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Absolute Summability by Series-to-Sequence
Transformation Matrices

By
M.B. ZAMAN

(Received June 26, 1974)

SUMMARY

In this paper we define an absolute summability by a series—to-sequence transfor-
mation matrix. We obtain the necessary and sufficient conditions in order that every
absolutely convergent series is absolutely summable by series-to-sequence transfor-
mation matrix. For this we find new classes of matrices-conservative series-to-sequence
transformation matrices and regular series-to-sequence transformation matrices.
We study the relation of these two new classes of matrices with K, ,T and y-matrices.
Finally we prove that the absolute summability of an absolutely convergent series by
a matrix and the generalized limit of its absolute partial sum are equal under the suitable
relation between the two matrices. :

- \
2. Definitions. By 2 |u, | we mean the series fuy [ If 5=
k

2,
k=1

L pam

| u; 1, sy is said to be an absoluie partial sum of the series

1

2 uy. s is said to be an abslute sum of X u, if X |ug | =s.
k X k

A series X u is said to be an absolutely sumable by a series
K

/8

~to—sequence transformation matrix A if z, = | agi ug |

-
Il

1

z, as n —> oo In the above definition if £ | u, | =s, the transfor-
e | :
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mation is called conservative or regular according as z=%s or z=s.
A matrix A is a K-matrix if it satisfies the following conditions

(2.1) g | apox | < M for every n,
k=1

(2.2) lim a,,, = ay for eveey fixed k

n-> oo
(2.3) Lim kZ_I ag =ao ( [1], pp. 63).
n>o k=

A K-matrix A is T-matrix if o, =0, « = 1 ([I], pp. 64)
We write Aag,, = a5, — a1 Alag | = | 8px | = lanok+1]

3. Some Lemmas. Our problem is to find the necessary and suffi-
cient conditions in order that every absolutely convergent series
may be absolutely summable by a series-to-sequence transforma-
tion matrix. We need the following lemmas.

Lemma 1 The necessary and sufficient condition that a matrix
A transforms all the null sepuences into null sequences
are that

(i) lm a,, = O for every fixed k, and
n—> oo

(1i) b | 8] < M for every n, where M is independent of n
k=1

For proof see [1], pp. 64 (4.1,IT) and the remark is etalics
concerning case z=0; also [2], pp. 49

==}
Lemma 2. The necessary and sufficient condition that % | ag,, ug|
k=1
exists for every n, whenever X u, is absolutely convergent, is that
k

3.1) lim | ay, | < M for every fixed n.
k>0

Proof. We first observe that if (3.1) holds, there is a number M’
such that

| apx | < M’ for all n and k.
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Thus the condition is suffieient. for

T8

© Q .
[ ansy uy | =k2 | apg Jue | <M kEI | u, | exists
=1 =

1

for every fixed n, since X u, is absolutely convergent.
k

K .
Conversely, we are to prove that if X | ag,, u, | exists
: k=1

for every fixed n, whenever X u, is absolutely convergent, the
k

the condition (3.1) is necessary, Suppose that (3.1) is false. Then
there exists a sequence {k; } of positive integers such that | ank; ]
> iz (i=1,2,3,.....,) for every fixed n.

Let u,=0 for k # k; (i=1,2,3,....), and u =1/i (i=12,3....,).

«© =] «©

then X [u, |= X 1/i2=x/6.But ¥ |a,mu |=
k=1 i=t k=1

x

% | ag,y /2 | = o0, and hence the condition (3.1) is necessary.

i=

Lemma 3. Let s be any positive number and { x, } be any arbitrary
null sequences, then there exists an absolutely convergent series

k
2 uy such that s—s, =x,, where s,= X |[w; |.
k i=1
§—8,=X, oI, 8,=8-X, or |u; | = s~x;
s—8; == x, Or, s, = s— x,
or, |u; [+ Juz | =8 x2
or qu IZS—Xz— lll1 l.

= S—X2—5+ X1
= X1—X2;

and so on.

