

Kinematic Applications of Hyper-Dual Numbers

Selahattin Aslan*

(Communicated by Murat Tosun)

ABSTRACT

Hyper-dual numbers are a new number system that is an extension of dual numbers. A hyperdual number can be written uniquely as an ordered pair of dual numbers. In this paper, some basic algebraic properties of hyper-dual numbers are given using their ordered pair representaions of dual numbers. Moreover, the geometric interpretation of a unit hyper-dual vector is given in module as a dual line. And a geometric interpretation of a subset of unit hyper-dual sphere (the set of all unit hyper-dual vectors) is given as two intersecting perpendicular lines in 3-dimensional real vector space.

Keywords: Dual numbers, E. Study mapping, hyper-dual numbers, hyper-dual angle. *AMS Subject Classification (2020):* Primary: 53A25 ; Secondary: 70B10; 70E15.

1. Introductions

The algebra of dual numbers \mathbb{D} was first introduced by W. Clifford in 1873 as an extension of real numbers \mathbb{R} [2]. The set of all dual vectors constructs the \mathbb{D} -module (also denoted by \mathbb{D}^3). Motion of a rigid body can be represented by two vectors in 3-dimensional real vector space \mathbb{R}^3 . E. Study [11] and A. P. Kotelnikov [10] applied dual numbers in mechanism for the first time by using a dual vector instead of two vectors. In the following years, dual numbers are used in the investigation of instantaneous screw axes with the help of dual transformations in \mathbb{R}^3 and in Minkowski space \mathbb{E}^3_1 [13-14].

Complex numbers have important advantages in derivative calculations. However, these advantages are lost in the calculations of the second derivative [7]. To overcome this problem, J. A. Fike introduced hyper-dual numbers $\tilde{\mathbb{D}}$ that can be used in the calculation of the first and second derivatives maintaining the advantages of the first derivative by complex numbers [6]. In the following years, J. A. Fike and J. J. Alonso developed this number system for derivative calculations [7, 8]. And it is shown that this number system is suitable for complex software, analysis and design airspace systems, and open kinematic chain robot manipulator [7, 4].

A. Cohen and M. Shoham used hyper-dual numbers in the field of kinematics and dynamics to simplify derivative equations of the motion of multi-body systems [3, 4]. They interpreted hyper-dual numbers in the sense of E. Study and A. P. Kotelnikov by using derivative calculations [3-5]. Moreover, they showed that a hyper-dual number can be constituted of two dual numbers [3].

In this paper, some basic concepts of hyper-dual numbers are given using their ordered pair representations of dual numbers. To give the geometric interpretation of hyper-dual numbers, the concept "dual line" is defined in \mathbb{D}^3 . Also; E. Study mapping is defined in \mathbb{D}^3 , and it is shown that to each unit hyper-dual vector corresponds a dual line in \mathbb{D}^3 . The geometric interpretation of a hyper-dual angle is given as an angle between any two dual lines. Moreover; a subset (denoted by \tilde{S}_1) of unit hyper-dual sphere \tilde{S} (the set of all unit hyper-dual vectors) is defined, and it is observed that to each element of \tilde{S}_1 corresponds any two intersecting perpendicular directed lines in \mathbb{R}^3 .

Received: 28-02-2021, Accepted: 31-07-2021

^{*} Corresponding author

2. Preliminaries

In this section a brief summary of the concepts dual and hyper-dual numbers will be given to provide a background to understand the main idea and the results of this study.

2.1. Dual numbers

The set of all dual numbers is defined by

$$\mathbb{D} = \{A = a + \varepsilon a^* : a, a^* \in \mathbb{R}\},$$
(2.1)

where ε is the dual unit and satisfies

$$\varepsilon \neq 0, \, \varepsilon^2 = 0 \text{ and } r\varepsilon = \varepsilon r \text{ for all } r \in \mathbb{R}.$$
 (2.2)

Addition and multiplication of any dual numbers $A = a + \varepsilon a^*$ and $B = b + \varepsilon b^*$ are defined, respectively, as

$$A + B = (a + b) + \varepsilon \left(a^* + b^*\right), \tag{2.3}$$

$$AB = ab + \varepsilon \left(ab^* + a^*b\right). \tag{2.4}$$

If a = 1 and $a^* = 0$, then $A = 1 + \varepsilon 0 = 1$ is called a unit dual number.

