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Abstract 

Bilateral/haptic teleoperation is the remote control of a "slave" robotic system through a "master" robot or haptic interface, and 

involves the feedback of the slave interaction forces to the operator. Thus, the master operator can operate the slave as an 

extension of his/her body. Time delay among the robots is a long-standing problem in bilateral teleoperation. The existence of 

force feedback to the operator in haptic/bilateral teleoperation makes the teleoperation system less robust to time delays on the 

communication channels. Three channel architectures have been proposed in the literature to provide increased robustness 

against time delays with increased transparency (kinesthetic coupling). In this paper, we propose modifications on three channel 

architectures to guarantee delay independent L2 stability, while exploiting the increased transparency characteristics of these 

architectures. The validity of the proposed approach is examined both analytically and experimentally on a bilateral 

teleoperation system.  
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Öz 

İki-yönlü/haptik teleoperasyon; bir "takipçi" robotun bir "yönlendirici" robot, veyahut arayüz, aracılığıyla operatör tarafından 

uzaktan kumandasını ve takipçi robotun etkileşim kuvvetlerinin operatöre geri beslenmesini kapsar. Böylece operatör, takipçi 

robotu kendi uzuvlarının bir uzantısı gibi kullanabilir. Robotlar arasındaki iletişimde yaşanan gecikmeler, iki-yönlü 

teleoperasyonda bilinen en eski problemlerdendir. Operatöre kuvvet geri beslemesinin olması haptik/iki-yönlü teleoperasyon 

sistemlerinin gecikmelere karşı daha kararsız/dayanıksız olmasına sebebiyet vermektedir. Üç kanal mimarileri, literatürde, 

gecikmelere karşı daha dayanıklı ve yüksek transparanlığa (kinestetik bağa) izin veren mimariler olarak ortaya çıkmışlardır.  

Bu makalede, üç kanal mimarilerinde, bu mimarilerin hem transparanlığından faydalanmayı amaçlayan hem de gecikmeden 

bağımsız L2 kararlılığını garantileyen değişiklikler yapılması önerilmektedir. Önerilen yaklaşımın geçerliliği hem analitik hem 

de deneysel yöntemlerle bir iki-yönlü teleoperasyon sisteminde incelenmiş, ve doğrulanmıştır.  

Keywords: Robotik, Teleoperasyon, Haptik, Kuvvet kontrolü, Kararlılık 

 

I. INTRODUCTION 
Teleoperation systems were first developed for remote manipulation in nuclear plants, by Goertz. The first 

teleoperation systems were composed of master and slave manipulators that were mechanically coupled. Later 

Goertz also led the development of first electrically controlled teleoperator systems where the master and slave 

manipulators were connected to each other through electrical communication. This development has also expanded 

the application fields of teleoperator systems, to military and law enforcement, aerospace, medical and 

construction.  Bilateral teleoperation systems involve actuated master systems, in contrast with unilateral 

teleoperation systems with passive masters, which can feed the forces acting on the slave systems back to the 

operator first by acquiring the force measurement with a sensor and then transmitting this measurement back.  

 

One of the greatest problems in bilateral teleoperation systems is the existence of time delays as the presence of 

force feedback coupled with time delay destabilizes the control system. The first solution to the time delay problem 

in bilateral teleoperation was presented in [1] by Anderson and Spong, by treating the communication among the 

master and the slave as a power transmission line and rendering the overall system passive by using the scattering 

approach. The passivity concept was further developed with the use of wave variables in [2] by Niemeyer and 

Slotine. Many other researchers [3][4][5] have since used and built upon the passivity approach to guarantee 

stability of bilateral teleoperation systems under time delay.  However, an important drawback of the passivity 

approach is that the performance of the control system deteriorates once it is made passive. The performance of 

bilateral teleoperation systems is often described by the term "transparency". Transparency refers to the 

teleoperation system being transparent to the operator, thus enabling perfect kinesthetic coupling between the 
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operator and the environment. One way to quantify 

transparency is to use hybrid matrices as proposed by 

Hannaford [6]. Lawrence [7] and Yokokohji [8] have 

independently shown that perfect transparency can be 

achieved by using the four channel control architecture, 

that makes use of four communication channels among 

the master and slave robots: two position channels for 

the position control loops of each robot and two force 

channels for the force control of each robot. However 

it is widely known that the four channel architecture is 

not capable of guaranteeing stability and transparency 

under time delays. It was later shown that the 

transmission of four measurements among the robots as 

in the four channel architecture is not a requisite for 

transparency. By using local force compensators, one 

of the force communication channels can be eliminated, 

and transparency can still be achieved when there is no 

time delay with a three channel architecture [9][10]. 

Furthermore, three channel architecture offers better 

transparency than the four channel architecture under 

time delay. In [11], Kubo et. al. has proposed a novel 

three channel approach eliminating one of the position 

channels rather than the force channels, to provide 

some improvements in terms of transparency under 

time delay. In [12], a type of three channel architecture 

has been applied to multilateral teleoperation with 

multiple robots. In [13], passivity/ absolute stability 

and Z-width (transmitted impedance bandwidth) based 

transparency analyses of all three channel architectures 

presented in [9]-[11] have been performed. However, it 

has been shown that it is impossible to guarantee 

absolute stability of any of the three channel 

architectures for all frequencies. Furthermore, Z-width 

does not provide a complete picture of the critical 

kinematic/force coupling performance of the 

teleoperation system.  

  

The reason that three channel architectures can not 

guarantee absolute stability is that, absolute 

stability/passivity criteria are often too conservative. In 

this paper we are proposing the use of input-output L2 

stability [14][15] for the stability analysis of three 

channel teleoperation systems due to more relaxed 

stability conditions. It will be shown that by 

introducing modifications on the known three channel 

architectures it is possible to guarantee delay 

independent stability of all the three channel controllers 

for all LTI environmental parameters for the first time. 

Furthermore we also analyze the effects of the proposed 

stability modifications on the transparency of the 

system under time delay. For transparency 

analyses/comparisons of all three channel architectures, 

hybrid and inverse hybrid matrices are utilized, which 

also allow the quantification of kinematic/force 

correspondences. The theoretical results are then 

validated with experiments performed on a bilateral 

teleoperation system composed of two linear motors.  

 

The organization of the paper is as follows:  Section II 

describes the Lawrence and three channel architectures 

for bilateral teleoperation under time delay and 

introduces the proposed modifications, Section III 

provides the stability analysis and Section IV provides 

transparency analyses for the proposed framework, 

Section V reports the experimental results and Section 

VI discusses the outcomes of this research and possible 

future directions. 

 

II. THREE CHANNEL ARCHITECTURES 
In bilateral teleoperation, Lawrence architectures [16] 

are commonly used to obtain controllers. This name 

stems from the four channel architecture proposed by 

Lawrence and by using the channel parameters 

described in that paper almost all teleoperation 

controllers can be obtained.. While describing the three 

channel architecture Zaad and Salcudean [9] proposed 

the use of two local force compensation channels. Here 

we will be using the same approach to describe the 

dynamic equations of a bilateral teleoperation system. 