, ) ;
Now 3 lay = Jus [+ Juz [+ Jus [+ et Jug |
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= (s=x1) + (x: — XZ) Foe + (Xk—l_xk)

= s~ X

==}
Therefore % | u; | = s, since x,— 0 as k - co.

i=1
This proves the lemma.
«©
Lemma 4. A necessary condition that lim X | ay, uy
n—>oo k71

exists, whenever X u, is absolutely convergent, is that
k

(3.2) s | gk |1 apoxs1 | < M for every n.
k=1

=)
Proof. since lim 2 | ap,y uy | exists,
n—>oo k1
* ’ .
Y | ap, ug | exists for every n and hence by Lemma 2

w

=1

(3.3) lim | ag,, | < G for every fixed n.
k>

Take any positive integer r and put u,=1, u; = 0 for k=#r, then

==}
lim X Japgug | = lim | a, |
n—> oo k=l n— oo
Therefore
(34) lim | a,, | exists.
n— oo

Let s be any positive number and { x, } be any orbitrary
null sequence; then, by Lemma 3, X u, is an absolutely con-
k

k
vergent series such that s—s, = x,, where s, = 2 |u; |. Now

i=1

we have | u = §p — Sp_, = ¥ _1 — ¥ Also
Kk k ~ Sk K K
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m

(35) X lamcwmd = £ fag] ul

m
= X |agy| (Xgo1=xy)
k=k

m—1
= dp,1 X5 — kz—l ( ‘an’kl - lamk+1l ) Xk ~ 2oy Xpe

From (3.3) we get

(3.6) lim |a,,, x,]| = 0, since x,, > 0 as m - oo.
m-—> oo

Now (3.5) and (3.6) togather imply that

®
(37) lim X ( |amkl - Iamk+1 I ) Xy
n— oo =
. . B}
= lim J|a, | x, -~ lim 2 ag ugl.
n— oo n-> o k=1

By the hypothesis and (3.4), the right-hand side of (3.7)
exists and therefore

. ®
lim
n->oo k=

1 ( ]apsk | = lagy«1] ) x exist for an arbitrary null

sequence { x, }
Hence the necessity follows from Lemma.

4. Conservative Transformation and |B| — matrix. In this
section we study the problem of the absolute summability by a
method of conservative series-to-sequence transformation matrix.

(4.1). The necessary and sufficient conditions in order that
every absolutely convergent series is absolutely summable by a
series—to—sequence transformation matrix A are that '

(4.1 $ lansk b — lapss, | < M for every n, gnd
k=1

(4.2) Lm |ay,, | = A, for every fixed k.
n->oo
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Moreover, under these conditions

(4.3) lim °§1 | U] = A s + %} O As1) (55 — )
k=

n—>o
k
Whenever s, = 2 |u;| >sask - o
i=
Proof.

Sufficiency. We have

: =) - b}
(44) X Jap, u| = lim 2 |ap. uy
k=t m->oo k71

= lim 2 lagi| { (5¢ = 8)~ (sg-18) }
m->o ™!
. m_l
= lim % ( Iamkl - Ian7k+1 | ) (Sk_s) + ‘amll 8
m-—>co k=1
+ (Sm—s) Ian’m |
Also
R N . m-—1
(4.5) | apm | = lap.1 [ - k§1 ( Tage 1~ [an,k+1 1)

Now (4.1) and (4.5) togather imply that lLim |a,.,| < G

m—> o0

for every fixed n, since, by (4.2), |a,,1 | is bounded for every
fixed n. Hence

(4.6) | agon | (8s) = 0 as m—>oo, since s,—> s as m->o0.

From (4.4) and (4.6) we get
(4‘7) k2=1 l Apok uk] = l Any1 | s + kEl ( l Ansk | '"I amk+1| ) (sk_s)'
It follows from (41) aﬁd sy — s that the right-hand side of

(4.7) exists for every fixed n. Hence the left-hand side exists for
every fixed n. -
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Take any € > 0. Choose N such that |s,—s | > /M for all
k > N and write (4.7) in the form

O N ®, .
(4'8) °2°: Ianvk Uy |= I an91 8 | + ( 2 + z" ) ( Ianﬁk |_ |an’k+ I) (Sk—S)-
k=1 k=1 k=n41
Then, by the condition (4.1},
(4"9) i"o ( Tane | = Tagpker | ) ( Sg — S) < M. E/M=— e for
k=N+1 ’ : )
every n, and, by (4.2),
N N :
(4.10) 1§1 (lagi] = | aser]) (=) > 121 (O A ) (8c-8)

and |a,,: |[s->2A;sasn>o0.

From (4.8), (4.9) and (4.10) we get

(4.11) lim $ | 8go wy | = A s + §=1 (A — A1) (8k—8)-

n>oo Kk

Hence the conditions are sufficients.

