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ABSTRACT

Hyper-dual numbers are a new number system that is an extension of dual numbers. A hyper-
dual number can be written uniquely as an ordered pair of dual numbers. In this paper, some
basic algebraic properties of hyper-dual numbers are given using their ordered pair representaions
of dual numbers. Moreover, the geometric interpretation of a unit hyper-dual vector is given in
module as a dual line. And a geometric interpretation of a subset of unit hyper-dual sphere (the
set of all unit hyper-dual vectors) is given as two intersecting perpendicular lines in 3-dimensional
real vector space.
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1. Introductions

The algebra of dual numbers D was first introduced by W. Clifford in 1873 as an extension of real numbers
R [2]. The set of all dual vectors constructs the D-module (also denoted by D3). Motion of a rigid body can
be represented by two vectors in 3-dimensional real vector space R3. E. Study [11] and A. P. Kotelnikov [10]
applied dual numbers in mechanism for the first time by using a dual vector instead of two vectors. In the
following years, dual numbers are used in the investigation of instantaneous screw axes with the help of dual
transformations in R3 and in Minkowski space E3

1 [13-14].
Complex numbers have important advantages in derivative calculations. However, these advantages are

lost in the calculations of the second derivative [7]. To overcome this problem, J. A. Fike introduced hyper-dual
numbers D̃ that can be used in the calculation of the first and second derivatives maintaining the advantages
of the first derivative by complex numbers [6]. In the following years, J. A. Fike and J. J. Alonso developed
this number system for derivative calculations [7, 8]. And it is shown that this number system is suitable for
complex software, analysis and design airspace systems, and open kinematic chain robot manipulator [7, 4].

A. Cohen and M. Shoham used hyper-dual numbers in the field of kinematics and dynamics to simplify
derivative equations of the motion of multi-body systems [3, 4]. They interpreted hyper-dual numbers in the
sense of E. Study and A. P. Kotelnikov by using derivative calculations [3-5]. Moreover, they showed that a
hyper-dual number can be constituted of two dual numbers [3].

In this paper, some basic concepts of hyper-dual numbers are given using their ordered pair representaions of
dual numbers. To give the geometric interpretation of hyper-dual numbers, the concept “dual line” is defined
in D3. Also; E. Study mapping is defined in D3, and it is shown that to each unit hyper-dual vector corresponds
a dual line in D3. The geometric interpretation of a hyper-dual angle is given as an angle between any two dual
lines. Moreover; a subset (denoted by S̃1) of unit hyper-dual sphere S̃ (the set of all unit hyper-dual vectors) is
defined, and it is observed that to each element of S̃1 corresponds any two intersecting perpendicular directed
lines in R3.
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2. Preliminaries

In this section a brief summary of the concepts dual and hyper-dual numbers will be given to provide a
background to understand the main idea and the results of this study.

2.1. Dual numbers

The set of all dual numbers is defined by

D = {A = a+ εa∗ : a, a∗ ∈ R} , (2.1)

where ε is the dual unit and satisfies

ε 6= 0, ε2 = 0 and rε = εr for all r ∈ R. (2.2)

Addition and multiplication of any dual numbers A = a+ εa∗ and B = b+ εb∗ are defined, respectively, as

A+B = (a+ b) + ε (a∗ + b∗) , (2.3)
AB = ab+ ε (ab∗ + a∗b) . (2.4)

If a = 1 and a∗ = 0, then A = 1 + ε0 = 1 is called a unit dual number.
The multiplicative-inverse of a dual number A = a+ εa∗ is

A
−1

=
1

a
− εa

∗

a2
, a 6= 0 (2.5)

that means a dual number in the form A = 0 + εa∗ = εa∗ does not have an multiplicative-inverse.
The square root of a dual number A = a+ εa∗ is defined only for the case a > 0 as

√
A =

√
a+ ε

a∗

2
√
a
. (2.6)

Taylor series expansion of a dual function f(x+ εx∗) about a point x+ εx∗ = a+ εa∗ ∈ D can be given as

f(a+ εa∗) = f(a) + εa∗f ′(a), (2.7)

where the prime represents differentiation with respect to x, i.e.

f ′ (x) = f ′ (x+ ε0) =
d

dx
f(x), (2.8)

see [12].
Dual numbers form the module

D3 =
{
Â = a+ εa∗ : a, a∗ ∈ R3

}
, (2.9)

which is a commutative and associative ring. Each element Â of D3 is called a dual vector.
The scalar product of any dual vectors Â = a+ εa∗ and B̂ = b+ εb∗ is defined by〈

Â, B̂
〉
D

= 〈a, b〉+ ε (〈a, b∗〉+ 〈a∗, b〉) , (2.10)

where “〈, 〉” denotes the usual scalar product in R3. It is obvious that 〈a, b〉 and 〈a, b∗〉+ 〈a∗, b〉 are real numbers,
and thus

〈
Â, B̂

〉
D

is a dual number.