The dynamic equations of the master and the slave 

systems under the mentioned control laws are given 

respectively in frequency domain: 

 

(𝑍𝑚 + 𝐶𝑚(𝑠))𝑉𝑚(𝑠) − 𝐶4𝑉𝑠(𝑠)𝑒{−𝑠𝑇2} 

= (1 − 𝐶6)𝐹𝑚(𝑠) − 𝐶2𝐹𝑠(𝑠)𝑒{−𝑠𝑇2}                               (1) 

 

(𝑍𝑠 + 𝐶𝑠(𝑠))𝑉𝑠(𝑠) − 𝐶1𝑉𝑚(𝑠)𝑒{−𝑠𝑇1} 

= (𝐶5 − 1)𝐹𝑠(𝑠) + 𝐶3𝐹𝑚(𝑠)𝑒{−𝑠𝑇1}                               (2) 

 

Here, s is the complex frequency variable, 𝑉𝑚 , 𝑉𝑠 are the 

velocity vectors for the master and slave robots, 𝑍𝑚, 𝑍𝑠 

are the impedances of each robot.  The impedances are 

assumed to be masses 𝑍𝑚 = 𝑀𝑚𝑠, 𝑍𝑠 = 𝑀𝑠𝑠. 

𝐹𝑚(𝑠), 𝐹𝑠(𝑠) are the forces acting on the master and 

slave robots respectively. In this paper these forces are 

modeled as linear time invariant (LTI) systems as in 

[9]: 

 

𝐹𝑚 = 𝐹ℎ
∗ − 𝑍ℎ𝑣𝑚                                                                         (3) 

𝐹𝑠 = 𝐹𝑒
∗ + 𝑍𝑒𝑣𝑠                                                                             (4) 

 

𝑍ℎ, 𝑍𝑒, are the human and environmental impedance 

terms respectively and can be written as: 𝑍ℎ = 𝑚ℎ𝑠 +

𝑏ℎ +
𝑘ℎ

𝑠
, 𝑍𝑒 = 𝑚𝑒𝑠 + 𝑏𝑒 +

𝑘𝑒

𝑠
 where 𝑚ℎ,𝑒 , 𝑏ℎ,𝑒 , 𝑘ℎ,𝑒 are 

the human and environmental mass, spring and damper 

coefficients respectively. 𝐹ℎ
∗, 𝐹𝑒

∗ are the exogenous 

master and environmental forces which are 

independent of the system states.    𝐶𝑚(𝑠), 𝐶𝑠(𝑠) are the 

local position feedback controllers, 𝐶1(𝑠), 𝐶4(𝑠) are 

position channel feedforward controllers, 𝐶2, 𝐶3 are 

force channel feedforward control gains, and 

𝑒{−𝑠𝑇1}, 𝑒{−𝑠𝑇2} are the time delays between each robot 

where 𝑇1 is the amount of time delay in seconds from 

the master robot to the slave and 𝑇2 is the delay from 

the slave to the master.  Here the robots are assumed to 

behave as pure masses in the Cartesian space, and 

disturbance observers and or computed torque method 

can be utilized to transform any robot dynamics into 
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this form. The control diagram can then be seen in 

Figure 1.  

 

 
Figure 1. Lawrence architectures in Bilateral 

Teleoperation 

 

Conventional four channel controllers are obtained by 

the following selection of the controller/channel 

parameters: 

 

𝐶1(𝑠) = 𝐶4(𝑠) = 𝐶𝑚(𝑠) = 𝐶𝑠(𝑠) =  𝑘𝑝/𝑠 + 𝑘𝑣                (5) 

𝐶2 = 𝐶3 =  1                                                              (6) 

𝐶5 = 𝐶6 = 0                                                                                   (7) 

 

Three channel architectures as devised by Zaad and 

Salcudean [9]-[10] make use of the local force feedback 

channels 𝐶5, 𝐶6 to compensate for the effects of forces 

acting on one of the robots so that the robot is purely 

position controlled. This robot can be selected as the 

master or the slave, depending on the requirements for 

the teleoperation system (such as environment the slave 

robot will be in contact with.)  This allows the 

elimination of the force channel to the force 

compensated/position controlled robot, reducing in 

effect the number of communication channels to three. 

In this paper we will call the three channel architecture 

where the master is position controlled P-PF 

architecture, and the one where the slave is position 

controlled the PF-P architecture. This naming 

convention implies that the PF controlled robot 

receives both force and position measurements from 

the other robot and P controlled robot receives only 

position information. The channel and controller 

parameters for the P-PF architecture can be written as 

follows:   

 

𝐶1(𝑠) = 𝐶4(𝑠) = 𝐶𝑚(𝑠) = 𝐶𝑠(𝑠) =  𝑘𝑝/𝑠 + 𝑘𝑣                   (8) 

𝐶2 = 0, 𝐶3 =  1                                                              (9) 

𝐶5 = 0, 𝐶6 = 1                                                          (10) 

 

On the other hand the PF-P architecture can be written 

as:  

 

𝐶1(𝑠) = 𝐶4(𝑠) = 𝐶𝑚(𝑠) = 𝐶𝑠(𝑠) =  𝑘𝑝/𝑠 + 𝑘𝑣               (11) 

𝐶2 = 1, 𝐶3 =  0                                                          (12) 

𝐶5 = 1, 𝐶6 = 0                                                         (13) 

 

Both of these controllers are designed with the 

assumption that one of the robots is position controlled 

and the disturbances acting on the robot in the form of 

external forces are compensated through the control 

system. However Kubo et al. [11] has also shown that 

if one of the robots is purely force controlled instead of 

being position controlled a new kind of three channel 

architecture can be obtained for transparency.  This 

would mean that both robots communicate their force 

measurements to one another and one robot also 

transmits its position measurements. In this architecture 

the local force compensation channels are also not 

mandatory. Thus, two more three channel architectures 

are obtained: the F-PF and PF-F types. The F-PF type 

three channel architecture can be obtained by the 

following selection of controllers:  
 

𝐶1(𝑠) = 𝐶𝑠(𝑠) =  𝑘𝑝/𝑠 + 𝑘𝑣  , 𝐶4(𝑠) = 𝐶𝑚(𝑠) = 0         (14) 

𝐶2 = 1, 𝐶3 =  1                                                       (15) 

𝐶5 = 0, 𝐶6 = 0                                                          (16) 

 

The final type of three channel architecture is the PF-F 

type described by the following channel parameters:  

 

𝐶1(𝑠) = 𝐶𝑠(𝑠) = 0 , 𝐶4(𝑠) = 𝐶𝑚(𝑠) =  𝑘𝑝/𝑠 + 𝑘𝑣        (17) 

𝐶2 = 1, 𝐶3 =  1                                                          (18) 

𝐶5 = 0, 𝐶6 = 0                                                         (19) 

 

Linear stability analysis under time delays using 

Nyquist stability criterion has been demonstrated for 

the PF-P and P-FP three channel architectures in [10]. 

