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ABSTRACT

Hyper-dual numbers are a new number system that is an extension of dual numbers. A hyper-
dual number can be written uniquely as an ordered pair of dual numbers. In this paper, some
basic algebraic properties of hyper-dual numbers are given using their ordered pair representaions
of dual numbers. Moreover, the geometric interpretation of a unit hyper-dual vector is given in
module as a dual line. And a geometric interpretation of a subset of unit hyper-dual sphere (the
set of all unit hyper-dual vectors) is given as two intersecting perpendicular lines in 3-dimensional
real vector space.
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1. Introductions

The algebra of dual numbers D was first introduced by W. Clifford in 1873 as an extension of real numbers
R [2]. The set of all dual vectors constructs the D-module (also denoted by D?). Motion of a rigid body can
be represented by two vectors in 3-dimensional real vector space R?. E. Study [11] and A. P. Kotelnikov [10]
applied dual numbers in mechanism for the first time by using a dual vector instead of two vectors. In the
following years, dual numbers are used in the investigation of instantaneous screw axes with the help of dual
transformations in R? and in Minkowski space E$ [13-14].

Complex numbers have important advantages in derivative calculations. However, these advantages are
lost in the calculations of the second derivative [7]. To overcome this problem, J. A. Fike introduced hyper-dual
numbers D that can be used in the calculation of the first and second derivatives maintaining the advantages
of the first derivative by complex numbers [6]. In the following years, J. A. Fike and J. J. Alonso developed
this number system for derivative calculations [7, 8]. And it is shown that this number system is suitable for
complex software, analysis and design airspace systems, and open kinematic chain robot manipulator [7, 4].

A. Cohen and M. Shoham used hyper-dual numbers in the field of kinematics and dynamics to simplify
derivative equations of the motion of multi-body systems [3, 4]. They interpreted hyper-dual numbers in the
sense of E. Study and A. P. Kotelnikov by using derivative calculations [3-5]. Moreover, they showed that a
hyper-dual number can be constituted of two dual numbers [3].

In this paper, some basic concepts of hyper-dual numbers are given using their ordered pair representaions of
dual numbers. To give the geometric interpretation of hyper-dual numbers, the concept “dual line” is defined
in D3. Also; E. Study mapping is defined in D3, and it is shown that to each unit hyper-dual vector corresponds
a dual line in D3. The geometric interpretation of a hyper-dual angle is given as an angle between any two dual
lines. Moreover; a subset (denoted by S;) of unit hyper-dual sphere S (the set of all unit hyper-dual vectors) is
defined, and it is observed that to each element of S; corresponds any two intersecting perpendicular directed
lines in R3.
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2. Preliminaries

In this section a brief summary of the concepts dual and hyper-dual numbers will be given to provide a
background to understand the main idea and the results of this study.
2.1. Dual numbers
The set of all dual numbers is defined by
D={A=a+¢ea":qa,a" € R}, 2.1
where ¢ is the dual unit and satisfies
£#0,62=0 and re =er forallr € R. (2.2)
Addition and multiplication of any dual numbers A = a 4 ca* and B = b + ¢b* are defined, respectively, as
A+B=(a+0b)+e(a*+0b), (2.3)
AB =ab+¢€(ab* +a™b). (2.4)

Ifa=1and a* =0, then A =1+ 0 = 1is called a unit dual number.
The multiplicative-inverse of a dual number A = a + ca* is
-1 1 a*
A =-—e—, a#0 (2.5)
a a
that means a dual number in the form A = 0 + ea* = ea* does not have an multiplicative-inverse.
The square root of a dual number A = a + ca* is defined only for the case a > 0 as

VA=\a+ s;‘\;a. (2.6)
Taylor series expansion of a dual function f(z + e2*) about a point z + ez* = a + ca* € D can be given as
fla+ea*) = f(a) +ea” f'(a), 2.7)
where the prime represents differentiation with respect to z, i.e.
F @)= f (o4 0) = L f(), 8
see [12].
Dual numbers form the module
D' ={i-a+ca’:aa" R}, (2.9)

which is a commutative and associative ring. Each element A of I? is called a dual vector.
The scalar product of any dual vectors A = a + ca* and B = b + cb” is defined by