The norm of a dual vector Â = a+ εa∗ is defined to be

NÂ =
〈
Â, Â

〉
D

= |a|2 + 2ε 〈a,a∗〉 ∈ D, (2.11)

where “|,|” denotes the usual modulus in R3. And the modulus (i.e., square root of the norm) of the dual vector
Â = a+ εa∗ is defined to be ∣∣∣Â∣∣∣

D
=

√〈
Â, Â

〉
D

= |a|+ ε
〈a,a∗〉
|a|

, where |a| 6= 0. (2.12)
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If
∣∣∣Â∣∣∣

D
= 1 (i.e., |a| = 1 and 〈a,a∗〉 = 0), then Â = a+ εa∗ is called a unit dual vector.

The vector product of any dual vectors Â = a+ εa∗ and B̂ = b+ εb∗ is defined by

Â×D B̂ = a× b+ ε (a× b∗ + a∗ × b) , (2.13)

where “×” denotes the usual vector product in R3. It is obvious that a× b and a× b∗ + a∗ × b are real vectors,
and thus Â×D B̂ is a dual vector.

Unit dual sphere S, consisting of all unit dual vectors, is defined as

S =
{
Â = a+ εa∗ :

∣∣∣Â∣∣∣
D

= 1, Â ∈ D3
}

. (2.14)

Theorem 1. (E. Study Mapping) To each point on unit dual sphere S corresponds a directed line in R3. In other
words, there is a one to one correspondence between the points of unit dual sphere S and the directed lines in
R3 [11].

The geometric interpretation of E. Study mapping can be given as: Let Â = a+ εa∗ be the unit dual vector
corresponding to the directed line d in R3. The unit real vector a is the direction vector of the line d, and the
real vector a∗ determines the position of d, see Figure 1.

Figure 1. Geometric representation of E. Study mapping in R3

The scalar product of any unit dual vectors Â = a+ εa∗ and B̂ = b+ εb∗ is obtained as〈
Â, B̂

〉
D

= cosϕ = cos θ − εθ∗ sin θ, (2.15)

where ϕ = θ + εθ∗ is a dual angle [11]. If d1 and d2 are the directed lines in R3 corresponding, respectively, to
the unit dual vectors Â and B̂, then θ is the angle between the real vectors a and b, and θ∗ is the closest distance
between d1 and d2, see Figure 2.

Figure 2. Geometric representation of dual angle between the directed lines d1 and d2 in R3

The following four cases can be given for a dual angle ϕ satisfying cosϕ = cos θ − εθ∗ sin θ:

1. If
cos θ = 0 and θ∗ 6= 0, (2.16)

then θ =
π

2
and

〈
Â, B̂

〉
D

= cosϕ = −εθ∗. Thus, lines d1 and d2 are perpendicular but not intersecting.

www.iejgeo.com 294

http://www.iej.geo.com


S. Aslan

2. If
θ∗ = 0, (2.17)

then
〈
Â, B̂

〉
D

= cosϕ = cos θ. Thus, lines d1 and d2 are intersecting.

3. If 〈
Â, B̂

〉
D

= cosϕ = 0, (2.18)

then θ =
π

2
and θ∗ = 0. Thus, lines d1 and d2 are perpendicular and intersecting.

4. If 〈
Â, B̂

〉
D

= cosϕ = 1, (2.19)

then θ = 0. Thus, lines d1 and d2 are parallel.

The modulus of the vector product of any unit dual vectors Â and B̂ is obtained as∣∣∣Â×D B̂
∣∣∣
D

= sinϕ = sin θ + εθ∗ cos θ. (2.20)

For further information about dual numbers, see [2, 12, 1].

2.2. Hyper-dual numbers

The set of all hyper-dual numbers is defined by

D̃ = {A = a0 + ε1a1 + ε2a2 + ε1ε2a3 : a0, a1, a2, a3 ∈ R} , (2.21)

where the dual units ε1 and ε2 satisfy

ε21 = ε22 = (ε1ε2)
2
= 0 and ε1, ε2, ε1ε2 6= 0. (2.22)

Addition and multiplication of any hyper-dual numbers A = a0 + ε1a1 + ε2a2 + ε1ε2a3 and B = b0 + ε1b1 +
ε2b2 + ε1ε2b3 are defined, respectively, as

A+ B = (a0 + b0) + ε1 (a1 + b1) + ε2 (a2 + b2) + ε1ε2 (a3 + b3) , (2.23)

