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On Cesaro Sums of Divergent Series

0. CAKAR

Dept. of Mathematics, Faculty of Science
(Ankara University, Ankara)

SUMMARY

00
Let X a; be an infinite series of real, non-negative num-

k=1 ’
bers and let

(3) = {Sk}9 (k=1,2,..., g = F ]_)
be any sequence of signs.

For a given sequence (c), we denote the n-th partial sum
of the series X ¢, by

n
8, (8) = X g a

and the n-th partial C; —sum of the series by

Cn (8) = %’

T Me

sy (g) -
1

If 6, (¢) converges then we call

6 (g) = lim o, (g)
n-» oo
a C, —attainable point of Xa, and denote the set of all C, —attainab-
le points of Za, by SC (a).

In this paper we are going to investigate the C; —attainable
set SC (a,) of a divergent series Za, and give some theorems on
that SC (a,) = R and SC (a,) = o, where R is the set of real
numbers and & is the empty set.
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1. Introduction

It is known that, if a numerical series is conditionally con-
vergent, then it is possible to sum this series to any value by
rearranging its terms, [4], [5].

A similar problem has been investigated for divergent series
and some interesting results have been obtained by Bagemihl-
Erdss, [3]. Also, Erdss-Hanani got some results for the C; —at-
tainable set of a divergent series £ a, , [1] .

In this note we are going to deal with thesame type of

problems.

2. Notations.

o
Let = a, be an infinite series of real, non-negative numbers
k=1

and let
(2.1) () = {&} k=12,..., 5 = F 1)
be any sequence of signs.

For a given sequence (c), we denote the n-th partial sum
of the series X g a; by

and the n-th partial C; —sum of the series by 7

1 n
6p (6) = — 2 s, () .

n u=
If 6, (c) converges then we call

¢ (g) = lim o, (¢)
n—o v
a C, — attainable point of Ta, and denote the set of all C; —attainable
points of Xa, by SC (a,).

R will denote thie set of real numbers and @ will denote
the empty set. S
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3. Theorems For SC (a,) = R .

Let us start giving a theorem which is an immediate conse-
quence of Theorem 1 of Erdss — Hanani [1] and Theorem 3 of
Yurtsever, [2] .

Theorem 3.1. Let ¥ a, be a series of nonnegative terms
havaing a subseries X a, such that ‘

Za, = ©,a, -0
If (a,) is monotone and bounded then SC (a,) = R. (2)
Theorem 3.2. Let Xa, = oo be a series of non-negative

terms having a subseries Xa, such that
Za, = ©,a,; > 0.
If, for a definite sequence (c) ,

1
a) lim — X sy &, exists,
k > o k+1
and

(2) During my stay in University of Lancaster in 1969-71, Pref. 1. J. Maddox
suggested me that Theorem 3.1, can be imporoved to the following

Theorem 3.1°. Let Xaybe a series of non-negative terms having a subseries Za _such
1
that
Ean- = 00, a“i —s 0.

1

If £]Aa] = Z]a, — ay,,| < 00, then SC (a) = R.

Proof. Take g, = »(—l)k . Then X¢; a, is convergent (and se (C,1) summable),
for '
n n n—l1 k -
Tega=a (X g)+ T (I ay')Aak
k=0 k=0 k=0 p=0
Now X [Aay | <00 implies that a, tends to a limit, 1 say, asn > 00 . But a, > 0 implies
that 1 = 0, i.e., a, - 0.

Hence

n n n—1 k
Zega =ol) X g - X (T g)Aa
o gk oo o cH i

=0 k=0 p=
n—1
=o(l)0 (@A) - ZO(l)Aak.
k=0

So the result is immediate.
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b) the series s, A ¢, is C; — summable, where

v
sy = X ay and As =g — g, then SC (a,) = R.
p=0
Proof. Take the series & a, = oo and apply the sequence
(¢). According to the Abel partial summation formula, we have

n n
(3.1.) Z Ek a.k == Z Sk A > “I- sn 5n+1 °
k=0 k=0
n
where s, = X ay ,85.1 = 0and A g = g — gy -
p=0
If we put
j i
S; = X goa = X s Ag + 855 , (3j=0,1,2,...),
k=0 k=0
we easily get
So + St + ... + S
(3.2) lim
1
= lim — p! 8 €k41 +
j—> o j+1 k=0
1 j
sAe+ T s Ag + ... + T s Agg
k=90 k=0
lim
j— i+ 1

Since the left-hand side of (3.2) is the C; —sum of the series Ze,ay,
by Theorem 1 of Erdss-Hanani, [1], the result is straight forward.

Theorem 3.3. Let Za, be a series of non-negative terms.

