2
∑𝑥𝑖

𝑛

𝑖=1

(
𝑥𝑖
𝜆
)
𝜃−1

𝑛

𝑖=1

 

𝜕𝑙(𝑋;𝛺)

𝜕𝜃
=
𝑛

𝜃
+∑𝑙𝑜𝑔

𝑛

𝑖=1

(
𝑥𝑖
𝜆
) + (𝛼 − 1)∑(

𝑥𝑖
𝜆
)
𝜃

𝑙𝑜𝑔 (
𝑥𝑖
𝜆
)

𝑒−(𝑥𝑖 𝜆⁄ )𝜃

1 − 𝑒−(𝑥𝑖 𝜆⁄ )𝜃
−∑(

𝑥𝑖
𝜆
)
𝜃

𝑙𝑜𝑔 (
𝑥𝑖
𝜆
)

𝑛

𝑖=1

𝑛

𝑖=1

 

𝜕𝑙(𝑋;𝛺)

𝜕𝛼
=
𝑛

𝛼
+∑𝑙𝑜𝑔 {1 − 𝑒−(𝑥𝑖 𝜆⁄ )𝜃}

𝑛

𝑖=1

  

 

here, 𝛺 = (𝜆, 𝜃, 𝛼). By equating zero to 
𝜕𝑙(𝑋;𝛺)

𝜕𝜆
,
𝜕𝑙(𝑋;𝛺)

𝜕𝜃
 and 

𝜕𝑙(𝑋;𝛺)

𝜕𝛼
, the resultant equations are nonlinear 

system of equations. This nonlinear system of likelihood equations can be estimated numerically by 
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iterative procedure of Newton-Raphson method. Conversely, R statistical software is the best one 

framework that is used to obtain estimates numerically.  

 

 

6. CONFIDENCE INTERVALS 

 

The inverse Fisher information matrix is used to suggest the asymptotic confidence intervals for unknown 

parameters 𝜆̂, 𝜃and 𝛼̂ through maximum likelihood estimation. It is denoted by 𝐼(𝜆̂, 𝜃, 𝛼̂) and defined as 

 

𝐼(𝜆̂, 𝜃̂, 𝛼̂) = [

−𝑙𝜆
′′(𝑋;𝛺) −𝑙𝜆𝜃

′′ (𝑋;𝛺) −𝑙𝜆𝛼
′′ (𝑋;𝛺)

−𝑙𝜃𝜆
′′ (𝑋;𝛺) −𝑙𝜃

′′(𝑋;𝛺) −𝑙𝜃𝛼
′′ (𝑋;𝛺)

−𝑙𝛼𝜆
′′ (𝑋;𝛺) −𝑙𝛼𝜃

′′ (𝑋;𝛺) −𝑙𝛼
′′(𝑋;𝛺)

]

−1

= [

𝐼𝜆̂ 𝐼𝜆̂𝜃̂ 𝐼𝜆̂
𝐼𝜃̂𝜆̂ 𝐼𝜃̂ 𝐼𝜆̂
𝐼𝛼̂𝜆̂ 𝐼𝛼̂𝜃̂ 𝐼𝛼̂

] . 

 

The expressions for the following derivatives are given  

 

𝑙𝜆
′′(𝑋; 𝛺) =

𝜕𝑙2(𝑋;𝛺)

𝜕𝜆2
,        𝑙𝜃

′′ (𝑋; 𝛺) =
𝜕𝑙2(𝑋;𝛺)

𝜕𝜃2
 ,                𝑙𝛼

′′ (𝑋;𝛺) =
𝜕𝑙2(𝑋;𝛺)

𝜕𝛼2
 . 

 

Here 

𝑙𝜆
′′(𝑋; 𝛺) =

𝜕𝑙2(𝑋; 𝛺)

𝜕𝜆2
 =

1

𝜆2
+
𝑛(𝜃 − 1)

𝜆2
−
𝜃(𝜃 − 1)

𝜆4
∑𝑥𝑖

2 (
𝑥𝑖
𝜆
)
𝜃−2

𝑛

𝑖=1

−
2𝜃

𝜆3
∑𝑥𝑖 (

𝑥𝑖
𝜆
)
𝜃−1

−
2𝜃(𝛼 − 1)