AB = (a0b0) + ε1 (a0b1 + a1b0) + ε2 (a0b2 + a2b0)

+ ε1ε2 (a0b3 + a1b2 + a2b1 + a3b0) , (2.24)

The multiplicative-inverse of a hyper-dual number A = a0 + ε1a1 + ε2a2 + ε1ε2a3 is

A−1 =
1

A =
1

a0
− ε1

a1
a20
− ε2

a2
a20

+ ε1ε2

(
−a3
a20

+
2a1a2
a30

)
, a0 6= 0 (2.25)

that means a hyper-dual number in the form A = 0 + ε1a1 + ε2a2 + ε1ε2a3 = ε1a1 + ε2a2 + ε1ε2a3 does not have
an multiplicative-inverse.

Taylor series expansion of a hyper-dual function f(x0 + ε1x1 + ε2x2 + ε1ε2x3) about a point x0 + ε1x1 +

ε2x2 + ε1ε2x3 = a0 + ε1a1 + ε2a2 + ε1ε2a3 ∈ D̃ can be given as

f(a0 + ε1a1 + ε2a2 + ε1ε2a3) = f(a0) + ε1a1f
′(a0) + ε2a2f

′(a0)

+ ε1ε2(a3f
′(a0) + a1a2f

′′(a0)), (2.26)

where the prime represents differentiation with respect to x0, i.e.

f ′ (x0) = f ′ (x0 + ε10 + ε20 + ε1ε20) =
d

dx0
f(x0), (2.27)

see [6-9].
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A hyper-dual number A = a0 + ε1a1 + ε2a2 + ε1ε2a3 can be given in terms of two dual numbers as

A = a0 + ε1a1 + ε2a2 + ε1ε2a3

= (a0 + ε1a1) + ε2 (a2 + ε1a3)

= (a0 + εa1) + ε∗ (a2 + εa3)

= A+ ε∗A
∗
, (2.28)

where ε1 = ε, ε2 = ε∗ and A = a0 + εa1, A
∗
= a2 + εa3 ∈ D.

If we extend the real vectors a and p× a in a dual vector Â = a+ ε (p× a), respectively, to the dual vectors
Â and P̂ ×D Â, then we obtain the hyper-dual vector

Ã = Â+ ε∗
(
P̂ ×D Â

)
. (2.29)

Scalar and vector products of any hyper-dual vectors Ã = Â+ ε∗
(
P̂ ×D Â

)
and B̃ = B̂ + ε∗

(
K̂ ×D B̂

)
can

be given, respectively, as 〈
Ã, B̃

〉
HD

=
∣∣∣Â∣∣∣

D

∣∣∣B̂∣∣∣
D
cos ϕ̃ (2.30)

Ã×HD B̃ =
∣∣∣Â∣∣∣

D

∣∣∣B̂∣∣∣
D
n sin ϕ̃, (2.31)

where ϕ̃ is a hyper-dual angle and n is the direction vector of the common perpendicular between these two
hyper-dual vectors. For further information about hyper-dual numbers, see [3-5].

3. Applications of Hyper-Dual Numbers in R3 and D3

In this section, we show that the basic and kinematic concepts of hyper-dual numbers can be given by using
dual numbers. Using these concepts, E. Study mapping and hyper-dual angle are abtained in module D3.
Furthermore, we have defined a subset (denoted by S̃1) of unit hyper-dual sphere S̃ such that to each element
of this subset corresponds two intersecting and perpendicular directed lines in R3.

From the definition of a hyper-dual number given by the Equation (2.28), alternative representations
of addition (given by Equation (2.23)) and multiplication (given by Equation (2.24)) of any hyper-dual
numbers A = a0 + ε1a1 + ε2a2 + ε1ε2a3 = A+ ε∗A

∗
and B = b0 + ε1b1 + ε2b2 + ε1ε2b3 = B + ε∗B

∗
can be given,

respectively, as

A+ B = (A+B) + ε∗
(
A

∗
+B

∗
)
, (3.1)

AB = AB + ε∗
(
AB

∗
+A

∗
B
)
. (3.2)

Moreover, an alternative representation of the multiplicative-inverse (given by Equation (2.25)) of a hyper-dual
number A = a0 + ε1a1 + ε2a2 + ε1ε2a3 = A+ ε∗A

∗
can be given as

A−1 =
1

A
− ε∗A

∗

A2
, a0 6= 0 (3.3)

that means a hyper-dual number A = A+ ε∗A
∗

providing A = 0 + εa1 = εa1 does not have an multiplicative-
inverse.