<A,B>D = (a,b) + < ((a,b") + (a*, b)), (2.10)

where “(,)” denotes the usual scalar product in R3. It is obvious that (a, b) and (a, b*) + (a*, b) are real numbers,
and thus <A, B> is a dual number.
D

The norm of a dual vector A = a + ea* is defined to be
_ T2 _ 2 *
N; = <A7A>D = |a|® + 2¢ (a,a”) € D, (2.11)

where denotes the usual modulus in R®. And the modulus (i.e., square root of the norm) of the dual vector
A = a +ea* is defined to be

//| |H
b

{a,a”)

A
|a|

, Where |a| # 0. (2.12)

= /(A 4) =lal+e
D D
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If ‘A‘D =1 (e, la| = 1 and (a,a*) = 0), then A = a + ca* is called a unit dual vector.

The vector product of any dual vectors A = a + ca* and B = b + cb" is defined by
AxpB=axb+e(axb +a* xb), (2.13)

where “x” denotes the usual vector product in R3. It is obvious that a x band a x b* + a* x b are real vectors,
and thus A x p B is a dual vector.
Unit dual sphere S, consisting of all unit dual vectors, is defined as

S:{A:a+afw4D:LAeDﬂ. (2.14)

Theorem 1. (E. Study Mapping) To each point on unit dual sphere S corresponds a directed line in R3. In other
words, there is a one to one correspondence between the points of unit dual sphere S and the directed lines in
R3 [11].

The geometric interpretation of E. Study mapping can be given as: Let A = a + ca* be the unit dual vector
corresponding to the directed line d in R?. The unit real vector a is the direction vector of the line d, and the
real vector a* determines the position of d, see Figure 1.

-]

la™

[l—~>a
0

Figure 1. Geometric representation of E. Study mapping in R?
The scalar product of any unit dual vectors A = a + ca* and B = b 4 ¢b" is obtained as
<A, B’>D = cosp = cosf — eh* sin 6, (2.15)
where ¢ = 6 + 6* is a dual angle [11]. If d; and d; are the directed lines in R? corresponding, respectively, to

the unit dual vectors A and B, then 6 is the angle between the real vectors a and b, and #* is the closest distance
between d; and d», see Figure 2.

Figure 2. Geometric representation of dual angle between the directed lines d; and d3 in RS

The following four cases can be given for a dual angle ¢ satisfying cos ¢ = cos6 — ¢6* sin 6:

1. If
cos =0 and 0* # 0, (2.16)

then 0 = g and <fl, B >D = cos ¢ = —ef*. Thus, lines d; and d, are perpendicular but not intersecting.
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2. If
0* =0, 2.17)

then </1, E> = cos ¢ = cos f. Thus, lines d; and d, are intersecting.
D

3. If
</1, E>D =cosp =0, (2.18)

then 6 = g and 0" = 0. Thus, lines d; and d; are perpendicular and intersecting.

4. If
<A, B>D =cosp =1, (2.19)

then 6 = 0. Thus, lines d; and d, are parallel.

The modulus of the vector product of any unit dual vectors A and B is obtained as

AXDB

=sin = sinf + 6" cos 6. (2.20)
D
For further information about dual numbers, see [2, 12, 1].