𝜆3
∑

𝑒
−(

𝑥𝑖
𝜆
)
𝜃

𝑥𝑖 (
x𝑖

𝜆
)
𝜃−1

1 − 𝑒
−(

𝑥𝑖
𝜆
)
𝜃

𝑛

𝑖=1

+

𝑛

𝑖=1

 

                                           +
𝜃(𝛼 − 1)

𝜆2

[
 
 
 
 

∑

{
 
 

 
 

−(𝜃 − 1)
𝑒
−(

𝑥𝑖
𝜆
)
𝜃

𝑥𝑖
2 (

𝑥𝑖

𝜆
)
𝜃−2

𝜃2 (1 − 𝑒
−(

𝑥𝑖
𝜆
)
𝑏

)

+
𝑒
−2(

𝑥𝑖
𝜆
)
𝜃

𝜃𝑥𝑖
2 (

𝑥𝑖

𝜆
)
2𝜃−2

𝜃2 (1 − 𝑒
−(

𝑥𝑖
𝜆
)
𝜃

)

2 +
𝜃𝑒

−(
𝑥𝑖
𝜆
)
𝜃

𝑥𝑖
2 (

𝑥𝑖

𝜆
)
2𝜃−2

𝜆2 (1 − 𝑒
−(

𝑥𝑖
𝜆
)
𝜃

)
}
 
 

 
 𝑛

𝑖=1

]
 
 
 
 

 

𝑙𝜃
′′(𝑋; 𝛺) =

𝜕𝑙2(𝑋; 𝛺)

𝜕𝜃2
= −

𝑛

𝜃2
−∑𝑙𝑜𝑔 (

𝑥𝑖
𝜆
) (
𝑥𝑖
𝜆
)
𝜃

𝑙𝑜𝑔 (
𝑥𝑖
𝜆
)

𝑛

𝑖=1

+ 

                        +(𝛼 − 1)∑

[
 
 
 
 
𝑒
−(

𝑥𝑖
𝜆
)
𝜃

𝑙𝑜𝑔 (
𝑥𝑖

𝜆
) (

𝑥𝑖

𝜆
)
𝜃
𝑙𝑜𝑔 (

𝑥𝑖

𝜆
)

1 − 𝑒
−(

𝑥𝑖
𝜆
)
𝜃

−
𝑒
−2(

𝑥𝑖
𝜆
)
𝜃

𝑙𝑜𝑔 (
𝑥𝑖

𝜆
) (

𝑥𝑖

𝜆
)
2𝜃
𝑙𝑜𝑔 (

𝑥𝑖

𝜆
)

(1 − 𝑒
−(

𝑥𝑖
𝜆
)
𝜃

)

2 −
𝑒
−(

𝑥𝑖
𝜆
)
𝜃

𝑙𝑜𝑔 (
𝑥𝑖

𝜆
) (

𝑥𝑖

𝜆
)
2𝜃
𝑙𝑜𝑔 (

𝑥𝑖

𝜆
)

1 − 𝑒
−(

𝑥𝑖
𝜆
)
𝜃

]
 
 
 
 𝑛

𝑖=1

 

𝑙𝛼
′′(𝑋; 𝛺) =

𝜕𝑙2(𝑋; 𝛺)

𝜕𝛼2
= −

𝑛

𝛼2
 .

  

By solving the above matrix, the solution will give the asymptotic variance covariances of maximum 

likelihood estimators for 𝜆̂, 𝜃̂ and 𝛼̂. Hence two sided (1 − 𝛼)100% asymptotic confidence intervals for 

𝜆, 𝜃 and 𝛼 can be determined as:  

 

 𝜆̂ ± 𝑍𝛼
2
√𝐼𝜆̂,  𝜃 ± 𝑍𝛼

2
√𝐼𝜃̂,  𝛼̂ ± 𝑍𝛼

2
√𝐼𝛼̂ . 

 

where 𝑍𝛼 is 100𝛼 th percentile of standard normal distribution 𝑁(0,1). 

 

7. SIMULATION STUDY 

 

Simulation is applied to evaluate the maximum likelihood estimation (MLE) for different parameters of 

ESED. The simulated values of parameters of the ESED including MLE with mean square error (MSE) are 

reported in Table 1. The succeeding steps are adopted for simulation. 