The square root of a hyper-dual number A = A+ ε∗A
∗

can be defined by

√
A =

√
A+ ε∗

A
∗

2
√
A
, a0 > 0 (3.4)

or
√
A =

√
a0 + ε1

a1
2
√
a0

+ ε2
a2

2
√
a0

+ ε1ε2

(
a3

2
√
a0
− a1a2

4a0
√
a0

)
, a0 > 0. (3.5)
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An alternative representation of the Taylor series expension of a hyper-dual function given by Equation
(2.26) can be given by the following theorem.

Theorem 2. Let A = A+ ε∗A
∗

be a hyper-dual number, whereA = a0 + εa1,A
∗
= a2 + εa3 ∈ D. Then, the Taylor

series expansion of the hyper-dual function f(x0 + εx1 + ε∗x2 + εε∗x3) about a point x0 + εx1 + ε∗x2 + εε∗x3 =

a0 + εa1 + ε∗a2 + εε∗a3 ∈ D̃ can be given as

f(A+ ε∗A
∗
) = f(A) + ε∗A

∗
f ′(A), (3.6)

where f ′(A) = f ′(a0 + εa1) is the first derivative of the dual function f(x0 + εx1) with respect to x0 at the point
x0 + εx1 = a0 + εa1 ∈ D, i.e.

f ′ (x0) = f ′ (x0 + ε0) =
d

dx0
f(x0). (3.7)

Proof. From Equation (2.7), the Taylor series expansions of f(A) and f ′(A) can be given, respectively, as

f(A) = f(a0 + εa1) = f(a0) + εa1f
′(a0), (3.8)

f ′(A) = f ′(a0 + εa1) = f ′(a0) + εa1f
′′(a0), (3.9)

where the prime represents differentiation with respect to x0, i.e.

f ′ (x0) = f ′ (x0 + ε0) =
d

dx0
f(x0), (3.10)

f ′′ (x0) = f ′′ (x0 + ε0) =
d

dx0
f ′(x0). (3.11)

Using the Equation (2.26), we get

f(A) = f(a0) + εa1f
′(a0) + ε∗a2f

′(a0) + εε∗(a3f
′(a0) + a1a2f

′′(a0))

= (f(a0) + εa1f
′(a0)) + ε∗ (a2f

′(a0) + ε(a3f
′(a0) + a1a2f

′′(a0)))

= (f(a0) + εa1f
′(a0)) + ε∗ (a2f

′(a0) + εa1a2f
′′(a0) + εa3f

′(a0))

= (f(a0) + εa1f
′(a0)) + ε∗(a2f

′(a0) + εa1a2f
′′(a0) + εa3f

′(a0)

+ ε2a1a3f
′′(a0))

= (f(a0) + εa1f
′(a0)) + ε∗(a2 (f

′(a0) + εa1f
′′(a0)) + εa3(f

′(a0)

+ εa1f
′′(a0)))

= (f(a0) + εa1f
′(a0)) + ε∗ (a2 + εa3) (f

′(a0) + εa1f
′′(a0)) . (3.12)

Inserting Equations (3.8) and (3.9) in the Equation (3.12), we also get

f(A+ ε∗A
∗
) = f(A) + ε∗ (a2 + εa3) f

′(A), (3.13)

and using A
∗
= a2 + εa3, we obtain

f(A+ ε∗A
∗
) = f(A) + ε∗A

∗
f ′(A). (3.14)

We need to define the concept line in D3 to give the geometric interpretations of hyper-dual numbers in D3.

Definition 1. (Dual line) Let Â be a unit dual vector and P̂ be a point in D3. Then, a line in D3 can be defined
by

d̂ = P̂ + TÂ, (3.15)

where the parameter T is a dual number, the unit dual vector Â is the direction vector of d̂, and P̂ is a point on
d̂. We will call a line in D3 as dual line.
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Definition 2. (Hyper-dual vectors) The set of all hyper-dual vectors is defined by

D̃3 =
{
Ã = Â+ ε∗Â

∗
: Â, Â

∗
∈ D3

}
(3.16)

=
{
Ã = a0 + εa1 + ε∗a2 + εε∗a3 : a0,a1,a2,a3 ∈ R3

}
, (3.17)

and each element Ã of D̃3 is called a hyper-dual vector.
The scalar and vector products of any hyper-dual vectors Ã = Â+ ε∗Â

∗
= a0 + εa1 + ε∗a2 + εε∗a3 and

B̃ = B̂ + ε∗B̂
∗
= b0 + εb1 + ε∗b2 + εε∗b3 are defined, respectively, by〈

Ã, B̃
〉
HD

=
〈
Â, B̂

〉
D
+ ε∗

(〈
Â, B̂

∗
〉
D
+
〈
Â

∗
, B̂
〉
D

)
(3.18)