®
Necessity. Suppose lim | a5, wy | ‘exists

n— oo =1

o

Whenever X u, is absolutely convergent.
k
Let u, = 1 for k=p and u, = 0 for k 7 p, then

[==] N
lim Y Jagpeu | = lim |ay,, | ; and hence the con-
n>oco  * n—> o0

dition (4.2) is necessary.
The necessity of condition (4.1) follows from Lemma 4.
This completes the proof of the theorem.

Definition 1. If a matrix A satisfies the conditions (41) and
(4.2), it will be called |B | — matrix and A will be called its cha-
racteristic number.
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Definition 2. A matrix A is a B—matrix if and only if
(4.12) :i | 8,k —apo+1 | < M for every n, and
=1

(4.13) lim a,, == B, for every fixed k,
n—>oo

where B, is its characteristic number ( [1], pp. 66).

Remarks :— The condition (4.12) implies the condition (4.1)
but (4.1) may or may not imply (4.12). It is obvious that (4. 13)
implies (4.2). Hence

every 8 —matrix is a | | —-matrix.

Take Anox — ( -1 )k_l n-i]E . Now we have
nk
I I_I | = n—I-k_ n+k-+1 . nk-+n+k2+k-nk-k>k
fo | oo 1= SE - S0 T T wk &+ D
—_ n o 1 - i
ok (kD) | kk+D) ¥
Therefore
) z 1 2
Z ol b= Jamen | < 2 = —

This implies that

5 [ apx | = | ago+1 | < M for every n.
k=1

Thus (4.1) is satisfied.

Again lim |ag,, | = T for every fixed k, and thus (4.2)
n-> 00

is satisfied.
Consequently A = (a,,, )isa |B | — matrix.

Also we have



ABSOLUTE SUUMABILITY BY SERIES... 151

o —a l_n+k . n+k+1 (n—l—k)(k—}—l)—i—(n—f’—‘k—l—li)
wk okt T Tk n(kt+1) nk (k+1)

 nk42k42k+n _ n(k4l) 1
= T ak(kt1) nk(k+1) Kk

Therefore
«© ® 1
by | Apox—Bpsk +1 I > % _IT = 0.
k=1 k=1
. . - X, 3
This implies that X | a,,,—ay,,+1 | is not bounded.

Thus the condition (4.12) is not satisfied. Hence A = (a,,y)
is not B—matrix and we obtain the following result:

(4,11 ). Every B-matrix is a |3 | —matrix but the converse
is not-true.

(4,1I). The suffient condition in order thatod |B | -mairix
A should be a 3~ matrix is that a,, > 0 for every n and k.

Proof. The condition is sufficient, for

lagok | = a0k and lagox | = | Aok +1 | = A,y ~ Apok+1 and thus the | B I
—matrix satisfies the conditions (4.12) and (4.13).

(4,IV). Every Absolutely convergent series is absolutely
summable by a 8 matrix.

This follows from (4,1) and (4,II).

5. Regular Transformation and |y | -marix. In this section
we study the absolute summability by a method of regular series-
to-sequence transformation matrix.

(5,1). The necessary and suffient conditions that every abso-
lutely convergent series X u, is absolutely summable to s by a
k

series—to—sequence transfotmation matrix A, whenever X |u,|
= s, are that k

(5.1) 3 [ gk | — | 8goxs; | < M for every n, and
k=1
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(5.2) lim | ag,, | = | for every fixed k.
n->o0
Proof.
Sufficiency. Putting A, = 1 in (4,1), the conditions (5.1) and

(5.2) are immediately seen to be sufficient.
Necessity. Take u, = 1 (k=p)
= O ( k#p ), p heing a fixed integer.
Then 2 Juy | =1

k
. ® 3
But Ilim % Jagg u, | = lm Jag,,
n—> oo k=t n-> o
Hence (5.2) is a necessary condition.
. . X,
Since lim 2 Jagug | = s, whenever X |u, | =s,
n>oco  F=k k

the necessity of the condition (5.1) follows from Lemma 4.

Remark. (4,1) and (5,1) are also true if we replace the integer
n by the continous variable w and in the conditions (4.1) and
(5.1) we write w> w, in place of every n.

Definition 1. If a matrix A satisties the conditions (5.1)
and (5.2), we shall call it |y |-matrix.