 

Specify the actual values of parameters 𝜆, 𝜃 and 𝛼 of ESED; Select the sample size, 𝑛; Generate an 

algorithm to create a random sample of size 𝑛 from ESED(𝑥: 𝜆, 𝜃,α) in the following manners: 

• Generate𝑈𝑖~𝑈(0,1); 𝑖 = 1,2,3, … , 𝑛; 𝑈 means Uniform distribution. 
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• Design 𝑋𝑖 = |𝜆|√𝑙𝑛(1 − √𝑈
𝛼

)
−1𝜃

;  𝜆 ∈ 𝑅, 𝜃 > 0, 𝛼 > 0 

• Simulate the values of MLE of 𝜆, 𝜃 and 𝛼; 

• Repeat steps ii and iii, N times; 

• Calculate MSE of parameters of 𝜆, 𝜃 and 𝛼. 
 

Table 1. MLE and MSE at different values of parameters 

 

Table 1 represents simulated values parameters of the ESED for specified values of parameters with MSE.  

The simulation study is based on 𝑁 = 10,000. The sizes of sample are 100, 200, 300, 500 &1  000n = with 

actual values of parameters ( ) ( ) ( ),  , 0.5, 0.5, 2     0.05, 0.5, 2and   = The simulated values of parameters 

improved with increasing sample size as decreasing values of MSE generally.   

 

8.  CHARACTERIZATION 

 

The characterization of a distribution confirms essential role in mathematical statistics before data analysis. 

The characterization of a distribution is a main characteristic to check if suggested model is the correct. The 

general theory of characterization is popularized by truncated moments of Galambos and Kotz [25].  

 

8.1. Characterization Based on Truncated Moments 

 

Assume 𝑋 be an absolutely continuous random variable has𝐺(𝑥); cumulative distribution function (cdf) 

and 𝑔(𝑥); probability density function (pdf) for 𝑥 > 0 such that 𝑔′(𝑥) and 𝐸(𝑋|𝑋 ≤ 𝑥) exist for all 𝑥 > 0. 
Then 𝑋 has the Exponentiated Stretched Exponential Distribution 
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and 𝐷(𝑥) is differentiable function with 

respect to 𝑥 for all real 𝑥 ∈ (𝑙,𝑚). According to Lemma 1; (see Ahsanullah et al. [26]).  

 

Proof: Assume that ( ) ( )

1
1

0
1

u u

x u
u e e du D x g x

  


 

 

−
−    

− −   
   

  
− =           

differentiating both sides of equation give the result  

 

Actual Values of 

Parameters 

Sample 

Size 

MLE MSE 

𝜆 = 0.5 
𝜃 = 0.5 
𝛼 = 2 

n 𝜆̂ 𝜃̂ α̂ 𝜆̂ 𝜃̂ α̂ 

100 0.5415 0.4610 1.9865 0.0182 0.0037 0.0069 

200 0.5741 0.4464 1.9584 0.0258 0.0051 0.0242 

300 0.5733 0.4547 1.9597 0.0182 0.0039 0.0206 

500 0.5400 0.4533 1.9913 0.0049 0.0035 0.0025 

1000 0.5680 0.4343 1.9763 0.0130 0.0055 0.0117 

𝜆 = 0.05 
𝜃 = 0.5 
𝛼 = 2 

100 0.0518 0.4744 1.9817 0.0003 0.0039 0.0227 

200 0.0513 0.4875 1.9799 0.0001 0.0014 0.0118 

300 0.0508 0.4830 1.9801 0.0002 0.0024 0.0138 

500 0.0492 0.4828 1.9935 0.00007 0.0031 0.0035 

1000 0.0502 0.4930 1.9955 0.00009 0.0008 0.0020 
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Integrating (24), we get 𝑔(𝑥) = 𝑐𝑒∫ 𝐴(𝑢)𝑑𝑢
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 . This completes the proof. 

 

Now the rest of study is based on the applicability with evaluation criteria of introduced and considered 

models. It is interpreted by three climate parameters and COVID-19 data for drawing conclusion. 

 

9. APPLICATIONS 

 

Visibly, climate change is the major global issue that has occurred strongly during the last two decades on 

the environment at vulnerable states. Pakistan is one of the states that has recorded vulnerability signal to 

natural disaster. Seemingly, climate of Pakistan is becoming volatile due to different signals of change. 

Likewise, Corona virus COVID-19 pandemic is the recorded challenge on the most vulnerable for our time. 