= 〈a0, b0〉+ ε(〈a0, b1〉+ 〈a1, b0〉) + ε∗(〈a0, b2〉+ 〈a2, b0〉)
+ εε∗(〈a0, b3〉+ 〈a1, b2〉+ 〈a2, b1〉+ 〈a3, b0〉), (3.19)

Ã×HD B̃ = Â×D B̂ + ε∗
(
Â×D B̂

∗
+ Â

∗
×D B̂

)
. (3.20)

= a0 × b0 + ε(a0 × b1 + a1 × b0) + ε∗(a0 × b2 + a2 × b0)

+ εε∗(a0 × b3 + a1 × b2 + a2 × b1 + a3 × b0). (3.21)

Since
〈
Â, B̂

〉
D

and
〈
Â, B̂

∗
〉
D
+
〈
Â

∗
, B̂
〉
D

are dual numbers,
〈
Ã, B̃

〉
HD

is a hyper-dual number. And since

Â×D B̂ and Â×D B̂
∗
+ Â

∗ ×D B̂ are dual vectors, Ã×HD B̃ is a hyper-dual vector.
The norm of a hyper-dual vector Ã = Â+ ε∗Â

∗
= a0 + εa1 + ε∗a2 + εε∗a3 is defined to be

NÃ =
〈
Ã, Ã

〉
HD

=
∣∣∣Â∣∣∣2

D
+ 2ε∗

〈
Â, Â

∗
〉
D

(3.22)

= |a0|2 + 2 (ε 〈a0,a1〉+ ε∗ 〈a0,a2〉+ εε∗(〈a0,a3〉+ 〈a1,a2〉)) . (3.23)

And the modulus (i.e., square root of the norm) of the hyper-dual vector Ã is defined to be

∣∣∣Ã∣∣∣
HD

=

√〈
Ã, Ã

〉
HD

=
∣∣∣Â∣∣∣

D
+ ε∗

〈
Â, Â

∗
〉
D∣∣∣Â∣∣∣

D

(3.24)

= |a0|+ ε
〈a0,a1〉
|a0|

+ ε∗
〈a0,a2〉
|a0|

+ εε∗
(
〈a0,a3〉
|a0|

+
〈a1,a2〉
|a0|

− 〈a0,a1〉 〈a0,a2〉
|a0|3

)
, (3.25)

where |a0| 6= 0.

If
∣∣∣Ã∣∣∣

HD
= 1 (i.e.,

∣∣∣Â∣∣∣
D

= 1 and
〈
Â, Â

∗
〉
D

= 0), then Ã = Â+ ε∗Â
∗

is called a unit hyper-dual vector.

Definition 3. (Unit hyper-dual sphere) Unit hyper-dual sphere S̃, consisting of all unit hyper-dual vectors, can
be defined as

S̃ =
{
Ã = Â+ ε∗Â

∗
:
∣∣∣Ã∣∣∣

HD
= 1; Â, Â

∗
∈ D3

}
. (3.26)

Theorem 3. (E. Study mapping for unit hyper-dual vectors) To each point on unit hyper-dual sphere S̃
corresponds a directed dual line d̂ in D3. In other words, there is a one to one correspondence between the
points of unit hyper-dual sphere S̃ and the directed dual lines in D3.

Proof. A directed line in D3 (i.e., directed dual line) can be given by any two points X̂ and Ŷ on it. The
parametric equation of this dual line is

Ŷ = X̂ + TÂ, (3.27)

where T is a non-zero dual constant and Â is a unit dual vector. The moment of the vector Â with respect to
the origin Ô is

Â
∗
= X̂ ×D Â = Ŷ ×D Â. (3.28)
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That means; the direction vector Â of the dual line and its moment vector Â
∗

are independent of choice of
the points of the dual line. The two vectors Â and Â

∗
are not independent of one another; so they satisfy the

equations ∣∣∣Â∣∣∣
D

= 1 and
〈
Â, Â

∗
〉
D

= 0. (3.29)

The six dual components Ai, A
∗

i (for i = 1, 2, 3) of Â and Â
∗

are Plückerian homogeneous dual line coordinates.
Hence the two dual vectors Â and Â

∗
determine the directed dual line. A point Ẑ is on the dual line of dual

vectors Â and Â
∗

if and only if
Ẑ ×D Â = Â

∗
. (3.30)

The set of directed dual lines is in one to one correspondence with pairs of dual vectors in D3 subject to
the conditions (given by Equation (3.27)). Consequently; since Â is a unit dual vector (i.e.,

∣∣∣Â∣∣∣
D

= 1) and〈
Â, Â

∗
〉
D

= 0, the unit hyper-dual vector Ã = Â+ ε∗Â
∗

represents a dual line, see Figure 3.