Absolute stability analysis has been performed for the 

F-PF and PP-F architectures in [12], however it has 

been demonstrated that stability can not be guaranteed 

for all frequencies. In this paper we will perform delay 

independent 𝐿2 stability analysis as proposed in [15] to 

demonstrate that the architectures with the controllers 

given as in (8)-(19) can not guarantee delay 

independent stability. However we will also 

demonstrate for the first time that with some 

modifications on the channel and local controllers, it is 

possible to guarantee  delay independent stability for all 

three channel architectures. We modify the local 

controllers 𝐶𝑚, 𝐶𝑠 by adding local damping injection 

terms and  introduce force controllers 𝐶𝑓 which will be 

selected as proportional controllers for the P-PF,PF-P 

architectures and as high-pass filters for the F-PF,PF-F 

architectures. The new local controller parameters 

𝐶′
𝑚, 𝐶′

𝑠 for the PF-P architecture can then be written 

as: 

 

𝐶′
𝑠(𝑠) = 𝐶𝑠(𝑠) + 𝑏𝑠 , 𝐶′

𝑚(𝑠) = 𝐶𝑚(𝑠) + 𝑏𝑚               (20) 
 

and the new force controllers can be written as : 

 

𝐶2 = 𝐶𝑓 , 𝐶3 =  0                                                       (21) 

 𝐶5 = 1, 𝐶6 = 1 − 𝐶𝑓                                                     (22) 
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Here, 𝑏𝑚, 𝑏𝑠 are the local master and slave velocity 

feedback coefficients employed for damping injection. 

For the P-PF architecture, the modified controllers can 

be written as: 
 

𝐶′
𝑠(𝑠) = 𝐶𝑠(𝑠) + 𝑏𝑠 , 𝐶′

𝑚(𝑠) = 𝐶𝑚(𝑠) + 𝑏𝑚                 (23) 

𝐶2 = 0, 𝐶3 =  𝐶𝑓                                                      (24) 

𝐶5 = 1 − 𝐶𝑓 , 𝐶6 = 1                                                       (25) 

 

For the PF-F and F-PF architectures,  force controller 

will be modified as a high pass filter: 𝐶𝑓′(𝑠) =
𝐶𝑓𝑠

𝑠+𝑔
.  The 

PF-F architecture controller parameters can then be 

written as: 
 

𝐶′
𝑠(𝑠) = 𝑏𝑠 , 𝐶′

𝑚(𝑠) = 𝐶𝑚(𝑠) + 𝑏𝑚                            (26) 

𝐶2 = 𝐶𝑓′, 𝐶3 = 𝐶𝑓′                                                         (27) 

𝐶5 = 1 − 𝐶𝑓′, 𝐶6 = 1 − 𝐶𝑓′                                      (28) 

 

Finally, the F-PF architecture will be written as: 
 

𝐶′
𝑠(𝑠) = 𝐶𝑠(𝑠) + 𝑏𝑠 , 𝐶′

𝑚(𝑠) = 𝑏𝑚                               (29) 

𝐶2 = 𝐶𝑓′, 𝐶3 = 𝐶𝑓′                                                    (30) 

𝐶5 = 1 − 𝐶𝑓′ , 𝐶6 = 1 − 𝐶𝑓′                                      (31) 

 

The reasons for these selections of controllers will be 

evident in the stability and transparency analyses in the 

next two sections. Firstly we derive the necessary 

conditions for delay independent 𝐿2 stability with these 

controllers.  

 

III.  INPUT-OUTPUT STABILITY 

ANALYSIS 
To guarantee stability of the teleoperation system, 

input-output stability analysis will be performed [17]. 

An input-output connection refers to two systems 

interconnected in feedback configuration as in Figure 

2. We first start with the definitions and properties of 

the signal spaces used in this paper. 𝐿2 space is the set 

of square integrable functions 𝑓(𝑡) defined in the 

domain 𝑡: [0, ∞), satisfying the inequality: 

∫ |𝑓(𝑡)|2𝑑𝑡
∞

0
< ∞. The extended 𝐿2 spaces 𝐿2𝑒  are the 

set of functions in 𝐿2 that are equal to 0 for 𝑡 > 𝑇, 

satisfying the inequality: ∫ |𝑓(𝑡)|2𝑑𝑡
𝑇

0
< ∞. The norm 

of a signal in 𝐿2 space is given as ||𝑓|| =

(∫ |𝑓(𝑡)|2𝑑𝑡
∞

0
)

1/2
. 

 

 
Figure 2. Input-Output connected systems 

 

The equations describing an input-output connected 

system as in Figure 2 can be written as: 

 

𝑢1 = 𝑒1 − 𝑦2 , 𝑢2 = 𝑒2 + 𝑦1                                          (32) 

𝑦2 = 𝑆2𝑢2, 𝑦1 = 𝑆1𝑢1                                               (33) 

 

where  𝑢1, 𝑢2 are the input signals in 𝐿2𝑒, 𝑦1 , 𝑦2 are the 

output signals in 𝐿2𝑒 , and 𝑒1, 𝑒2 are the exogenous 

inputs in 𝐿2𝑒 which are independent of the systems 

states. The operators 𝑆1, 𝑆2 are mappings on 𝐿2𝑒  signals 

s.t. 𝑆1, 𝑆2:  𝐿2𝑒 ⟼ 𝐿2𝑒. An operator on 𝐿2𝑒 is said to be 

𝐿2 stable if for an input 𝑢 and an output 𝑦 it satisfies the 

norm inequality: ||𝑦|| ≤ 𝛾||𝑢|| + 𝑏, where 𝑏 and 𝛾 are 

finite constants, and is said to have finite gain.  For 

linear systems the 𝐿2 induced gain of an operator 𝐺 ∶
𝐿2𝑒 ⟼ 𝐿2𝑒 can be computed as 𝛾 = sup

𝜔>0
|𝐺(𝑗𝜔)| where 

𝐺(𝑗𝜔) is the Fourier transform of 𝐺 and 𝜔 is the 

frequency variable.  We now introduce the small gain 

theorem. 

 

Theorem 1- Small Gain Theorem 

The input-output interconnection in Figure 2 described 

by the equations (32)-(33) is bounded input bounded 

output (BIBO) stable if the operators 𝑆1, 𝑆2 are stable 

with finite gains 𝛾1, 𝛾2 and the product of the gains 

satisfy the small gain condition: 𝛾1 ∙  𝛾2 < 1 . For 

linear operators this condition can be expressed as  

sup
𝜔>0

|𝑆1(𝑗𝜔) | ∙  sup
𝜔>0

|𝑆2(𝑗𝜔) | < 1.  