The multiplicative-inverse of a dual number $A = a + \varepsilon a^*$ is

$$A^{-1} = \frac{1}{a} - \varepsilon \frac{a^*}{a^2}, \ a \neq 0$$
(2.5)

that means a dual number in the form $A = 0 + \varepsilon a^* = \varepsilon a^*$ does not have an multiplicative-inverse.

The square root of a dual number $A = a + \varepsilon a^*$ is defined only for the case a > 0 as

$$\sqrt{A} = \sqrt{a} + \varepsilon \frac{a^*}{2\sqrt{a}}.$$
(2.6)

Taylor series expansion of a dual function $f(x + \varepsilon x^*)$ about a point $x + \varepsilon x^* = a + \varepsilon a^* \in \mathbb{D}$ can be given as

$$f(a + \varepsilon a^*) = f(a) + \varepsilon a^* f'(a), \tag{2.7}$$

where the prime represents differentiation with respect to x, i.e.

$$f'(x) = f'(x + \varepsilon 0) = \frac{d}{dx}f(x),$$
(2.8)

see [12].

Dual numbers form the module

$$\mathbb{D}^{3} = \left\{ \hat{A} = \boldsymbol{a} + \varepsilon \boldsymbol{a}^{*} : \boldsymbol{a}, \, \boldsymbol{a}^{*} \in \mathbb{R}^{3} \right\},$$
(2.9)

which is a commutative and associative ring. Each element \hat{A} of \mathbb{D}^3 is called a dual vector.

The scalar product of any dual vectors $\hat{A} = a + \varepsilon a^*$ and $\hat{B} = b + \varepsilon b^*$ is defined by

$$\left\langle \hat{A}, \hat{B} \right\rangle_{D} = \langle \boldsymbol{a}, \boldsymbol{b} \rangle + \varepsilon \left(\langle \boldsymbol{a}, \boldsymbol{b}^{*} \rangle + \langle \boldsymbol{a}^{*}, \boldsymbol{b} \rangle \right),$$
 (2.10)

where " \langle , \rangle " denotes the usual scalar product in \mathbb{R}^3 . It is obvious that $\langle a, b \rangle$ and $\langle a, b^* \rangle + \langle a^*, b \rangle$ are real numbers, and thus $\langle \hat{A}, \hat{B} \rangle_D$ is a dual number.

The norm of a dual vector $\hat{A} = a + \varepsilon a^*$ is defined to be

$$N_{\hat{A}} = \left\langle \hat{A}, \hat{A} \right\rangle_{D} = \left| \boldsymbol{a} \right|^{2} + 2\varepsilon \left\langle \boldsymbol{a}, \boldsymbol{a}^{*} \right\rangle \in \mathbb{D},$$
(2.11)

where "|,|" denotes the usual modulus in \mathbb{R}^3 . And the modulus (i.e., square root of the norm) of the dual vector $\hat{A} = a + \varepsilon a^*$ is defined to be

$$\left|\hat{A}\right|_{D} = \sqrt{\left\langle\hat{A},\hat{A}\right\rangle_{D}} = |\boldsymbol{a}| + \varepsilon \frac{\langle \boldsymbol{a}, \boldsymbol{a}^{*} \rangle}{|\boldsymbol{a}|}, \text{ where } |\boldsymbol{a}| \neq 0.$$
 (2.12)

www.iejgeo.com

If $|\hat{A}|_D = 1$ (i.e., $|\boldsymbol{a}| = 1$ and $\langle \boldsymbol{a}, \boldsymbol{a}^* \rangle = 0$), then $\hat{A} = \boldsymbol{a} + \varepsilon \boldsymbol{a}^*$ is called a unit dual vector. The vector product of any dual vectors $\hat{A} = \boldsymbol{a} + \varepsilon \boldsymbol{a}^*$ and $\hat{B} = \boldsymbol{b} + \varepsilon \boldsymbol{b}^*$ is defined by