Figure 3. Geometric representation of E. Study mapping in D3

Example 1. (Application of E. Study mapping for unit hyper-dual vectors) Let us take the unit hyper-
dual vector Ã = ( 1√

3
, 1√

3
+ ε, 1√

3
− ε) + ε∗(−2 + ε, 1, 1− ε) that can be written in the form Ã = Â+ ε∗Â

∗
for

Â = ( 1√
3
, 1√

3
+ ε, 1√

3
− ε) and Â

∗
= (−2 + ε, 1, 1− ε). If d̂ is the corresponding dual line in D3 to Ã, and Ẑ is

the nearest point from the origin Ô to the line d̂, then the equalities

Ẑ ×D Â = Â
∗

and
〈
Ẑ, Â

〉
D

=
〈
Ẑ, Â

∗
〉
D

= 0 (3.31)

can be given. From these equations, we get

Ẑ =
(
ε(2− 1√

3
),−
√
3 + ε(2 + 2√

3
),
√
3 + ε(2− 1√

3
)
)

. (3.32)

Since the unit dual vector Â is the direction vector of d̂, and Ẑ is a point on d̂, we can give the corresponding
dual line to unit hyper-dual vector Ã as

d̂ =
(
ε(2− 1√

3
),−
√
3 + ε(2 + 2√

3
),
√
3 + ε(2− 1√

3
)
)

+ T
(

1√
3
, 1√

3
+ ε, 1√

3
− ε
)
, (3.33)

where the parameter T is a dual variable.

Theorem 4. Let us take a subset of unit hyper-dual sphere S̃ as

S̃1=
{
Ã = Â+ ε∗Â

∗
:
∣∣∣Â∗
∣∣∣
D

= 1, Ã ∈ S̃
}

. (3.34)

Then, there exists a one to one correspondence between the points of S̃1 and any two intersecting perpendicular
directed lines in R3.

299 www.iejgeo.com

http://www.iej.geo.com


Kinematic Applications of Hyper-Dual Numbers

Proof. Since Ã ∈ S̃1; Â and Â
∗

are unit dual vectors and Ã = Â+ ε∗Â
∗

is a unit hyper-dual vector satisfying∣∣∣Â∣∣∣
D

= 1 and
〈
Â, Â

∗
〉
D

= 0. According to Theorem 1, let Â and Â
∗

represent the directed lines d1 and d2 in R3,

respectively. Thus, from Equation (2.18), the property
〈
Â, Â

∗
〉
D

= 0 shows that d1 and d2 are perpendicular
intersecting directed lines.

Example 2. (Application of the subset S̃1) Let us take the unit hyper-dual vector Ã = (ε, 1, 0) + ε∗(−ε, 0, 1) that
can be written in the form Ã = Â+ ε∗Â

∗
for

Â = (ε, 1, 0) = (0, 1, 0) + ε(1, 0, 0), (3.35)

Â
∗
= (−ε, 0, 1) = (0, 0, 1) + ε(−1, 0, 0). (3.36)

Since
∣∣∣Â∣∣∣

D
=
∣∣∣Â∗
∣∣∣
D

= 1; Â and Â
∗

are unit dual vectors, and thus Ã ∈ S̃1. According to Theorem 4, unit hyper-

dual vector Ã represents two perpendicular intersecting directed lines in R3. And according to E. Study
mapping, each of these lines correspond to a unit dual vector (one of them corresponds to Â and the other
to Â

∗
), [11]. These lines will be obtained, respectively, as

d1 = (0, 0,−1) + t1 (0, 1, 0) , (3.37)
d2 = (0,−1, 0) + t2 (0, 0, 1) , (3.38)

where the parameters t1 and t2 are real variables. Direction vectors of d1 and d2 are v1 = (0, 1, 0) and v2 =
(0, 0, 1), respectively. Since 〈v1,v2〉 = 0; d1 and d2 are perpendicular. And for t1 = −1 and t2 = −1; d1 and d2
intersect at the point (0,−1,−1).