Every country requires immediate proceed to react and recover. Therefore, analyses were conducted and 

discussed  about these issues as current challenges of time in this study. So, data interpretation bases on 

climate in Pakistan and total confirmed cases of COVID-19 through subject model. An analogy among 

subject model along with other models is also pointed up through evaluation criteria for drawing conclusion.  

 

9.1.  Evaluation Criteria 

 

The potentiality of subject model ESED was demonstrated by four real data sets. An analogy among models 

was also put up to evaluate the comparative quality of these statistical models through evaluation criteria 

including Maximized Log Likelihood (−2𝑙𝑛𝐿), Akaike Information Criterion(𝐴𝐼𝐶), Bayesian Information 

Criterion (BIC), Consistent Akaike Information Criterion (𝐶𝐴𝐼𝐶), Hannan Quinn Information Criteria 

(𝐻𝑄𝐼𝐶) and Kolmogorov Smirnov (KS) test. These measures are given in the following sequence: 

Maximized Log likelihood (−2𝑙𝑛𝐿), 𝐴𝐼𝐶 = 2𝑝 − 2𝑙𝑛𝐿, 𝐵𝐼𝐶 = 𝑝𝑙𝑛(𝑛) − 2𝑙𝑛𝐿, 𝐶𝐴𝐼𝐶 =
2𝑝𝑛

𝑛−𝑝−1
− 2𝑙𝑛𝐿, 

𝐻𝑄𝐼𝐶 = 2𝑝𝑙𝑛(𝑙𝑛(𝑛)) − 2𝑙𝑛𝐿. Where, 𝐿, 𝑝, 𝑛 denote the maximized likelihood function, the number of 

parameters in the model and the total number of observations respectively. The analyses of these measures 

were obtained trough R software. The list of probability models is decorated in Table 2. 
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Table 2. List of classical, modern and new proposed models 

Models Density Functions 

Stretched Exponential Distribution  
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9.2. Climate Data 

 

The conditions of climate change in Pakistan were observed due to global warming. Therefore three data 

sets of climate parameters including Temperature (oC) for observed zone of Cherat, Humidity (%) for Gilgit 

and Wind Speed (knots) for observed zone of Gilgit in Pakistan were selected. Accordingly, the data 

regarding these three climate parameters were analysed as follows: 

 

Temperature 

 

Temperature numerically indicates hot and cold physical particular of surface. It is the signal or measure 

of heat that available in every matters. There are frequent measuring scales of temperature including kelvin 
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(K), Celsius (oC) “OR” Centigrade and Fahrenheit (F). As well, Rankine (R) is also scale of temperature 

that is less used. Hence, the data of temperature of Cherat, Pakistan from 2007-2014 was analyzed on basis 

of monthly mean minimum temperature (oC). Data was colleced from MET Office (for detailed study, one 

can See Majid and Akhter [27]).  The Descriptive Statistics with Box and Dot Plots are reported in Table 

3.  

 

Table 3. Descriptive Statistics of temperature (oC) data  for zone of Cherat, Pakistan 

 

 
Figure 5. Box and Dot Plots of temperature (oC) data  for zone of Cherat, Pakistan 

 

Box plot displays skewed right whereas Dot plot represents long diagonals that ascertain the sequence in 

Figure 5. Descriptive statistics also confirm the right skewness due to greater median than mean. The ML 

estimates for all considered models are tabulated in Table 4. ESED fits best with minimum measures of 

evaluation criteria among other models analogically in Table 4. 

 

Table 4. ML Estimates with Evaluation Criteria for Temperature (oC) data  

Model 
ML Estimates 

Evaluation Criteria 

-2lnL AIC CAIC BIC HQIC 
KS 

Statistic 𝜆̂ 𝜃 𝛼̂ 

LD 0.1408 --- --- 656.6507 658.6507 658.6507 658.7063 660.9548 0.0098 

ED 13.3280 --- --- 685.2263 691.2263 693.7906 691.2688 692.2628 0.0099 

LED 348.3428 27.0713 --- 689.1330 693.1330 693.2621 698.2617 695.2061 0.0099 

WD 14.9454 2.0960 --- 633.2894 639.2894 644.4181 639.4184 641.3625 0.0095 

EWD 0.1792 8.2922 0.0472 605.2146 611.2146 611.4755 618.9076 614.3242 0.0104 

LWD 1.9447 12.6808 1.0985 632.3115 638.3115 638.5723 646.0045 641.4211 0.0897 

ATPLD 1.9447 -0.1190 1.4092 653.3171 659.3171 667.0101 659.5779 662.4267 0.0095 

TEPID 0.1220 114.1249 0.1003 605.0799 611.0799 618.7730 611.3408 614.1896 0.0117 

LSED 12.7122 1.9444 1.1028 632.3115 638.3115 638.5723 646.0045 641.4211 0.0096 

ESED 21.1782 8.8773 0.1665 604.0212 610.0212 610.2821 617.7143 613.1309 0.0094 

 