$$\hat{A} \times_D \hat{B} = \boldsymbol{a} \times \boldsymbol{b} + \varepsilon \left(\boldsymbol{a} \times \boldsymbol{b}^* + \boldsymbol{a}^* \times \boldsymbol{b} \right),$$
(2.13)

where " \times " denotes the usual vector product in \mathbb{R}^3 . It is obvious that $a \times b$ and $a \times b^* + a^* \times b$ are real vectors, and thus $\hat{A} \times_D \hat{B}$ is a dual vector.

Unit dual sphere S, consisting of all unit dual vectors, is defined as

$$\mathbb{S} = \left\{ \hat{A} = \boldsymbol{a} + \varepsilon \boldsymbol{a}^* : \left| \hat{A} \right|_D = 1, \, \hat{A} \in \mathbb{D}^3 \right\}.$$
(2.14)

Theorem 1. (E. Study Mapping) To each point on unit dual sphere \mathbb{S} corresponds a directed line in \mathbb{R}^3 . In other words, there is a one to one correspondence between the points of unit dual sphere S and the directed lines in \mathbb{R}^{3} [11].

The geometric interpretation of E. Study mapping can be given as: Let $\hat{A} = a + \varepsilon a^*$ be the unit dual vector corresponding to the directed line d in \mathbb{R}^3 . The unit real vector a is the direction vector of the line d, and the real vector a^* determines the position of d, see Figure 1.

Figure 1. Geometric representation of E. Study mapping in \mathbb{R}^3

The scalar product of any unit dual vectors $\hat{A} = a + \varepsilon a^*$ and $\hat{B} = b + \varepsilon b^*$ is obtained as

$$\left\langle \hat{A}, \hat{B} \right\rangle_D = \cos \varphi = \cos \theta - \varepsilon \theta^* \sin \theta,$$
 (2.15)

where $\varphi = \theta + \varepsilon \theta^*$ is a dual angle [11]. If d_1 and d_2 are the directed lines in \mathbb{R}^3 corresponding, respectively, to the unit dual vectors \hat{A} and \hat{B} , then θ is the angle between the real vectors \boldsymbol{a} and \boldsymbol{b} , and θ^* is the closest distance between d_1 and d_2 , see Figure 2.

Figure 2. Geometric representation of dual angle between the directed lines d_1 and d_2 in \mathbb{R}^3

The following four cases can be given for a dual angle φ satisfying $\cos \varphi = \cos \theta - \varepsilon \theta^* \sin \theta$:

1. If

$$\cos\theta = 0 \text{ and } \theta^* \neq 0, \tag{2.16}$$

then $\theta = \frac{\pi}{2}$ and $\left\langle \hat{A}, \hat{B} \right\rangle_D = \cos \varphi = -\varepsilon \theta^*$. Thus, lines d_1 and d_2 are perpendicular but not intersecting.

www.iejgeo.com

2. If

$$\theta^* = 0, \tag{2.17}$$

then $\left\langle \hat{A}, \hat{B} \right\rangle_D = \cos \varphi = \cos \theta$. Thus, lines d_1 and d_2 are intersecting. 3. If

$$\left\langle \hat{A},\hat{B}\right\rangle _{D}=\cos \varphi =0,$$
 (2.18)

then $\theta = \frac{\pi}{2}$ and $\theta^* = 0$. Thus, lines d_1 and d_2 are perpendicular and intersecting. 4. If

$$\left\langle \hat{A},\hat{B}\right\rangle_{D}=\cos\varphi=1,$$
(2.19)

then $\theta = 0$. Thus, lines d_1 and d_2 are parallel.

The modulus of the vector product of any unit dual vectors \hat{A} and \hat{B} is obtained as

$$\left| \hat{A} \times_D \hat{B} \right|_D = \sin \varphi = \sin \theta + \varepsilon \theta^* \cos \theta.$$
 (2.20)

For further information about dual numbers, see [2, 12, 1].