Definition 4. (Hyper-dual angle)

Figure 4. Geometric representation of hyper-dual angle between the directed dual lines d̂1 and d̂2 in D3

The scalar product of any unit hyper-dual vectors Ã = Â+ ε∗Â
∗

and B̃ = B̂ + ε∗B̂
∗

is〈
Ã, B̃

〉
HD

=
〈
Â, B̂

〉
D
+ ε∗

(〈
Â, B̂

∗
〉
D
+
〈
Â

∗
, B̂
〉
D

)
. (3.39)

If d̂1 and d̂2 are the directed dual lines in D3 corresponding, respectively, to the unit hyper-dual vectors Ã and
B̃, then then, Â and Â

∗
represent, respectively, the direction vector and the position of d̂1; and B̂, B̂

∗
represent,

respectively, the direction vector and the position of d̂2 in D3. In Equation (3.39),
〈
Â, B̂

〉
D

is equal to

〈
Â, B̂

〉
D

= cosϕ, (3.40)
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where ϕ is the dual angle between the unit dual vectors Â and B̂. Let M̂ ∈ d̂1 and N̂ ∈ d̂2 be the two closest
points on d̂1 and d̂2. Then, using M̂ ×D Â = Â

∗
and N̂ ×D B̂ = B̂

∗
in Equation (3.39), we get〈

Â, B̂
∗
〉
D
+
〈
Â

∗
, B̂
〉
D

=
〈
Â,
(
N̂ ×D B̂

)〉
D
+
〈(
M̂ ×D Â

)
, B̂
〉
D

= −
〈
N̂ ,
(
Â×D B̂

)〉
D
+
〈
M̂,
(
Â×D B̂

)〉
D

=
〈(
M̂ − N̂

)
,
(
Â×D B̂

)〉
D
. (3.41)

Let ϕ∗ be the distance between the points M̂ and N̂ , then we can write∣∣∣M̂ − N̂ ∣∣∣
D

= ϕ∗. (3.42)

It is obvious that ϕ∗ is a dual number, because the modulus of M̂ and N̂ are dual numbers (see Equation (2.12)).
Using

∣∣∣M̂ − N̂ ∣∣∣
D

= ϕ∗ in Equation (3.41), we get

〈(
M̂ − N̂

)
,
(
Â×D B̂

)〉
D

=

〈 M̂ − N̂∣∣∣M̂ − N̂ ∣∣∣
D

ϕ∗

 ,
(
Â×D B̂

)〉
D

=

〈 Â×D B̂∣∣∣Â×D B̂
∣∣∣
D

ϕ∗

 ,
(
Â×D B̂

)〉
D

=
ϕ∗∣∣∣Â×D B̂

∣∣∣
D

〈(
Â×D B̂

)
,
(
Â×D B̂

)〉
D

= ±ϕ∗
∣∣∣Â×D B̂

∣∣∣
D

= ±ϕ∗ sinϕ. (3.43)

Inserting Equations (3.40) and (3.43) in Equation (3.39), we also get〈
Ã, B̃

〉
HD

=
〈
Â, B̂

〉
D
+ ε∗

(〈
Â, B̂

∗
〉
D
+
〈
Â

∗
, B̂
〉
D

)
= cosϕ− ε∗ϕ∗ sinϕ. (3.44)

By using the Taylor series expansion given by Equation (3.6) in Equation (3.44), we obtain〈
Ã, B̃

〉
HD

= cosϕ− ε∗ϕ∗ sinϕ = cos ϕ̃ (3.45)

where ϕ̃ = ϕ+ ε∗ϕ∗ is a hyper dual angle, see Figure 4. Similarly, the modulus of the vector product of any unit
hyper-dual vectors Ã = Â+ ε∗Â

∗
and B̃ = B̂ + ε∗B̂

∗
can be given as∣∣∣Ã×HD B̃

∣∣∣
HD

= sinϕ+ ε∗ϕ∗ cosϕ = sin ϕ̃. (3.46)

Proposition 1. If Ã and B̃ are hyper-dual vectors, then

Ṽ =
Ã∣∣∣Ã∣∣∣
HD

and Ũ =
B̃∣∣∣B̃∣∣∣
HD

(3.47)

are unit hyper-dual vectors. From the equations〈
Ṽ, Ũ

〉
HD

= cos ϕ̃, (3.48)∣∣∣Ṽ×HD Ũ
∣∣∣
HD

= sin ϕ̃ (3.49)
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we can give 〈
Ã, B̃

〉
HD

=
∣∣∣Ã∣∣∣

HD

∣∣∣B̃∣∣∣
HD

cos ϕ̃, (3.50)∣∣∣Ã×HD B̃
∣∣∣
HD

=
∣∣∣Ã∣∣∣

HD

∣∣∣B̃∣∣∣
HD

sin ϕ̃, (3.51)

where ϕ̃ is a hyper-dual angle.