 

Next we are going to transform the bilateral 

teleoperation system depicted in Figure 1 and described 

by equations  (1)-(2) into input output form as in Figure 

2 and equations (32)-(33) and apply the small gain 

theorem to derive the stability conditions for the 

controllers given in (8)-(31). The system in Figure 1 

can be redrawn in input-output form as in Figure 3. 

From the figure, the input output system transfer 

function 𝑆1(𝑠), 𝑆2(𝑠) can be obtained as: 

 

   𝑆1 :  
(−𝐶4−𝐶2𝑍𝑒)𝑒−𝑠𝑇2

𝑍𝑚+𝐶𝑚+ (1−𝐶6)𝑍ℎ
, 𝑆2 :  

(𝐶1−𝐶3𝑍ℎ)𝑒−𝑠𝑇1

𝑍𝑠+𝐶𝑠+(1−𝐶5)𝑍𝑒
             (34) 

 

 

 
Figure 3. Input-Output Form of the Bilateral 

Teleoperation System 
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The channel parameters in equations (8)-(31) can then 

be plugged in (34) to obtain the system transfer 

functions for different three channel architectures.  The 

 𝑆1, 𝑆2 transfer functions for each architecture can then 
be written as follows. 
 
For the P-PF architecture: 
 
 

   𝑆1 :  
𝐶𝑝𝑒−𝑠𝑇1

𝑍𝑚+𝐶𝑝
,        𝑆2:  

(𝐶𝑝−𝐶𝑓𝑍ℎ)𝑒 −𝑠𝑇2

𝑍𝑠+𝐶𝑝+𝑏+𝑍𝑒
                                 (35) 

 

for the PF-P architecture: 

 

   𝑆1 : 
(𝐶𝑝−𝐶𝑓𝑍𝑒)𝑒 −𝑠𝑇1

𝑍𝑚+𝐶𝑝+𝑏+𝐶𝑓 𝑍ℎ
,      𝑆2 : 

𝐶𝑝𝑒 −𝑠𝑇2

𝑍𝑠+𝐶𝑝
                                          (36) 

                                                                 

for the F-PF architecture: 

 

𝑆1 :  
−𝐶𝑓′𝑍𝑒𝑒−𝑠𝑇1

𝑍𝑚+𝑏+𝐶𝑓′𝑍ℎ
, 𝑆2 :  

(𝐶𝑝−𝐶𝑓′𝑍ℎ)𝑒−𝑠𝑇2

𝑍𝑠+𝐶𝑝+𝑏+𝐶𝑓′𝑍𝑒
                        (37) 

 

for the PF-F architecture: 

 

 𝑆1 : 
(𝐶𝑝−𝐶𝑓′𝑍𝑒)𝑒 −𝑠𝑇1

𝑍𝑚+𝐶𝑝+𝑏+𝐶𝑓 ′𝑍ℎ
, 𝑆2 : 

−𝐶𝑓 ′𝑍ℎ 𝑒−𝑠𝑇2

𝑍𝑠+𝑏+𝐶𝑓 ′𝑍𝑒
                                    (38)                                                                     

The stability conditions can obtained by determining the 

𝐿2 gains of these terms. We first solve for the controller 

parameters that can guarantee the stability of the P-PF 

architecture. From Theorem 1, the stability condition is 

given as: sup𝜔>0 |𝑆1(𝑗𝜔) |.   sup𝜔>0 |𝑆2(𝑗𝜔) | < 1, also 

both sup𝜔>0 |𝑆1(𝑗𝜔) | and sup𝜔>0 |𝑆2(𝑗𝜔) | should be 

finite. However slightly more conservative stability 

conditions can be obtained easily if we assume 

|𝑆1(𝑗𝜔)| < 1, |𝑆2(𝑗𝜔)| < 1, ∀𝜔 > 1. We have that 

sup𝜔>0 |𝑆𝑖(𝑗𝜔) | = sup
𝜔>0

√(𝑆𝑖(𝑗𝜔)𝑆𝑖(−𝑗𝜔)).  Then for 

the P-PF architecture we have:  

 

|𝑆1(𝑗𝜔)| = (
𝑘𝑝

2+𝑘𝑣
2𝜔2

𝑀𝑚
2 𝜔4−2𝑘𝑝𝑀𝑚𝜔2+(𝑘𝑣+𝑏𝑚)2𝜔2+𝑘𝑝

2  )
1/2

 (39) 

 

|𝑆2(𝑗𝜔)| = ((𝐶𝑓
2𝑚ℎ

2𝜔4 + 2𝐶𝑓𝑚ℎ (𝑘𝑝 − 𝐶𝑓𝑘ℎ)𝜔2 

      +(𝑘𝑣 − 𝐶𝑓𝑏ℎ)
2
𝜔2 + (𝑘𝑝 − 𝐶𝑓𝑘ℎ)

2
) 

/((𝑀𝑠 + 𝐶𝑓𝑚𝑒)
2

𝜔4 − 2(𝐶𝑓𝑀𝑒 + 𝑀𝑠) (𝑘𝑝 + 𝐶𝑓𝑘𝑒)𝜔2 

      +(𝑘𝑣 + 𝑏𝑠 + 𝐶𝑓𝑏𝑒)
2

𝜔2 +(𝑘𝑝 + 𝐶𝑓𝑘𝑒)
2
))1/2              (40) 

 

From |𝑆1(𝑗𝜔)| < 1, the stability conditions for the 

master system can be written as: 

 

2𝑏𝑚𝑘𝑣 + 𝑏𝑚
2 >  2𝑘𝑝𝑀𝑚                                       (41) 

 

From |𝑆2(𝑗𝜔)| < 1, the stability conditions for the 

slave system can be written as: 

 

𝑀𝑠 + 𝐶𝑓𝑚𝑒 >  𝐶𝑓 𝑚ℎ                                             (42) 

2𝑘𝑝 >  𝐶𝑓𝑘ℎ                                                           (43) 

 

𝑏𝑠
2 + 2𝑘𝑣𝑏𝑠 + 2𝑘𝑣𝐶𝑓𝑏ℎ >  2(𝐶𝑓𝑀𝑒 + 𝑀𝑠) (𝑘𝑝 + 𝐶𝑓𝑘𝑒)  

+   2𝐶𝑓𝑚ℎ  (𝑘𝑝 − 𝐶𝑓𝑘ℎ) + 𝐶𝑓
2𝑏ℎ

2                                   (44) 

 

All these conditions can be satisfied by the 

appropriate selection of damping injection 

parameters 𝑏𝑚 , 𝑏𝑠 and the force controller gain 𝐶𝑓  

for all possible environmental/human impedance 

parameters. Furthermore it can be seen that without 

damping injection and force controller gains it is not 

possible to guarantee small gain conditions and 

stability for all impedances. Also, due to the fact that 

the 𝐿2 gain of the delay operator is unity, the delays 

are eliminated in the gain calculations and the 

stability analysis becomes delay independent. Thus 
the P-PF three channel controller with the controllers 

(23)-(25) satisfying the conditions (41)-(44) is 

guaranteed to be delay independent 𝐿2 stable. 