If Za, = o and monotonously a, — 0, then SC (a,) = R.
Proof. Let us write the equality (3.1) in the form of

n n
3.3) X g a =X s A ag + s, a5, »
k=0 k=0
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U
where 5, = X e, 8-t = 0, and ‘A a, = a — Ay, -
u=0
Put
J
Sj = E 12 a.k
k=0
Now, if
1 J ,
a’) lim 2 s, a,, exists ,

j—— o j+1 k=0
and ’
b’) the series X s, A a, is C; — summable,
then
So + 8 4 ... + 5
(3.4) lim
BN R

exists.

So, we must show, under the given hyphothes1s, that con-
ditions a’) and b’) are satlsfled

Choose {g} = (—1), (k = 0,1,2, .. ) Then the partial
sums s, s are bouilded, and since a, ——> 0 monotonously, the
series Xs, A a, is convergent. (One can easily see that it is abso-
lutely convergent, in fact.) So, condition b’) is satisfied. Namely
SC (a) % @ . Condition a’) is also satisfied because of the Cauchy’s
Theorem. The limit eXISts and equal to zero, (Arlthmetlc Means),

4], [5]

Therefore, according to Theorem 1 of Erdés- Hananl, il
SC (a) = R.

4. A Problem of Erdés - Hanani .

In this section, we are going to consider a problem due to
Erdés-Hanani, (Problem 1, [1] ), and show that the best pOSSlblP
result 18 C = 1.
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Theorem 4.1. Let Za, be a series of nonnegative terms
satisfyying Za, = oo . If there exists an 7, with the property
that to each v in O < % < 7, there corresponds an

(41) n, = n, (7))

such that for every n > n, ,

[m (2, ]
(4'2)2 Anyy > Ay + /)

1=
then SC (a,) = R.
Proof. Let ¢ be any real number. Then, we are going to
construct a sequence (2.1) such that
lim o, () = o .
n— o0
According to (4.1), for every v = 27, (i== 1o, 1o 4 1, ...) there
exists a number
(4.3) n; = n; (27)
such that for every n > n,, (4.2) is satisfied, with n = 2-1.
Now, choose ¢; arbitrarly for j = 1, 2, ..., nio'l'
Then, let us put n; = j and suppose that
s1 (&) + ... + 5.1 ()
Oj-1 (5)-'_—-' <o .
j—1
If s; 1 () < o + 27! we take ¢; = + 1 to make o, (¢) bigger than
6. But, if 5;_1 () > 6 4 2, then we choose ¢; so as to make s,(c)
as small as possible but not less than ¢ + 2-'. Continuing this
way, suppose that the final partial sum we reached is s, (¢) and let

s1(e) + s2(6) + ... + 8k, (<)
ky

Now the means must start decreasing and be < ¢ . Therefore
the partial sums must decrease. Then if

Ok () =

S, (&) >0c— 2, weputg,, 1 =—1;
but, if & (¢) < 60— 2-1, we choose g, -+ 1 so as to make the left
hand side as large as possible but not greater than c—2-1.
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Accordingly, we get
st () + ... s, (&) + - sy, =)

<.

6y (g) =

J2

)2

Then, it follows that the sequence (s, (c) ) attains alternately
minimas o; () , (h = 1, 2,...) and maximas oy, (), (h=1,2,...),
with j; <k, < j, <k, < .... such that

Sy, (¢) < o and Ok, (&) > o, (h =12, L)
Therefore the sequence (oy, () ) is monotonically increasing for
jn < v < k, and monotonically decreasing for ky < 0 < juyy-

To prove the theorem, it is enough to show that the difference
between ¢ and maxima o (¢) (or, c and minima c; (e) ) tends
to zero as n — oo . So we must show the existence of a number
jo such that for every k; > jo

(4.4) 0 <oy (6) —o <1

holds.
Let i be an integer such that

4.5 2t < q/6

and let n; be the corresponding index fixed by (4.1) :
n; = n; (2-%) .

Further, let h be an integer such that k;_; > n; and m the greatest
index providing j, < m < k; such that ¢, = 1.

According to our construction, we write
'(4.6) 61 (5) < 6.

And if ,

4.7) sy_1 () < ¢ + 21

then, for m < j < k;,, we get

(4.8) o <s;(e) <o 4 270 + 2a, .
Also, in the case ’

(4.9) Sm1 (8) > o + 271

the relation (4.8) is still valid.
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Now, if s,,_1 (€) > o + 21, then we are going to suppose that

(4.10)  sy_1 (e) - (0 4+ 2-1) < 24,
So, under this assumption, we can put the following
Lemma.
k;,
4.11) = a; < 2V 4 oa, .
j=m-1
Proof.