2.2. Hyper-dual numbers
The set of all hyper-dual numbers is defined by

D = {A = ag + €1a1 + €2a2 + €1€2a3 : ag, a1, A2, a3 € R} s (221)
where the dual units ¢; and ¢ satisfy
2 =2 =(c162)> =0 and e1,e9,6160 #0. (2.22)

Addition and multiplication of any hyper-dual numbers A = ag + €1a1 + €202 + €162a3 and B = by + €101 +
£2by + €162b3 are defined, respectively, as

A+ B = (ap+ bo) +e1 (a1 + b1) +e2 (az + ba) +e162 (a3 + b3), (2.23)
AB = (agbo) + €1 (agb1 + a1bo) + €2 (aobe + azby)
+ €19 (agbg + a1b2 + agbl + agbo) , (224)

The multiplicative-inverse of a hyper-dual number A = ag + €1a1 + €202 + 16203 is

1 1 a a a 2a1a
ATl= 2 ==~k — ey +ere (‘3'*‘ 132>, ap #0 (2.25)
A ag ag ag ag ap

that means a hyper-dual number in the form A = 0+ e1a1 + e2a2 + €1€2a3 = €1a1 + £2a2 + €162a3 does not have
an multiplicative-inverse.

Taylor series expansion of a hyper-dual function f(zo+ 121 + e222 + €16223) about a point xg + 121 +
£y + £16203 = ag + £1a1 + E2as + £162a3 € D can be given as

flag + e1a1 + e2a2 + €162a3) = f(ao) + e1a1 f'(ag) + e2a2 f'(ag)
+e1e2(azf'(ao) + araz f”(ao)), (2.26)

where the prime represents differentiation with respect to o, i.e.

I (x0) = f (x0 + €10 + €20 4 £1220) = d;;of(wo), (2.27)

see [6-9].
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A hyper-dual number A = ag + €101 + €2a2 + €162a3 can be given in terms of two dual numbers as

A =qap +e1a1 + €202 + €160a3
= (ap +€1a1) + €2 (az + £1a3)
= (ap +eay) + " (ag + cas)
— A+ A, (2.28)
wheree; =¢,e9 =c*and A = ag + ca1, A = ay + cas € D.

If we extend the real vectors a and p x a in a dual vector A = a + ¢ (p x a), respectively, to the dual vectors
Aand P x p A, then we obtain the hyper-dual vector

A=Ate (P XDA). (2.29)

Scalar and vector products of any hyper-dual vectors A=A+er (13 XD fl) and B =B +¢* <K XD B) can
be given, respectively, as

cos @ (2.30)
D

nsin @, (2.31)
D

where ¢ is a hyper-dual angle and n is the direction vector of the common perpendicular between these two
hyper-dual vectors. For further information about hyper-dual numbers, see [3-5].

3. Applications of Hyper-Dual Numbers in R® and D3

In this section, we show that the basic and kinematic concepts of hyper-dual numbers can be given by using
dual numbers. Using these concepts, E. Study mapping and hyper-dual angle are abtained in module D?.
Furthermore, we have defined a subset (denoted by S,) of unit hyper-dual sphere S such that to each element
of this subset corresponds two intersecting and perpendicular directed lines in R?.

From the definition of a hyper-dual number given by the Equation (2.28), alternative representations
of addition (given by Equation (2.23)) and multiplication (given by Equation (2.24)) of any hyper-dual
numbers A = qg + c1a1 + e9a9 + €169a3 = A + e*A"and B = bo +e1b1 + e3by + £169b3 = B + e*B" can be given,
respectively, as

A+IB%:(A+B)+5*(A*+B*), (3.1)

AB = AB +¢* (AB* + A*B) . (3.2)

Moreover, an alternative representation of the multiplicative-inverse (given by Equation (2.25)) of a hyper-dual
number A = ag + £1a; + €202 + e160a3 = A+ * A" can be given as

*

1 A

—1 *
A :Z—E ﬁ’

ag #0 (3.3)
that means a hyper-dual number A = A +¢* A" providing A = 0+ ca; = ea; does not have an multiplicative-
inverse.

The square root of a hyper-dual number A = A + ¢* A" can be defined by

*

A

\/&:\/Z"—E*m, a0>0 (34)
or
o aiq a9 as . a1a2
\/K—\/ai()-l-fflr\/%-‘rﬁzr\/%ﬁ-&?léfg (2\/% 4a0\/%>,a0>0. (35)
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An alternative representation of the Taylor series expension of a hyper-dual function given by Equation
(2.26) can be given by the following theorem.