Similarly, the stability condition can be derived for 

the PF-P architecture and will be symmetric to the P-

PF architecture. The gain functions are: 
 
|𝑆1(𝑗𝜔)| = ((𝐶𝑓

2𝑚𝑒
2 𝜔4 + 2𝐶𝑓𝑚𝑒  (𝑘𝑝 − 𝐶𝑓𝑘𝑒)𝜔2 

               +(𝑘𝑣 − 𝐶𝑓𝑏𝑒)
2

𝜔2 + (𝑘𝑝 − 𝐶𝑓𝑘𝑒)
2

) 

                /((𝑀𝑚 + 𝐶𝑓𝑚ℎ)
2

𝜔4 − 2(𝐶𝑓𝑀ℎ + 𝑀𝑚) (𝑘𝑝 + 𝐶𝑓𝑘ℎ)𝜔2 

                 +(𝑘𝑣 + 𝑏𝑚 + 𝐶𝑓𝑏ℎ)
2

𝜔2 + (𝑘𝑝 + 𝐶𝑓𝑘ℎ)
2

))1/2         (45) 
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|𝑆2(𝑗𝜔)| = (
𝑘𝑝

2+𝑘𝑣
2𝜔2

𝑀𝑠
2𝜔4−2𝑘𝑝𝑀𝑠𝜔2+(𝑘𝑣+𝑏𝑠)2𝜔2+𝑘𝑝

2 )

1

2
          (46) 

 

The stability conditions for the master system becomes: 

 

𝑀𝑚 + 𝐶𝑓𝑚ℎ >  𝐶𝑓𝑚𝑒                                             (47) 

2𝑘𝑝 >  𝐶𝑓𝑘𝑒                                                            (48) 

𝑏𝑚
2 + 2𝑘𝑣𝑏𝑚 + 2𝑘𝑣𝐶𝑓𝑏𝑒 >  2(𝐶𝑓𝑀ℎ + 𝑀𝑚) (𝑘𝑝 + 𝐶𝑓𝑘ℎ) 

 +   2𝐶𝑓𝑚𝑒  (𝑘𝑝 − 𝐶𝑓𝑘𝑒) + 𝐶𝑓
2𝑏𝑒

2                             (49) 

 

And for the slave it becomes: 

 

2𝑏𝑠𝑘𝑝 + 𝑏𝑠
2 >  2𝑘𝑝𝑀𝑠                                             (50) 

 

On the other hand, for three channel architectures with 

pure force control, the stability conditions will be 

different. For the F-PF architecture the gain for the 

force controlled master system 𝑆1(𝑗𝜔) system with a 

high pass filter can be written as: 

 

|𝑆1(𝑗𝜔)| = (
𝐶𝑓

2(𝑀𝑒
2𝜔6+𝑏𝑒

2𝜔4+𝑘𝑒
2𝜔2)

𝑀𝑚
2 𝜔6+(𝑏𝑚+𝑀𝑚𝑔)2𝜔4+(𝑏𝑚𝑔)2𝜔2 )

1

2

         (51) 

 

The stability conditions can then be written as: 

 

𝑀𝑚 >  𝐶𝑓𝑚𝑒                                                             (52) 

𝑏𝑚𝑔 >  𝐶𝑓𝑘𝑒                                                            (53) 

𝑏𝑚 + 𝑔𝑀𝑚 >  𝐶𝑓𝑏𝑒                                                 (54) 

 

Through the use of the high-pass filter and the 

controller gains 𝑏𝑚, 𝑔, 𝐶𝑓 it is possible to satisfy these 

conditions for all possible human impedance 

parameters. The slave system on the other hand which 

is under PF control is the same as the P-PF architecture, 

so the stability conditions are already provided in 

equations (42)-(44).   

 

Finally, the stability conditions for the PF-F 

architecture is symmetric to the F-PF, and the master 

system gain conditions are equivalent to that of the PF-

P architecture in (47)-(49).  On the other hand the slave 

system is force controlled, as a result the gain |𝑆2(𝑗𝜔)| 
can be written as:  

 

|𝑆2(𝑗𝜔)| = (
𝐶𝑓

2(𝑀ℎ
2𝜔6+𝑏ℎ

2𝜔4+𝑘ℎ
2𝜔2)

𝑀𝑠
2𝜔6+(𝑏𝑠+𝑀𝑠𝑔)2𝜔4+(𝑏𝑠𝑔)2𝜔2 )

1

2

              (55) 

 

The stability conditions can then be written as: 

 

𝑀𝑠 >  𝐶𝑓𝑚ℎ                                                             (56) 

𝑏𝑠𝑔 >  𝐶𝑓𝑘ℎ                                                             (57) 

𝑏𝑠 + 𝑔𝑀𝑠 >  𝐶𝑓𝑏ℎ                                                     (58) 

 

Now that the conditions for delay independent stability 

of all three channel architectures have been 

demonstrated, in the next section we are going to 

discuss the transparency of different three channel 

architectures, while taking into account the controller 

modifications we have proposed in this section. The 

transparency analysis will also serve as a guide in the 

selection of the controller parameters for performance. 

 

IV. TRANSPARENCY ANALYSIS 
Transparency refers to the performance of a 

teleoperation system. A teleoperation system should 

ideally become transparent to the user, meaning that it 

should provide a direct (kinesthetic) coupling between 

the master and the environment the slave robot is in 

contact with, without exhibiting any extra dynamics. 

The impedance of the environment should be 

transmitted to the operator one to one. Although this in 

theory is impossible to achieve perfectly under time 

delays, the degree to which it can be achieved can be 

measured through hybrid matrices.  Kinesthetic 

coupling implies that at all times the position/velocities 

of the robots should be equal (velocity/position 

tracking) and the forces acting on the robots should be 

equal but in opposite directions (force reflection). 