Definition 2. The matrix A is a y —matrix if and only)if
')
(5.3) X | apyapie1 | < M for every n, and
k=1
(5.4) lm a,, =1 for every fixed k. ( |1], pp. 68).

n-—-> oo

The condition (5.3) implies the condition (5.1) but (5.1) may
or may not imply (5.3), and (5.4) obviously implies (5.2).

Hence every y -matrix is a |y | -matrix.

nk-+1
nk

Example. Take a,, = (-1)¥*

° then , Anox  Apog +1 |



y
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nk-1 n(k+1)4-1  nk?+4+k-+nk-+14nk>+nk+k -

e S B o ak(k T 1)
nk+n 1
nk(k+1) ~ k
Therefore
[=-] -] 1
E Ianvk_an9k+1 I > E —1<_
k=1 k=t

1
This implies that g | Aag, |1is not bounded,since kcf. *
. k=1 =1

is divergent; thus the condition (5.3) is not satisfied. Hence A
is not vy — matrix.

. _ nk+1  nk41)+1 1 1
Again fan, |- a1 | = nk ~ n(k+1) ok (k1) < k2
Therefore

®© ® 1 T2

kz=1 ”amk I_ ' Aok +1 “< k§1 P— = _6—
This implies that

$ [ amk | = | apyst | <M for every n.

k=1

Thus the condituon (5.1) is satisfied.

Again lim | a,,, | = 1 for every fixed k.

n->co

Hence A is a |y | —matrix.

Now we obtain the following result:

(3,11 ). Every vy —matrix is a | v | —matrix but the converse

is not true.

(5,III) The sufficient condition in order that a |y | —matrix
should be a v —mairix is that



154 M.B. ZAMAN

a,,, = 0 for every n and k.

The condition is sufficient for | a . | = a,.
and | ap,; | — | 8kt | = 8pox —@p.i+1 and consequently |y |
—matrix satisfies the conditions (5.3) and (5.4).

(5,IV). Every absolutely convergent series is absolutely summab-
le by v -matrix

This follows from (5.5., 1I) and (5.5,1).

6. Absolute Summability and Generalized Limit. By the defi-

nition the absolute sum of an infinite series X u, is the limit of
k

the sequence s, = |ui | + | w2 | 4+ ... + | uy | which is its

absolute partial sum. Now the question arises as to whether the

absolute summability of ¥ u, and the generalized limit of the
X

sequence of its absolute partial sum are equal under suitable re-
lations between two matrices. In the proof of our results we requ-
ire the following lemmas.

Lemma 5. If | g | = $ a,,;, to every K—matrix A=(a,,y)
i—k

corresponds | B | -matrix G = (g,.) and to every T-matrix
A corresponds | v | —matrix G.

Proof. If A is a K—-matrix, A satisfies the conditions (2.1),

(2.2) and (2.3). Since | g, | = Ek Ay Aok | = anus

i=

and therefore, by using (2.1). él | gk | = | Boks1| =

®
kE | agx | < M for every n.
=1
Hence the condition (4.1) is satisfied.

o, k-1
Again lim | g, | = lim Y agg— X an,i]
n-> oo n—>oo - k71 =
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Where «, and « are the characteristic numbers of A. Thus the
condition (4.2) is also satisfied and hence G is a | 8 | —matrix.

Also we have

A=«
61) ] 2= *™
3 T 0T,

This implies that
(6:2) A = o M = Ny, = o (k > 2).
If A is a T-matrix, o, = 0 and « = 1 so that

lim |g., |=1.ThusGisa [ v | —matrix.
n—> oo

Lemma 6. If G is a | B | —matrix, the necessary and sufficient

condition that a,, = | gy | = | a1 | should be a K—matrix is
that
(63) lg, | = lim | g, | should tend to a limit as n->co.
k- o
Proof.

Sufficiency. If G=( g, ) is a | B | —matrix, it satisfies the
conditions.

(6.4) 1? | 8ok | = | Gaost | < M for every n, and
=1

(6.5) lLim g, | = for every fixed k.

n—> oo

Now it follows from (6.4), (6.5) and a,, = | gk || Gasics1 |
that

© v
2 |ag| < M for every n, and lim Ao = A, — Ags1 for
k=1 n—> oo

everyfixed k.

Thus the conditions (2.1) and (2.2) are satisfied.