Theorem 2. Let A = A+ A bea hyper-dual number, where A = ag + a4, A" = ay + cas € D. Then, the Taylor
series expansion of the hyper-dual function f(x¢ + ez1 + e*x2 + ec*x3) about a point xg + exq + e*zy + ec*x3 =
ap + €ar + €*as + ee*az € D can be given as

f(A4+e*A") = f(A) +e*A" f/(A), (3.6)

where f'(A) = f'(ao + €a1) is the first derivative of the dual function f(x + ex;) with respect to z, at the point
To+ex1 =ag +ea; €D, ie.

I (xo) = f' (zo +€0) = d%lsof(xo). (3.7)

Proof. From Equation (2.7), the Taylor series expansions of f(A) and f/(A) can be given, respectively, as

f(A) = f(ao +ea1) = f(ao) + cay f'(ap), (3.8)
f(A) = f(ag +ear) = f'(ao) +car f"(ao), (3.9)

where the prime represents differentiation with respect to z, i.e.

I (xo) = f' (x0 +£0) = %f(xo), (3.10)
" (wo) = f" (29 +£0) = %f’(xo). (3.11)

Using the Equation (2.26), we get

f(A) = flao) +canr f'(ao) + " azf'(ao) + ™ (az f'(ao) + arazf"(ao))
= (f(ao) +ca1f'(ao)) + " (azf'(ao) + (azf'(ao) + araz f"(ao)))
= (f(ao) + a1 f'(ao)) + " (azf'(ao) + caraz f" (ag) + cas f'(ag))

= (f(ao) +ea1f'(ao)) + 5*(a2f'(a0) + earas f" (ap) + cas f'(ao)

+ e%araz f" (ag))

= (f(ao) +ca1f'(ao)) + " (az (f'(ao) + car f"(ao)) + caz(f'(ao)

+eayf"(ag)))

= (f(ao) + a1 f'(ao)) + " (az + caz) (f'(ao) + ca1 f"(ao)) - (3.12)

Inserting Equations (3.8) and (3.9) in the Equation (3.12), we also get
f(A+e" A7) = f(A) +&" (a2 + cas) f'(A), (3.13)
and using A" = ay + cas, we obtain
fA+ e A7) = f(A) +e* A f(A). (3.14)
O
We need to define the concept line in D? to give the geometric interpretations of hyper-dual numbers in D?.

Definition 1. (Dual line) Let A be a unit dual vector and P be a point in D?. Then, a line in D? can be defined
by
d=P+TA, (3.15)

where the parameter T is a dual number, the unit dual vector A is the direction vector of d, and P is a point on
d. We will call a line in D? as dual line.
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Definition 2. (Hyper-dual vectors) The set of all hyper-dual vectors is defined by

D3 — {&:AH*A* A A e]D>3} (3.16)

= {A =ag+ea; +c*as +ec*as : ag,a1,a0,a3 € RS} , (3.17)

and each element A of D? is called a hyper-dual vector.
The scalar and vector products of any hyper-dual vectors A = A 4 ¢*A” = ag + ca; + e*ay + ec*az and
B = B+e*B" = by + by + by + *bs are defined, respectively, by

<A’IE>HD - <A’ B>D e (<A’ B*>D + <A*’B>D) (3.18)
= <a0, b0> =+ 8(((10, b1> + (al, b0>> + 5*((a0, b2> + <ag, b0>>
+ee*((ag, bs) + (a1, bz) + (a2, b1) + (as, b)), (3.19)
&XHDE:AXDB—I—E*(AXDB*-FA* XDB). (320)

= ag X b0+5(a0 X by +a1 X b()) +€*((10 X by + as X b())
+€€*(ao X b3 +a; X bg + ag X b1 —+ a3z X bo) (321)

Since <A,B>D and <A7 B*>D + <A*,B>D are dual numbers, <1§,@>HD is a hyper-dual number. And since