These goals can be written in terms of the equations: 

 

𝑉𝑚(𝑡) =  𝑉𝑠(𝑡)                                                          (59) 

𝐹𝑚(𝑡) = −𝐹𝑠(𝑡)                                                       (60) 

 

It was demonstrated in [6] that, these goals can be 

written in terms of a hybrid matrix which can be 

obtained in frequency domain by solving for the 

relationship between these variables from the system 

dynamics provided in (1)-(2). The hybrid matrix 𝑯 is 

of the form:  

 

[
𝐹𝑚(𝑠)
𝑉𝑠(𝑠)

] =  𝑯 [
𝑉𝑚(𝑠)
𝐹𝑠(𝑠)

]  =  [
ℎ11 ℎ12

ℎ21 ℎ22
] [

𝑉𝑚(𝑠)
𝐹𝑠(𝑠)

]              (61) 

 

where ℎ𝑖𝑗 are the hybrid matrix elements. The ideal 

kinesthetic coupling, or transparency conditions in 

(59)-(60) are then replicated if the hybrid matrix is 

written as: 

 

[
𝐹𝑚(𝑠)

𝑉𝑠(𝑠)
] =  [

 0    1  
 1    0  

] [
   𝑉𝑚(𝑠)
−𝐹𝑠(𝑠)

]                             (62) 

 

These ideal conditions are practically very difficult to 

achieve for the whole spectrum, however can be 

approximated by transparency optimized control 

architectures such as the four channel architecture when 

communication delays are not present. For instance 

practically ℎ11 represents the "operationality" of the 

teleoperation system [19], which is a measure of the 

impedance of the teleoperation system as perceived by 

the master, and in practice is almost impossible to make 

0.   Therefore it is common to represent the ideal 

operationality by the value  
𝐶𝑓

𝑠
 , which is the impedance 

of a mass with a coefficient determined by the force 

controller gain. By increasing the force controller gain, 

it is possible to decrease operationality but this would 
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be at the cost of stability.  Furthermore, when delay is 

introduced to the system, it has been demonstrated that 

ideal transparency can not be achieved.  The 

development of the three channel control architectures 

was a result of the need for transparency improvement 

under time delays. Hashtrudi-Zaad and Salcudean [9]-

[10] demonstrated that a transparency improvement as 

well as guaranteed stability could be achieved with the 

three channel architecture. But due to the existence of 

time delay in the communication channels they 

modified the transparency conditions and introduced 

the concept of delayed transparency conditions:  

 

[
𝐹𝑚(𝑠)

𝑉𝑠(𝑠)
] =  [    0    𝑒±𝑇𝑠  

   𝑒±𝑇𝑠    0  
] [

    𝑉𝑚(𝑠)
−𝐹𝑠(𝑠)

]                (63) 

 

which also take into consideration the delay elements 

and meaning that the robot velocities and forces can be 

tracked with a certain amount of time delay. The matrix 

elements in (63) can be noncausal in the hybrid matrix 

with negative time delay for certain three channel 

architectures, and to solve that problem the input and 

output effort/flow variables can be exchanged. The 

resulting matrix will be the alternate or inverse hybrid 

matrix 𝑮 [18]: 

 

[
    𝑉𝑚(𝑠)
−𝐹𝑠(𝑠)

] =  𝑮 [
𝐹𝑚(𝑠)

𝑉𝑠(𝑠)
]  = [

𝑔11    𝑔12

𝑔21    𝑔22
] [

𝐹𝑚(𝑠)

𝑉𝑠(𝑠)
]            (64) 

 

the delayed transparency conditions on the inverse 

hybrid matrix can be obtained as: 

 

[
    𝑉𝑚(𝑠)
−𝐹𝑠(𝑠)

] =   [ 0    𝑒∓𝑇𝑠 
 𝑒∓𝑇𝑠    0

] [
𝐹𝑚(𝑠)

𝑉𝑠(𝑠)
]                 (65) 

 

Thus, depending on the control architecture and time 

delay the appropriate matrix hybrid (63) or inverse 

hybrid matrix (65) is selected to analyze transparency. 

The magnitudes of the ideal hybrid and inverse hybrid 

matrices under time delay should be the same with the 

no time delay case as the delay operator has unity gain. 

Next, transparency analyses will be performed using 

the delayed transparency conditions for the three 

channel architectures under time delay with and 

without the proposed stability modifications and the 

performance of different architectures will be 

compared using the hybrid/inverse hybrid matrix 

frequency responses. Possible performance 

improvements and stability/transparency trade-offs will 

also be discussed.  The hybrid matrix elements for the 

general Lawrence architecture as proposed in  (1),(2) 

and Figure 1 can be obtained as: 

 

ℎ11 =
𝐶1𝐶4𝑒−𝑠𝑇1𝑒−𝑠𝑇2+(𝑍𝑚+𝐶𝑚)(𝑍𝑠+𝐶𝑠)

(𝑍𝑠+𝐶𝑠)(1−𝐶6)−𝐶3𝐶4𝑒−𝑠𝑇1𝑒−𝑠𝑇2
                      (66) 

ℎ12 =
𝐶2𝑒−𝑠𝑇2(𝑍𝑠+𝐶𝑠)−𝐶4𝑒−𝑠𝑇2(1−𝐶5)

(𝑍𝑠+𝐶𝑠)(1−𝐶6)−𝐶3𝐶4𝑒−𝑠𝑇1𝑒−𝑠𝑇2
                     (67) 

ℎ21 =
−𝐶1𝑒−𝑠𝑇1(1−𝐶6)−𝐶3𝑒−𝑠𝑇1(𝑍𝑚+𝐶𝑚)

(𝑍𝑠+𝐶𝑠)(1−𝐶6)−𝐶3𝐶4𝑒−𝑠𝑇1𝑒−𝑠𝑇2
                   (68) 

ℎ22 =
(1−𝐶5)(1−𝐶6)−𝐶2𝐶3𝑒−𝑠𝑇1𝑒−𝑠𝑇2

(𝑍𝑠+𝐶𝑠)(1−𝐶6)−𝐶3𝐶4𝑒−𝑠𝑇1𝑒−𝑠𝑇2
                      (69) 

On the other hand, the inverse hybrid matrix elements 
can be similarly obtained as:  

 

𝑔11 =
𝐶1𝐶4𝑒−𝑠𝑇1𝑒−𝑠𝑇2+(𝑍𝑚+𝐶𝑚)(𝑍𝑠+𝐶𝑠)

(𝑍𝑚+𝐶𝑠)(𝐶5−1)−𝐶1𝐶2𝑒−𝑠𝑇1𝑒−𝑠𝑇2
                      (70) 

𝑔12 =
𝐶2𝑒−𝑠𝑇2(𝑍𝑠+𝐶𝑠)−𝐶4𝑒−𝑠𝑇2(1−𝐶5)

(𝑍𝑚+𝐶𝑠)(𝐶5−1)−𝐶1𝐶2𝑒−𝑠𝑇1𝑒−𝑠𝑇2
                      (71) 

𝑔21 =
−𝐶1𝑒−𝑠𝑇1(1−𝐶6)−𝐶3𝑒−𝑠𝑇1(𝑍𝑚+𝐶𝑚)

(𝑍𝑚+𝐶𝑠)(𝐶5−1)−𝐶1𝐶2𝑒−𝑠𝑇1𝑒−𝑠𝑇2
                  (72) 

𝑔22 =
−(1−𝐶5)(1−𝐶6)+𝐶3𝑒−𝑠𝑇1𝑒−𝑠𝑇2

(𝑍𝑚+𝐶𝑠)(𝐶5−1)−𝐶1𝐶2𝑒−𝑠𝑇1𝑒−𝑠𝑇2
                     (73) 

For the PF-P and F-PF architectures the hybrid matrices 

and for the P-PF and PF-F architectures inverse hybrid 

matrices will be utilized in this paper to take causality 

into account. Figure 4 has the magnitude frequency 

responses of hybrid matrices for PF-P and F-PF 

architectures and Figure 5 has the frequency responses 

for the PF-F and P-PF architectures under 1s time 

delays between each robot. Both the conventional and 

modified controllers are utilized. For the conventional 

controllers the parameters used are 𝑘𝑝 = 900, 𝑘𝑣 =

60, 𝑏𝑚 = 𝑏𝑠 = 0, 𝑔 = 0, 𝑍𝑚 = 𝑍𝑠 = 0.4/s. and in the 

modified control architectures the controller parameters 

have been selected as in Table 1. 