The graphical behavior of ESED is observed in Figure 6. 
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Figure 6. Estimated Density, Empirical Cumulative Distribution Function and TTT Plots of ESED for 

zone of Cherat, Pakistan on basis of Temperature (oC) data  

 

The estimated density plot, empirical cumulative distribution function (ECDF) plot and TTT plot for ESED 

on Temperature (oC) data was shown in Figure 6 respectively. The appearance of TTT plot is concave 

shaped in Figure 6(iii), thus the hazard rate is increasing for Temperature (oC) data of Cherat, Pakistan. 

Figure 6(i) also indicates that ESED is good fit regarding Temperature (oC) data for zone of Cherat, 

Pakistan. 

 

Humidity 

 

Humidity assigns to the amount of moisture in the atmosphere at a specific temperature. Humidity is 

reported in form of percentage. Therefore, humidity (%) data for zone of Muzaffarabad, Pakistan from 

2004-2014 was analyzed and interpreted. Data was collected from MET Office. The Descriptive Statistics 

with Box-Plot and Dot Plot for Humidity (%) data are summarized in Table 5. 

 

Table 5. Descriptive Statistics of Humidity (%) Data for zone of Muzaffarabad, Pakistan 

 

 
Figure 7. Box Plot with Dot Plot of Humidity (%) Data for zone of Muzaffarabad, Pakistan 
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Descriptive statistics confirm the right skewness according to greater median than mean. Box plot also 

displays skewed right in Figure 7. Dot plot denotes increasing diagonal in Figure 7. The ML Estimates of 

considered distributions are specified in Table 6 for humidity (%) data of Muzaffarabad, Pakistan. ESED 

interprets the best model to fit data for humidity (%) according to its minimum measures of evaluation 

Criteria in Table 6.  

 

Table 6. ML Estimates with Evaluation Criteria for Humidity (%) data 

Model 
ML Estimates 

Evaluation Criteria 

-2lnL AIC CAIC BIC HQIC 
KS 

Statistic 𝜆̂ 𝜃 𝛼̂ 

LD 0.0246 --- --- 1324.4347 1326.4347 1326.4900 1328.739 1327.354 0.0044 

ED 80.4849 --- --- 1422.4500 1424.4500 1424.4810 1427.3330 1425.6220 0.0046 

LED 136.6530 2.1961 --- 1408.9070 1412.9070 1413.0000 1418.6720 1415.2500 0.0044 

WD 83.0938 17.9639 --- 824.8475 828.8475 828.9405 834.6131 831.1904 0.0061 

EWD 7777   77.6189 2.6316 0.0225 880.0710 886.0710 886.2585 894.7195 889.5854 0.0059 

LWD 16.7225 82.4355 1.2893 822.5538 828.5538 828.7413 837.2022 832.0681 0.0913 

ATPLD 0.0024 34118 89840 1332.3560 1338.3560 1338.5430 1347.0040 1341.8700 0.0044 

TEPID 0.0073 0.2037 0.6554 1440.4430 1446.4430 1446.6300 1455.0910 1449.9570 0.0044 

LSED 82.4337 16.7140 1.2892 822.5538 828.5538 828.7413 837.2022 832.0682 0.0063 

ESED 87.0982 63.3503 0.1881 807.9783 813.9783 814.1658 822.6267 817.4926 0.0062 

 

The graphical view is also accorded in Figure 8 for Humidity (%) data. 

 

 
Figure 8. Estimated Density, Empirical Cumulative Distribution Function and TTT Plots of ESED for 

zone of Muzaffarabad, Pakistan 

 

Figure 8(i) frames the estimated density plot, Figure 8(ii) shows empirical cumulative distribution function 

(ECDF) plot whereas Figure 8(iii) indicates TTT plot for ESED on Humidity (%) data. The hazard rate is 

increasing due to concave shaped of TTT plot for Humidity (%) data for zone of Muzaffarabad, Pakistan. 