AxpBand A xp B+ A" xp B are dual vectors, A x HD Bisa hyper-dual vector.
The norm of a hyper-dual vector A = A+e*A” = ag +ca; + c*aq + ec*a; is defined to be

N; = <&A>HD - ]A‘Z 42 <A,A*>D (3.22)
= |ao|®> + 2 (¢ (ao, a1) + £* (ag, az) + ee* ({ag, as) + (a1, as))). (3.23)

And the modulus (i.e., square root of the norm) of the hyper-dual vector A is defined to be

i )
HD HD D A
D
= |ag| +5<a0’a1> +&* (@0, as)
|ao| |ao|
et <<ao,a3> (@1, a2)  (ao,a1) <a0aa2>> (3.25)
|aol || |ao|® ’

where |ag| # 0.
If ‘A" — 1 (ie,
HD

/1‘ =1land <A7 /1*> — 0), then A = A 4+ £*A" is called a unit hyper-dual vector.
D D

Definition 3. (Unit hyper-dual sphere) Unit hyper-dual sphere S, consisting of all unit hyper-dual vectors, can
be defined as R . . L
S:{A:A+5*A :‘A‘ —1, A A eD3}. (3.26)
HD

Theorem 3. (E. Study mapping for unit hyper-dual vectors) To each point on unit hyper-dual sphere S
corresponds a directed dual line d in D3. In other words, there is a one to one correspondence between the
points of unit hyper-dual sphere S and the directed dual lines in D3.

Proof. A directed line in D? (i.e., directed dual line) can be given by any two points X and Y on it. The
parametric equation of this dual line is

Y =X +TA, (3.27)
where T is a non-zero dual constant and A is a unit dual vector. The moment of the vector A with respect to
the origin O is

A =XxpA=Y xp A. (3.28)
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That means; the direction vector A of the dual line and its moment vector A" are independent of choice of
the points of the dual line. The two vectors A and A~ are not independent of one another; so they satisfy the
equations

‘A‘D —1 and <A,A*> —0. (3.29)

D

The six dual components A;, A; (fori =1,2,3) of Aand A" are Pliickerian homogeneous dual line coordinates.
Hence the two dual vectors A and A" determine the directed dual line. A point Z is on the dual line of dual
vectors A and A" if and only if

A~k

ZxpA=A4A". (3.30)
The set of directed dual lines is in one to one correspondence with pairs of dual vectors in D? subject to
the conditions (given by Equation (3.27)). Consequently; since A is a unit dual vector (i.e., fl‘ =1) and
D
<A, /1*> = 0, the unit hyper-dual vector A=At A represents a dual line, see Figure 3. O
D

. 5 AL
X y 4> 4

Figure 3. Geometric representation of E. Study mapping in D*

Example 1. (Application of E. Study mapping for unit hyper-dual vectors) Let us take the unit hyper-

dual vector A = (%, % +e, g5 —€) +e"(=2+¢,1,1~¢) that can be written in the form A = A+e*A” for

— (1 1 1
A—(%,%—‘r&,ﬁ—t?) A A
the nearest point from the origin O to the line d, then the equalities

and A" = (—2+¢,1,1 —¢). If d is the corresponding dual line in D? to A, and 7 is

IxpA=A" and <Z,A>D - <Z,A >D -0 (3.31)
can be given. From these equations, we get
Z = <5(2— %),—\@+€(2+%),\/§+5(2—%)). (3.32)

Since the unit dual vector A is the direction vector of d, and Z is a point on d, we can give the corresponding
dual line to unit hyper-dual vector A as

d=(c2- L), ~VB+:2+ ), V3+e2- L))
1 1 1
+T(ﬁ7ﬁ+€7ﬁ_5>v (333)
where the parameter T is a dual variable.
Theorem 4. Let us take a subset of unit hyper-dual sphere S as
Slz{A=A+s*A* : ‘A*) :1,&es}. (3.34)
D