2.2. Hyper-dual numbers

The set of all hyper-dual numbers is defined by

$$\mathbb{D} = \{\mathbb{A} = a_0 + \varepsilon_1 a_1 + \varepsilon_2 a_2 + \varepsilon_1 \varepsilon_2 a_3 : a_0, a_1, a_2, a_3 \in \mathbb{R}\},$$
(2.21)

where the dual units ε_1 and ε_2 satisfy

$$\varepsilon_1^2 = \varepsilon_2^2 = (\varepsilon_1 \varepsilon_2)^2 = 0 \quad \text{and} \quad \varepsilon_1, \varepsilon_2, \varepsilon_1 \varepsilon_2 \neq 0.$$
 (2.22)

Addition and multiplication of any hyper-dual numbers $\mathbb{A} = a_0 + \varepsilon_1 a_1 + \varepsilon_2 a_2 + \varepsilon_1 \varepsilon_2 a_3$ and $\mathbb{B} = b_0 + \varepsilon_1 b_1 + \varepsilon_2 b_2 + \varepsilon_1 \varepsilon_2 b_3$ are defined, respectively, as

$$\mathbb{A} + \mathbb{B} = (a_0 + b_0) + \varepsilon_1 (a_1 + b_1) + \varepsilon_2 (a_2 + b_2) + \varepsilon_1 \varepsilon_2 (a_3 + b_3), \qquad (2.23)$$

$$A\mathbb{B} = (a_0b_0) + \varepsilon_1 (a_0b_1 + a_1b_0) + \varepsilon_2 (a_0b_2 + a_2b_0) + \varepsilon_1\varepsilon_2 (a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0),$$
(2.24)

The multiplicative-inverse of a hyper-dual number $\mathbb{A} = a_0 + \varepsilon_1 a_1 + \varepsilon_2 a_2 + \varepsilon_1 \varepsilon_2 a_3$ is

$$\mathbb{A}^{-1} = \frac{1}{\mathbb{A}} = \frac{1}{a_0} - \varepsilon_1 \frac{a_1}{a_0^2} - \varepsilon_2 \frac{a_2}{a_0^2} + \varepsilon_1 \varepsilon_2 \left(-\frac{a_3}{a_0^2} + \frac{2a_1 a_2}{a_0^3} \right), \quad a_0 \neq 0$$
(2.25)

that means a hyper-dual number in the form $\mathbb{A} = 0 + \varepsilon_1 a_1 + \varepsilon_2 a_2 + \varepsilon_1 \varepsilon_2 a_3 = \varepsilon_1 a_1 + \varepsilon_2 a_2 + \varepsilon_1 \varepsilon_2 a_3$ does not have an multiplicative-inverse.

Taylor series expansion of a hyper-dual function $f(x_0 + \varepsilon_1 x_1 + \varepsilon_2 x_2 + \varepsilon_1 \varepsilon_2 x_3)$ about a point $x_0 + \varepsilon_1 x_1 + \varepsilon_2 x_2 + \varepsilon_1 \varepsilon_2 x_3 = a_0 + \varepsilon_1 a_1 + \varepsilon_2 a_2 + \varepsilon_1 \varepsilon_2 a_3 \in \tilde{\mathbb{D}}$ can be given as

$$f(a_0 + \varepsilon_1 a_1 + \varepsilon_2 a_2 + \varepsilon_1 \varepsilon_2 a_3) = f(a_0) + \varepsilon_1 a_1 f'(a_0) + \varepsilon_2 a_2 f'(a_0) + \varepsilon_1 \varepsilon_2 (a_3 f'(a_0) + a_1 a_2 f''(a_0)),$$
(2.26)

where the prime represents differentiation with respect to x_0 , i.e.

$$f'(x_0) = f'(x_0 + \varepsilon_1 0 + \varepsilon_2 0 + \varepsilon_1 \varepsilon_2 0) = \frac{d}{dx_0} f(x_0), \qquad (2.27)$$

see [6-9].