Let ϕ̃, ϕ and θ be, respectively, a hyper-dual angle, a dual angle and a real angle. Then, the following four
cases can be given related to the hyper-dual angle ϕ̃ by using

〈
Ã, B̃

〉
HD

= cos ϕ̃ = cosϕ− ε∗ϕ∗ sinϕ, where
cosϕ = cos θ − εθ∗ sin θ and sinϕ = sin θ + εθ∗ cos θ:

1. If
cosϕ = 0 and ϕ∗ 6= 0, (3.52)

then θ =
π

2
and θ∗ = 0. Hence,

〈
Ã, B̃

〉
HD

= −ε∗ϕ∗. Thus, dual lines d̂1 and d̂2 are perpendicular but not
intersecting.

2. If
ϕ∗ = 0, (3.53)

then
〈
Ã, B̃

〉
HD

= cosϕ. Thus, dual lines d̂1 and d̂2 are intersecting.

3. If 〈
Ã, B̃

〉
HD

= 0, (3.54)

then cosϕ = 0 and ϕ∗ = 0. Hence, θ = π
2 and θ∗ = 0. Thus, d̂1 and d̂2 are perpendicular and intersecting

lines.

4. If 〈
Ã, B̃

〉
HD

= 1, (3.55)

then θ = 0 and ε∗εϕ∗θ∗ = 0. Thus, the following two cases can be given:

(i) If θ∗ = 0, then ϕ = 0. Hence, d̂1 and d̂2 are parallel lines.
(ii) If ϕ∗ = 0, then ϕ̃ = ϕ = εθ∗.

Example 3. (Application of hyper-dual angle) Let us take the unit hyper-dual vectors Ã = (1, ε, ε) + ε∗(ε, ε,−1)
and B̃ = (0, 1, ε) + ε∗(2ε, ε,−1) that can be written in the form Ã = Â+ ε∗Â

∗
and B̃ = B̂ + ε∗B̂

∗
for Â = (1, ε, ε),

Â
∗
= (ε, ε,−1), B̂ = (0, 1, ε) and B̂

∗
= (2ε, ε,−1). Hyper-dual angle ϕ̃ between Ã and B̃ will be obtained as〈

Ã, B̃
〉
HD

=
〈
Â, B̂

〉
D
+ ε∗

(〈
Â, B̂

∗
〉
D
+
〈
Â

∗
, B̂
〉
D

)
= cosϕ− ε∗ϕ∗ sinϕ
= cos (ϕ+ ε∗ϕ∗)

= cos ϕ̃. (3.56)

Here;
〈
Â, B̂

〉
D

is equal to 〈
Â, B̂

〉
D

= 〈(1, ε, ε), (0, 1, ε)〉D
= ε (3.57)

and from the Equation (2.15), the equality〈
Â, B̂

〉
D

= cosϕ

= cos (θ + εθ∗)

= cos θ − εθ∗ sin θ (3.58)
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can be given. Since Equations (3.57) and (3.58) are equal, we get

θ =
π

2
and θ∗ = −1 so ϕ =

π

2
− ε. (3.59)

We can obtain
〈
Â, B̂

∗
〉
D
+
〈
Â

∗
, B̂
〉
D

as〈
Â, B̂

∗
〉
D
+
〈
Â

∗
, B̂
〉
D

= 〈(1, ε, ε), (2ε, ε,−1)〉D + 〈(ε, ε,−1), (0, 1, ε)〉D
= ε. (3.60)

Using the Taylor series expansion given by Equation (2.7), we get

sinϕ = sin (θ + εθ∗)

= sin θ + εθ∗ cos θ. (3.61)

And using Equation (3.59) in Equation (3.61), we obtain

sinϕ = 1. (3.62)

From the equality of the Equations (3.41) and (3.43), we can write〈
Â, B̂

∗
〉
D
+
〈
Â

∗
, B̂
〉
D

= −ϕ∗ sinϕ. (3.63)

Inserting Equations (3.60) and (3.62) in Equation (3.63), we obtain

ε = −ϕ∗. (3.64)

Finally; from Equations (3.59) and (3.64), hyper-dual angle ϕ̃ is obtained as

ϕ̃ =
(π
2
− ε
)
− ε∗ε. (3.65)

4. Conclusions

In this paper, the basic and kinematic concepts of hyper-dual numbers are given by using properties
of dual numbers. The concept “dual line” is defined to represent the geometric interpretation of unit
hyper-dual vectors in D3. Using these concepts, the geometric interpretations of E. Study mapping
and hyper-dual angle are given. Furthermore; by taken

∣∣∣Â∗
∣∣∣
D

= 1 in the unit hyper-dual vectors set

S̃ =
{
Ã = Â+ ε∗Â

∗
:
∣∣∣Ã∣∣∣

HD
= 1; Â, Â

∗ ∈ D3
}

, we have defined the subset S̃1. And it is shown that there exists

a one to one correspondence between the points of the subset S̃1 and any two intersecting perpendicular
directed lines in R3.
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