Then, there exists a one to one correspondence between the points of S; and any two intersecting perpendicular
directed lines in R®.
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Proof. Since A € S;; A and A™ are unit dual vectors and A = A +¢*A” is a unit hyper-dual vector satisfying
‘A’ =1and <A7 /1*> = 0. According to Theorem 1, let Aand A" represent the directed lines d; and ds in R3,
D D

respectively. Thus, from Equation (2.18), the property <A, /1*> = 0 shows that d; and d, are perpendicular
D
intersecting directed lines. O

Example 2. (Application of the subset S, ) Let us take the unit hyper-dual vector A = (£,1,0) + &*(—¢,0,1) that
can be written in the form A = A + ¢*A” for

A =(e,1,0)=(0,1,0) +(1,0,0), (3.35)
A" =(=£,0,1) = (0,0,1) +£(~1,0,0). (3.36)
Since ‘A‘ L= A L= 1; Aand A” are unit dual vectors, and thus A € S,;. According to Theorem 4, unit hyper-

dual vector A represents two perpendicular intersecting directed lines in R3. And according to E. Study
mapping, each of these lines correspond to a unit dual vector (one of them corresponds to A and the other
to A), [11]. These lines will be obtained, respectively, as

di = (0,0,—1) +, (0,1,0), (3.37)

ds = (0,—1,0) +t2(0,0,1), (3.38)
where the parameters ¢; and ¢, are real variables. Direction vectors of d; and dy are v = (0,1,0) and vy =
(0,0,1), respectively. Since (v1,v2) = 0; di and ds are perpendicular. And for ¢; = —1 and ¢2 = —1; d; and d»
intersect at the point (0, —1, —1).

Definition 4. (Hyper-dual angle)

Figure 4. Geometric representation of hyper-dual angle between the directed dual lines d; and do in D®
The scalar product of any unit hyper-dual vectors A = A+ e*A” and B = B+¢* B’ is
<A,]’]§> _ <A7B> et (<A,B*> + <A*,B> ) (3.39)
HD D D D

If d, and d are the directed dual lines in D? corresponding, respectively, to the unit hyper-dual vectors A and
B, then then, A and fl*represent, respectively, the direction vector and the position of di;and B, B *represent,

respectively, the direction vector and the position of dy in D?. In Equation (3.39), <fl, §> is equal to
D

<A,B>D = cos ¢, (3.40)
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where ¢ is the dual angle between the unit dual vectors Aand B. Let M € dl and N € cZ2 be the two closest

points on d; and ds. Then, using MxpA=A"and N xp B=B"in Equation (3.39), we get

(A5, (408), = (A (V<0 B)), + (1 <0 4) ),
0))p+ (1 (420 B)),
= (=% (420 8)),

Let ©* be the distance between the points M/ and N, then we can write

I
[
—~
=
—
E
X
o)
S

’MfN‘:w.
D

(3.41)

(3.42)

It is obvious that ¢* is a dual number, because the modulus of M and N are dual numbers (see Equation (2.12)).

Using ‘M - N‘ = ¢* in Equation (3.41), we get
D

= < AA:DDBB I (/1 XD B)>

D D
_ P i > i >
" ((Ax0B),(dxp B))
A XDB D
D
—+¢" |[Axp B
D
= +¢" sin .

Inserting Equations (3.40) and (3.43) in Equation (3.39), we also get

(35),,,= (), + ((45),+ (4°5),)

=cosp — " sinp.

By using the Taylor series expansion given by Equation (3.6) in Equation (3.44), we obtain

<1§, IE%> =cosp — ¥ @ siny = cos P
HD

(3.43)

(3.44)

(3.45)

where ¢ = ¢ + £*¢* is a hyper dual angle, see Figure 4. Similarly, the modulus of the vector product of any unit

hyper-dual vectors A = A +¢*A” and B = B + ¢*B’ can be given as

‘A xHD@‘ =sinp + £*p* cos p = sin @.
HD

Proposition 1. If A and B are hyper-dual vectors, then

(3.46)

(3.47)

(3.48)

(3.49)

301
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we can give
<&,E>HD - )A( ‘@‘HD cos B, (3.50)
A xup ]E‘HD — || . ‘IE‘HD sin @, (3.51)
where @ is a hyper-dual angle.