 

For the PF-P and F-PF architectures the hybrid matrices 

and for the P-PF and PF-F architectures inverse hybrid 

matrices will be utilized in this paper to take causality 

into account. Figure 4 has the magnitude frequency 

responses of hybrid matrices for PF-P and F-PF 

architectures and Figure 5 has the frequency responses 

for the PF-F and P-PF architectures under 1s time 

delays between each robot. Both the conventional and 

modified controllers are utilized. For the conventional 

controllers the parameters used are 𝑘𝑝 = 900, 𝑘𝑣 =

60, 𝑏𝑚 = 𝑏𝑠 = 0, 𝑔 = 0, 𝑍𝑚 = 𝑍𝑠 = 0.4/s. and in the 

modified control architectures the controller parameters 

have been selected as in Table 1.  

 

Table 1. Modified controller parameters in the 

transparency analysis 

Architecture 𝑘𝑝 𝑘𝑣 𝑏𝑚 𝑏𝑠 𝐶𝑓 𝑔 

P-PF 900 60 10 150 0.1 0 

PF-P 900 60 150 10 0.1 0 

F-PF 900 60 150 150 0.1 0.1 

PF-F 900 60 150 150 0.1 0.1 
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Without stability modifications it can be seen from 

Figure 4 that PF-P architecture guarantees the 

transparency conditions for 𝐻12, 𝐻22 for all frequencies 

and for 𝐻21 within the controller bandwidth. This 

means that this architecture can guarantee good position 

and force tracking within the controller bandwidth. 

However 𝐻11 response which represents operationality, 

shows large magnitudes and variations at low 

frequencies and a mass like first order system response 

for high frequencies. The  𝐻11 response is ideal for high 

frequencies but for low frequencies the magnitude is 

much larger than that of a mass. This implies that during 

free motion at low frequencies the perceived impedance 

of the teleoperation system will not be like a mass and 

the operator will feel a large damping. Introduction of 

stability modifications in the form of extra damping 

injection and lowered force control gain mainly affects 

the 𝐻11 term, and increases the magnitude at low 

frequencies and the operationality even more. The 

conventional F-PF architecture on the other hand, has 

ideal responses in 𝐻11, 𝐻12, 𝐻21 and an almost ideal 

response in 𝐻22. While the magnitude in 𝐻22 is not zero 

it can be considered ideal as the magnitude is negligible. 

𝐻11 on the other hand, is an ideal mass-like first order 

response. When the modifications in the form of 

damping injection and force filters are applied, again 

the only deterioration is seen in the 𝐻11. The low 

frequency magnitude is increased more uniformly but 

the resulting magnitude is still much smaller than the 

PF-P architecture at low frequencies, meaning that the 

operationality of the F-PF architecture would be much 

less and the system would feel lighter and faster to the 

operator. Increasing the damping injection terms and 

high pass filter cutoff frequency improves the 𝐻22 

response leading to better position tracking.  However, 

since the PF-P architecture has an ideal 𝐻22 response 

this would imply that the PF-P architecture would have 

an improved position tracking over the F-PF 

architecture.  

 

Figure 5 shows the inverse hybrid matrix responses for 

P-PF and PF-F architectures. Since there is a symmetry 

between hybrid and inverse hybrid matrices, when the 

corresponding 𝐺11 − 𝐻22, 𝐺12 − 𝐻21, 𝐺21 − 𝐻12, 

𝐺22 − 𝐻11 magnitude responses are compared, P-PF 

and PF-P architectures are very similar and F-PF and 

PF-F architectures are very similar in terms of 

performance.  As the port variables in equations 

(61),(64) are inverted, the phase relationship between 

the responses will also be inverted, meaning that if the 

master position is leading and master force is lagging in 

F-PF architecture, for the PF-F architectures, the master 

position would be lagging and master force would be 

leading. 

 

 

Figure 4. Frequency Responses of the Hybrid Matrix Elements for Three Channel PF-P and F-PF Architectures 
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Figure 5. Frequency Responses of the Inverse Hybrid Matrix Elements for Three Channel P-PF and PF-F 

Architectures 

 

Figures 4-5 together show that there is a trade-off 

between stability and the operationality of the 

teleoperation system. Increasing the damping injection 

terms, high pass filter cut-off frequency, and decreasing 

force controller gain for robustness increases the 

operationality of the system, meaning that it deteriorates 

performance.   Since the transparency of the 

architectures with same parameters are similar, the 

environment and operator impedance assumptions in a 

given teleoperation setup would actually be critical in 

the selection of the control architecture. Previous 

section introduced the stability criteria for different 

architectures, and these criteria require different control 

parameter selections for the same environment/operator 

impedance pairs.  As a result, these different controller 

parameters would result in different transparency 

characteristics under the same experiment settings. 

Certain impedance-environment pairs would favor 

certain architectures, for instance if the environment has 

a stiffness less than the operator, F-PF and PF-P 

architectures would be more favorable as the required 

damping terms would be less, resulting in better 

transparency. However, if the environment is stiffer 

than the operator, than the PF-F and P-PF architectures 

would be more favorable.  Experiments have been 

conducted to verify the validity of both the stability and 

transparency analyses provided so far and the results 

will be presented in the next section. 