1°) Let 5,1 (€) < o + 2-i. Since
6 <sue) <o+ 27 4 ay,,
by (4.8), we can write

ky
6 < 8, (g) — 2 a;, <o+ 2+ a, .
j=m-1
Therefore, we get
ky,
s+ X a<sy() <o+ 2+a,
j=m-1
ky L ;
and T oa; <24 oa,
j=m-1

2°) Let s,;_1 (¢) > & + 2-1. Then
Sm1 (&) =0 + 271 4 a,
where 0 < o < 2-' . Therefore, we get
Sm-1 (€) + ay, > ¢ 4+ 21

k,
8p-t (&) + a, — = a; > o + 2-1
j=m-1 :
ky,
6 + 2V 4 o + a, — 2 a; > ¢ + 21
j=m-1

ky

2 a; < o + ay
j=m-1

or
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kh
Z ,,aj < Z‘i + [ W
j=m-+1

This completes the proof of the Lemma.

Now, by the definition of oy, (), we have

1 k

oo ) = — [(@—D) oy + 2 & () ]
k, j=m
and by (4.6) and (4.8)
1

(4.12) o (&) < o + 214+ 2a) (ky—m+ 1) .

ky,
If a, < 2-1, then we easily get
O, (&) — o < /2.
If a, > 2-i, then obviously m>n; . So. (4«%) and (4.11)

give

m
kh — m < z‘i.
am
and, we also have -
m
1 <27t ——
am
Therefore, from (4.12), weget
1 .
o, () —o < @1+ 2a) (ky —m + 1)
h
1 m
o, (&) —o < .3 a, .2 .21,
h A Am

which implies, by (4.5), that
o, (&) — o <7 .

In a similar way, we can show that the difference between
¢ and minima o; (c) tends to zero as h - oo .
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5. A Theorem For SC(a,) = g

In this chapter we are going to prove a theorem which gives
a sufficient condition for SC (a,) = @ . This teorem will be based
on Cauchy’s general convergence principle. It is known that, if
the sequence

s1(e) + 52 () + ... + 5y ()

On (e) =

n
n
where s, () = X ¢, ay is divergent, then the series can
v== '
not be C; — summable. So, what we need is having that, for

at least one k > 1 and fon each n

| Gasx (8) —on (&) | > 9
where n > 0.
~Take 1 < k < n, and write

l Gtk (8) — On (e) I =
n[5n+1(8) S I sn+k(€)] - k[sl(e) + .o+ Sn(s) ]
n(n-+k)
Using
n
Sy (&)= X Sy ay
y=
we get
| Gae ) — 5 (0) | = |
k n—+1 1 k—1
=] ———- 2 (—1) gy ay +——  Z (k—V)enirsy Anpgsy
n(n+k) v=2 nt+k v=1
k n-1

Z (o) ey 2

n(n+k) v=0
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1 k—1
+ - X (k_") €n+14v An41+y
n-t+k v=1
k n—1 n—v
=T ‘ G 2 —— Eqp—V Apyy
nt+k v=1 n .
k—1 k—v
+ 2 —— Cpapev By
oy=1
k k—1 n—v
= — | gy + = €n+1—Y Bpig—y
n--k v=1 n
n—1]1 n—v
+ = €n+1—Y App1—V
v=k n
k—'—l k‘—V
+ Z Enii+V  AnggV l
v=k k
k k—1 n—v n—1 n—v
= — [an+1_ % Ay v X — a
nt+k v=1 n v=k n
k—1 k—v
—_ X —
v=1
k k—1 n—1
= = [ Ap p> Ay 4ey — 2 Ap gV ]
n—l—k !V':l v=k
> .

So, we can express the following

Theorem5.1. Let = a, be a series of nonnegative terms.
If there exists a number k (1< k < n) and an n > 0 such that

for every n satisfying

k—1 n—1
gy — 3 e > 1+ Q) o oaggy

ol= V=

n+1-Y

11
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OZET
w N
X ap reel ve negatif olmayan terimli bir niimerik sonsuz seri ve
k=1

©=fad> =12, g} =% 1)
herhangi bir igaret dizisi olsun.

Verilen bir (¢) dizisi icin Xe, a) serisinin n’ inci kismi toplarmm

ve n’inci ‘kismi C; —toplamm

G, (&) = — 3 sy (e)
n v=1

ile belirttik ve o, (¢)’'un yakmsak olmas:t halinde
6 (g) = lim o, ()
n-—->Q0
’a Zay serisinin bir C; —erigilir noktas1 adm: verdik. Za; min biitiin C, —erigilebilir
noktalar ciimlesini SC (a,) ile gosterdik.

Bu aragtirmamizda ise irzksak bir Za,_ serisinin biitiin C, ~erisilir noktalar ciimlesi
olan SC (a,) ciimlesini ele ahp SC (a,) = R ve SC (a,) = @ olmas: hakkinda baz: teorem-
ler verdik, burada R reel sayilar ciimlesini ve & ise bos ciimleyi ifade etmektedir.
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