Let ¢, ¢ and 6 be, respectively, a hyper-dual angle, a dual angle and a real angle. Then, the following four
cases can be given related to the hyper-dual angle ¢ by using <1§,@> = cos P = cosp — £*¢* sin p, where
HD

cos @ = cosf — ef* sinf and sin ¢ = sin 6 + £6* cos 6:

1. If
cosp =0 and p* #0, (3.52)
then 0 = g and 6* = 0. Hence, <1~%, IE>HD = —&*p*. Thus, dual lines d; and d» are perpendicular but not
intersecting.
2. If
=0, (3.53)
then <1§, IE> = cos ¢. Thus, dual lines d; and d, are intersecting.
HD
3. If -~
<A,]B%> —0, (3.54)
HD
then cos = 0 and ¢* = 0. Hence, = § and ¢* = 0. Thus, d; and d, are perpendicular and intersecting
lines.
4. 1f -
<A,]B> —1, (3.55)
HD

then 6 = 0 and £*cp*6* = 0. Thus, the following two cases can be given:
(7) If 6* = 0, then ¢ = 0. Hence, d; and ds are parallel lines.
(i) If o* =0, then ¢ = p = eb*.

Example 3. (Application of hyper-dual angle) Let us take the unit hyper—dual vectors A = (1,¢,¢) +e*(e,e, —1)
and B = (0,1,¢) +e *(2¢,¢, —1) that can be written in the form A = A+ ¢*A” and B = B+¢*B" for A = (1,¢,¢),
A" = (g,e,~1), B=(0,1,¢) and B" = (2¢,¢, —1). Hyper-dual angle ¢ between A and B will be obtained as

<A‘,@> :<A,B> yer (<A,B*> +<A*,B>)
HD D D D
=cosp — ¥ P sing

=cos(p+e*p")
= cos @. (3.56)

Here; </1, B>D is equal to

(AB) =((1229).0.12),
— (3.57)
and from the Equation (2.15), the equality
</1, B>D = cos

= cos (0 4 £60)
= cosf —eh*sinf (3.58)

www.iejgeo.com 302


http://www.iej.geo.com

S. Aslan

can be given. Since Equations (3.57) and (3.58) are equal, we get

ngand 9" = —1 so Lng—g. (3.59)

We can obtain <A,B*>D + </1*,B>D as
<A, E*>D + <A*,B>D =((1,¢,¢),(2¢,e,-1)) p, + ((e,¢,-1),(0,1,¢))
=e. (3.60)

Using the Taylor series expansion given by Equation (2.7), we get

sin ¢ = sin (0 + €0*)
=sinf 4 €0* cos 6. (3.61)

And using Equation (3.59) in Equation (3.61), we obtain
sing = 1. (3.62)
From the equality of the Equations (3.41) and (3.43), we can write
(AB) +(4.B) =-¢sine. (3.63)
Inserting Equations (3.60) and (3.62) in Equation (3.63), we obtain
EE— (3.64)

Finally; from Equations (3.59) and (3.64), hyper-dual angle ¢ is obtained as

¢ = (g —e) e (3.65)

4. Conclusions

In this paper, the basic and kinematic concepts of hyper-dual numbers are given by using properties
of dual numbers. The concept “dual line” is defined to represent the geometric interpretation of unit
hyper-dual vectors in D?. Using these concepts, the geometric interpretations of E. Study mapping

and hyper-dual angle are given. Furthermore; by taken ’A*‘D =1 in the unit hyper-dual vectors set

S = {1& —A+erA ‘1&‘ =1, A, A" € ID>3}, we have defined the subset S;. And it is shown that there exists
HD

a one to one correspondence between the points of the subset S; and any two intersecting perpendicular
directed lines in R3.
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