 

Wind Speed  

 

Wind speed is a basic atmospheric measure caused by air moving from high to low pressure, frequently 

affected by changes in temperature of a zone or surface of earth. Wind speed is usually measured with an 

anemometer.  The most common unit of wind speed is meters per second (m/s) whereas, the SI unit for 

velocity, kilometres per hours (km/h). Some units are used for historical reasons such as miles per hour 

(mph), knots (kn) or feet per seconds (ft/s). So, the data of Wind speed (knots) of Gilgit, Pakistan was 

analyzed from 2010-2014. Data Source is MET Office. The Descriptive Statistics with Box and Dot Plots 

for Wind speed (knots) data are summarized in Table 7. 
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Table 7. Descriptive Statistics of Wind Speed (knots) data  for zone of Gilgit, Pakistan 

 

 

 
Figure 9. Box and Dot Plots of Wind Speed (knots) data for zone of Gilgit, Pakistan 

 

Box plot confers that Wind speed (knots) data is skewed right for Gilgit in Figure 9. Descriptive 

statistics of Wind speed (knots) data of Gilgit also confirm the right skewness because median is 

higher than mean in Table 7. Dot plot signifies long diagonals as well as frequently continuous 

sequences are linked with full length in Figure 9. The ML estimates for all considered models are 

indexed in Table 8. ESED fits and interprets the best model on account of minimum measures of evaluation 

criteria among other models analogically in Table 8. 

 

Table 8. ML Estimates with Evaluation Criteria for Wind Speed (knots) data  

Model 
ML Estimates 

Evaluation Criteria 

-2lnL AIC CAIC BIC HQIC 
KS 

Statistic 𝜆̂ 𝜃 𝛼̂ 

LD 0.9581 --- --- 160.7400 162.7400 166.9071 173.6526 169.4978 0.0088 

ED 1.5766 --- --- 174.6375 176.6375 176.7065 178.7319 177.4568 0.0122 

LED 295.6023 188.4766 --- 174.6360 178.6360 178.8466 182.8247 180.2745 0.0122 

WD 1.8425 2.6514 --- 92.8452 96.8452 97.0557 101.0339 98.4836 0.0134 

EWD 7777   1.2942 3.1601 0.6106 81.9296 87.9296 87.6382 93.4927 89.6673 0.1058 

LWD 3.6305 2.7669 6.0249 81.4489 87.4489 87.6775 93.5319 89.7065 0.1224 

ATPLD 0.6352 500.000 0.5009 174.6374 180.6374 181.0660 186.9204 183.0951 0.0122 

TEPID 1.2941 3.1601 0.6106 81.9620 87.9620 87.6382 93.4927 89.6673 0.0485 

LSED 2.7526 3.6293 5.9212 81.4290 87.4290 87.6776 93.5321 89.7067 0.0150 

ESED 1.6382 3.1618 1.2930 81.3628 87.3628 89.6673 93.4927 80.8978 0.04845 

 

Table 8 specifies the ML Estimates of introduced as well as considered distributions for wind speed (knots) 

data of Gilgit, Pakistan. Table 8 interprets that ESED provides best competitor to other models used for 

fitting wind speed (knots) data of Gilgit, Pakistan. Hence, ESED results the best fit as reported by its 

minimum measures of evaluation criteria. The graphical behavior of ESED is also appeared in Figure 10. 
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Figure 10. Estimated Density, Empirical Cumulative Distribution Function and TTT Plots of ESED for 

zone of Gilgit, Pakistan on basis of Wind Speed (knots) data  

 
Figure 10(i) exhibits estimated density plot, 10(ii) reveals empirical cumulative distribution function 

(ECDF) plot and 10(iii) indicates TTT plot for ESED on Wind speed (knots) data respectively. Since TTT 

plot is concave shaped, thus the shape of hazard rate is increasing for ESED on Wind speed (knots) data 

for the zone of Gilgit, Pakistan. 