 

V. EXPERIMENT RESULTS 
Experiments were conducted on a bilateral teleoperation 

setup consisting of two linear motors connected through 

a computer.  The motors used in the experiments are 

Dunkermotoren STA1116 with high precision encoders 

for position measurement. An NI PCI-6321 DAQ card 

was used to interface the motors with the computer and 

the controller runs on Matlab Simulink with a sampling 

time of 1ms.  Communication among the motors take 

place in the same control program and time delays were 

also created in the controller environment. In the 

experiments an operator holds one of the motor shafts 

and moves the shaft back and forth. The slave motion is 

constrained by a wooden block at a certain location and 

when the slave contacts this wooden block it is desirable 

that the master also comes to a stop and transmits the 

environmental force back to the master.  The goal is for 

both of the robots to follow the same trajectory at all 

times and have the same measured force in the opposite 

directions during contact. The force measurements from 

the motors are obtained through reaction force observers 

as described in [20]. The experiment setup can be seen 

in Figure 6.  
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Figure 6. Bilateral Teleoperation Experiment Setup 

 

In the experiment, both free motion and contact 
scenarios were tested and as a result this provides two 
different environments in the same experiment. During 
free motion, environment stiffness is zero and during 
contact with wood the environment stiffness can be very 
large: K>70000N/m [21].  By performing system 
identification using Matlab System Identification 
Toolbox the maximum human impedance parameters 
were obtained as 𝑚ℎ = 2, 𝑏ℎ = 25, 𝑘ℎ = 90. The large 
difference in the magnitudes of the stiffness values 
between the human and environment creates an 
asymmetry between the different three channel control 
architectures due to the constraints on the minimum 
values controller parameters can take. The existence of 
a high a stiffness environment means that for PF-P 
architecture the minimum proportional control term 
should be 𝑘𝑝 >  3500, which is a very high controller 

gain resulting in high operationality, amplification of 
measurement noise and actuator saturation. Similarly 
for the F-PF architecture, the stability condition of 
𝑏𝑚𝑔 >  10000𝐶𝑓 would mean a very large master 

damping or low force controller gain and high pass cut 
off frequency, again resulting in a very high 
operationality and actuator saturation.  For the PF-F  
architecture the same condition 𝑘𝑝 >  3500 is valid for 

the master, but since the L2 gain of the slave system can 
easily be made much smaller, according to small gain 
theorem, the closed loop system can be made stable for 
smaller 𝑘𝑝 values. For P-PF architecture such 

constraints are much less conservative with 𝑘𝑝 >  45, 

and as a result this is the most robust control 
architecture. Since the gains for all controllers could not 
be selected as high as the stability conditions suggest in 
the current experiment setup due to actuator saturation 
and noise amplification, the same set of controller 
parameters were used to compare the performances of 
the controllers under the same circumstances. The 
controller parameters were selected as in transparency 
section, Table 1. Time delays between the systems were 
selected significantly large: 0.2s single-way and 0.4s 
round-trip. Figures 7-10 show the experiment results for 
each architecture.  

Figure 7 shows the position and force measurements 
from each system when the F-PF architecture is used. In 
the experiment, the operator starts moving the master 
backwards and then forwards and at about 7s contacts 
the environment, keeping contact until 15s, and then 
retreats the master robot and then again contacts the 
environment between 18s-27s. Blue lines show master 
position and force, red lines show slave position and 
force, and the yellow lines show the tracking errors. The 
delay shifted position and force signals are used in the 
error calculations and are also in the plots. While the 
free motion performance of the control system is very 
good, with perfect position tracking and low operational 
forces, during contact it is difficult to keep the slave in 
contact with the environment by applying a constant 
force due to the violation of stability condition (53). The 
operator has to increase their arm stiffness to keep the 
robot in stable contact as environment pushes the master 
back. During first contact stable contact can be 
achieved, and good force reflection is realized, however 
in the second contact due to large force reflection 
undesirable loss of contact occurs and both position and 
force tracking performance deteriorates.  Also the 
master position leads the slave position and the slave 
force leads the master force in this architecture.  

 

 
Figure 7. Position and Force responses of F-PF 

Architecture with 0.2s Time Delays 

 

Figure 8 shows the experiment results when the same 

procedure is repeated with the PF-P architecture.  Again 

during free motion the position tracking is good but the 

operational forces are higher as can be seen from the 

force response. This makes the system feel heavier to 

the operator and the same operation takes longer to 

complete. However just as in the previous case it is 

difficult to keep the robot in contact with a stiff 

environment and oscillations take place due to the 

violation of the stability condition (48), also resulting in 

large force errors. The shift between the robot responses 

is also comparatively less with this architecture.  
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Figure 8. Position and Force responses of PF-P 

Architecture with 0.2s Time Delays 
 

Figure 9 shows the experiment results when the same 

procedure is repeated with the PF-F architecture. With 

this architecture, stability can be more easily guaranteed 

both in free motion and contact. Just like the F-PF 

architecture, the free motion position tracking is very 

good with a delay shift between the robots, but this time 

the slave position leads the master position. During 

contact the system is more easily stabilized than PF-P 

architecture but some overshoot occurs during contact 

due to the master feeling the environment feedback with 

delay. However after the transient period is over perfect 

force reflection is achieved during contact.  The force of 

the master leads the slave force in this architecture. 
 

 

 
Figure 9. Position and Force responses of PF-F 

Architecture with 0.2s Time Delays 
 

Figure 10 shows the experiment results when the same 
procedure is repeated with the P-PF architecture. This 
architecture is the most robust and there is no overshoot 
in position and force tracking. The tracking results are 
close to perfect. However this architecture also has 

larger operational forces during free motion and this 
makes the system heavier and slower than the other 
architectures. Delay shift between the robots is also 
limited in this architecture. 
 

 

 
Figure 10. Position and Force responses of P-PF 

Architecture with 0.2s Time Delays 
 
The experiment results confirm the stability and 

transparency analyses provided in the previous sections. 

It is demonstrated that in the presence of stiff 

environments P-PF and PF-F architectures have 

advantages over PF-P and F-PF architectures in terms of 

stability and transparency. P-PF architecture is the most 

robust architecture and has the best position and force 

tracking performance closely followed by the PF-F 

architecture, however the PF-F architecture has much 

smaller operationality and this results in a faster and 

lighter teleoperation system. This is achieved by 

asynchronous tracking among the robots as there are 

shifts in the position and force responses.  If a fast 

teleoperation system is desirable the PF-F architecture 

would be preferable, but if precision and synchronicity 

is required the P-PF architecture would be the better 

option. In the case of soft environment similar 

performances can be expected from F-PF and PF-P 

architectures but the delay shifts would be inverted. 

These architectures could be preferred if the application 

requires the master position to lead the slave position 

and if the master impedance is much greater than the 

environment, these architectures would be less 

conservative in terms of stability guarantees and 

therefore could be better in terms of operationality.  

 

VI. CONCLUSIONS 
This paper has presented comprehensive transparency 

and stability analyses for three channel architectures that 

are commonly used in bilateral teleoperation 

applications. Controller modifications were proposed 

for guaranteeing delay independent stability for each 

architecture for the first time, and the effect of these 



Int. J. Adv. Eng. Pure Sci. 2021, 33(3):455-466            Three Channel Control Architectures 

466 
 

modifications on transparency was also discussed.  The 

analyses were verified with experiment results. Each 

architecture have their own merits and could be utilized 

for different applications. But it can be suggested that 

the PF-F and P-PF architectures are more robust with a 

wide range of environments. PF-F architecture can be 

selected for fast and light systems and P-PF architecture 

can be selected for operations requiring greater 

precision and care. Future works involve extending 

these analyses to other Lawrence architectures, and 

using robust control techniques to account for model 

uncertainties and nonlinearities.  
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