Also we have \
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(66) pX Apox by ( I Enok ‘_ |gmk+1 |)
. k=1 k=1
- Igml | - lim Ign’k"
k—c0

From (6.3), (6.5) and (6.6) we get ) a,,, tends to a limit

as n— oo and thus the condition (2.3) is also satisfied.
Hence A is a K-matrix.
Necessity. Suppose that A is a K-matrix, then § a_
k=1
tends to a a limit as n—>oo . Now it follows from (6.6) that the

©
condition (6.3) is necessary is order that X a,, tends to a limit
k=1

as n— o0, since | g,,1 | = A1 as n—>o0.

This completes the proof of the lemma.

Lemma 1. IfGisa |y |-matrix and ay,, = | guox | = | aorc+r |
the necessary and sufficient condition that A should be a T-mairix
is that

lim | gux | = | g | >0 asn—>o0.
k—+> o

Proof. Since G is a |y | ~matrix, lim | g, | = 1.
n->

Put 3, = 1 in Lemma 6 then the condition is immediately
seen to be sufficient and necessary.

6.1). If | goox | = ) a,,; and A is ¢ K-matrix,
i=1
K-limit of s, = |uy | + | w2 | + oo + | uy | wheever s¢ -«
as k o0 is equal to  lim s | ook Uk -

n— oo
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Proof. If A is a K~matrix, it follows from (4,1,1) of [I], pp. 63
that

(6.7 lim 3 A, S = o s + 3 oy (s5¢—8).
k=1

n-> o k=1
X
Since | gux | = X2 ay,;, then, by Lemma 5, G= (g,,,) is
i~k
.a | B | —matrix.

Therefore, by (4,1), we have

(6.8) lim S lgeeu | =us+ §1 (M = st (54-5).
Z

n-» oo k=1

Now it follows from (6.7) (6.8) and (6.2) that

=] =]
Lim 2 ag, s, = lim 2| guox ui |-
n—> o k=t n-> o0 k=1

Corollary. If | g | = p | ay; | and A is a T-matrix,
i~k

18

[==]
lim g, 8 = lim 2| Zuok Uk
n-oo k n— oo k=1

Il

k
Whenevers, = % |u; | >sask — oo,
i=1

Proof. If A is a T-matrix, by Lemma 5, G= (g, ) is a |y ]|
~matrix. The result follows from (6,I) with « = 1, ¢, = 0.

(6,1T). Let ap, = | guok | — | Baox+1 | and G be a |B | —matrix
satisfying the condition.
(69) lim ( lm g, |)=0;then

n->ow ks>ow

(6.10). lim $ .y S = lim ) | ook Uk
n—> oo k= n—> oo -1

A
"

k
Whenever s, = 2 |u; | >sask - oo

i=

-
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Proof. If a,, = | ok | = | oxst | and G = (gg,,) is a |B]
—matrix, it follows from

(6.9 ) and Lemma 6 that A= (a,,,) is K-matrix. Then by
(4.1, Ty of [1], pp. 63.

6.11) lim ¥ agcsc=oas+ 2 oy (55,
k=1

n—>oc k=l
. 2 . . ’
Where lim a, = « lim a,,, = o for every fixed k,
n- oo k=1 n—- oo
Since G is a |8 | —matrix and
Apog = l Enok l - | Enrk+1 [, by (69)

(612) o0 = lim 2 ap = lim [lgoel - Um g, 1=

n—>op k71 n-> oo k— o0
and also
(6.13) o, = lim a,, = A — Ay
n->oo

Therefore, from (6.11), (6.12) and (6.13),

©
. Ap Sk = A1 8 k§ (e = A1) (8i08)-

(6.14) lim

n- oo

5N

M8

Since X u, is an absolutely convergent series and Gis a |B ]
k
-matrix, by (4,11I)

(6.15) lim Y| ok Uk | =2xs + 2 (- Mer1) (5¢-8).
n— oo 1 k=1

M8

Consequently it follows from (6.14) and (6.15) that

=) 2,
lim Y agg s = lim 2| Zuex Uk |-
n— o k=1 n- o k=l
Corollary. Let ag,, = | Zpox | — | Saok+1 | and G be |y| —matrix

satisfying the condition
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(6.16) lim (im | g, | ) =0,
n>w ko>ow

then

(6.17) lim é a, s, = lim | gk W | = s

n—>oo L n-> oo

T Mg

k
Whenever sy = X |wu; | > s as k—>oco.
The corollary immediately follows from Lemma 7 and (6,II)
with A = 1.
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