 

9.3. COVID-19 

 

The corona virus COVID-19 pandemic is the greatest challenge on the most vulnerable for our time. Every 

country needs immediate act to respond and recover. An analysis is conducted about total confirmed cases 

of COVID-19 in this study. Data represent the countries, territories and areas with reported laboratory-

confirmed COVID-19 cases from 30 December 2019 to 16 June 2020 by WHO- region complied by John 

Hopkins CSSE. Descriptive statistics are reported in Table 9. 

 

Table 9. Descriptive Statistics for total Confirmed Cases of COVID-19 data 

Minimum Q1 Median Mean Q3 Maximum Variance 

1.0 202.5 1715.0 37602.5 13779.5 2079592.0 27370715189 

 

 
Figure 10. Box Plot for total Confirmed Cases of COVID-19 data 

 

Box plot disposes that total confirmed cases of COVID-19 data is skewed left in Figure 10. Descriptive 

statistics also confirm the left skewness due to median (1715.0) is lower than mean (37602.5). Table 10 
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identifies the ML Estimates of all models to interprets the total confirmed cases of COVID-19 data. Table 

10 highlights that ESED yields the best model than other models on the comparison for fitting total 

confirmed cases of COVID-19 data concerning minimum measures of evaluation criteria.  

 

Table 10. ML Estimates with Evaluation Criteria for total Confirmed Cases of COVID-19 data 

Model 
ML Estimates 

Evaluation Criteria 

-2lnL AIC CAIC BIC HQIC 
KS 

Statistic 𝜆̂ 𝜃 𝛼̂ 

LD 0.0090 --- --- 144446.4 144448.4 144448.5 144450.7 144449.3 0.0047 

ED 27122.1400 --- --- 4892.8880 4894.8870 4894.9060 4898.2390 4896.2420 0.0047 

LED 99900.1515 3.2778 --- 4917.1140 4921.1150 4921.1730 4927.8190 4923.8250 0.0047 

WD 9999 0.3005 --- 4331.6300 4335.6300 4335.6880 4342.3340 4338.3400 0.0044 

EWD 0.4818 32.7629 1.4334 188294.6 188296.6 188296.7 188298.9 188297.5 0.0023 

LWD 0.3232 998.2238 0.8693 4196.078 4202.0770 4202.1930 4212.1330 4206.1420 0.3130 

ATPLD 4144 3890 0.0065 104249.2 104251.2 104251.3 104253.5 104252.1 0.0017 

TEPID 999.8679 0.2450 1.4262 4186.4440 4198.3860 4198.5800 4202.7940 194.8060 0.0044 

LSED 38.9596 0.2983 0.3963 4193.856 4199.8560 4199.9720 4209.912 4203.912 0.0043 

ESED 999.9770 0.2659 2.0792 4179.2200 4185.2190 4185.3350 4195.2750 4189.2840 0.0044 

 

Figure 11(i) recommends estimated density plot, 11(ii) specifies empirical cumulative distribution function 

(ECDF) plot and 11(iii) points out TTT plot for ESED on total confirmed cases COVID-19 data. Since TTT 

plot is convex shaped, thus hazard rate is decreasing for ESE D on total confirmed cases COVID-19 data. 

 

 

Figure 11. Estimated Density, Empirical Cumulative Distribution Function and TTT Plots of ESED for 

total Confirmed Cases of COVID-19 data 

 

10. CONCLUSION 

 

In this paper, Stretched Exponential distribution is extended through addition of a positive shape parameter 

by applying exponentiation technique. Special models of ESED are discussed and slight derivation of its 

statistical properties in modeling section are made. Method of maximum likelihood estimation is used  to 

estimate its parameters. Further, the usefulness of this innovative distribution was demonstrated by four 

real data sets. It was observed numerically and graphically from findings and results that ESED interprets 

best model to the monthly mean minimum Temperature (oC) data for zone of Cherat, Humidity (%) data  

for zone of Gilgit, Wind Speed (knots) data  for zone of Gilgit,  Pakistan as well as total confirmed cases 

of COVID-19 with minimum measures of evaluation criteria i.e.  −2𝑙𝑛𝐿, 𝐴𝐼𝐶, 𝐵𝐼𝐶, 𝐶𝐴𝐼𝐶, 𝐻𝑄𝐼𝐶 on the 

comparison. Finally, it was concluded that ESED has proved the best fit among all the competing 
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distributions for all real data sets. Further, ESED can be studied and applied on other parameters of climate 

for other countries as well as states and diseases.   
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