A hyper-dual number $\mathbb{A} = a_0 + \varepsilon_1 a_1 + \varepsilon_2 a_2 + \varepsilon_1 \varepsilon_2 a_3$ can be given in terms of two dual numbers as

$$A = a_0 + \varepsilon_1 a_1 + \varepsilon_2 a_2 + \varepsilon_1 \varepsilon_2 a_3$$

= $(a_0 + \varepsilon_1 a_1) + \varepsilon_2 (a_2 + \varepsilon_1 a_3)$
= $(a_0 + \varepsilon a_1) + \varepsilon^* (a_2 + \varepsilon a_3)$
= $A + \varepsilon^* A^*$, (2.28)

where $\varepsilon_1 = \varepsilon$, $\varepsilon_2 = \varepsilon^*$ and $A = a_0 + \varepsilon a_1$, $A^* = a_2 + \varepsilon a_3 \in \mathbb{D}$.

If we extend the real vectors \boldsymbol{a} and $\boldsymbol{p} \times \boldsymbol{a}$ in a dual vector $\hat{A} = \boldsymbol{a} + \varepsilon (\boldsymbol{p} \times \boldsymbol{a})$, respectively, to the dual vectors \hat{A} and $\hat{P} \times_D \hat{A}$, then we obtain the hyper-dual vector

$$\widetilde{\mathbb{A}} = \hat{A} + \varepsilon^* \left(\hat{P} \times_D \hat{A} \right).$$
(2.29)

Scalar and vector products of any hyper-dual vectors $\widetilde{\mathbb{A}} = \hat{A} + \varepsilon^* \left(\hat{P} \times_D \hat{A} \right)$ and $\widetilde{\mathbb{B}} = \hat{B} + \varepsilon^* \left(\hat{K} \times_D \hat{B} \right)$ can be given, respectively, as

$$\left\langle \widetilde{\mathbb{A}}, \widetilde{\mathbb{B}} \right\rangle_{HD} = \left| \hat{A} \right|_{D} \left| \hat{B} \right|_{D} \cos \tilde{\varphi}$$
(2.30)

$$\widetilde{\mathbb{A}} \times_{HD} \widetilde{\mathbb{B}} = \left| \hat{A} \right|_{D} \left| \hat{B} \right|_{D} n \sin \tilde{\varphi},$$
(2.31)

where $\tilde{\varphi}$ is a hyper-dual angle and *n* is the direction vector of the common perpendicular between these two hyper-dual vectors. For further information about hyper-dual numbers, see [3-5].

3. Applications of Hyper-Dual Numbers in \mathbb{R}^3 and \mathbb{D}^3

In this section, we show that the basic and kinematic concepts of hyper-dual numbers can be given by using dual numbers. Using these concepts, E. Study mapping and hyper-dual angle are abtained in module \mathbb{D}^3 . Furthermore, we have defined a subset (denoted by $\tilde{\mathbb{S}}_1$) of unit hyper-dual sphere $\tilde{\mathbb{S}}$ such that to each element of this subset corresponds two intersecting and perpendicular directed lines in \mathbb{R}^3 .

From the definition of a hyper-dual number given by the Equation (2.28), alternative representations of addition (given by Equation (2.23)) and multiplication (given by Equation (2.24)) of any hyper-dual numbers $\mathbb{A} = a_0 + \varepsilon_1 a_1 + \varepsilon_2 a_2 + \varepsilon_1 \varepsilon_2 a_3 = A + \varepsilon^* A^*$ and $\mathbb{B} = b_0 + \varepsilon_1 b_1 + \varepsilon_2 b_2 + \varepsilon_1 \varepsilon_2 b_3 = B + \varepsilon^* B^*$ can be given, respectively, as

$$\mathbb{A} + \mathbb{B} = (A + B) + \varepsilon^* \left(A^* + B^* \right), \tag{3.1}$$

$$\mathbb{AB} = AB + \varepsilon^* \left(AB^* + A^*B \right). \tag{3.2}$$

Moreover, an alternative representation of the multiplicative-inverse (given by Equation (2.25)) of a hyper-dual number $\mathbb{A} = a_0 + \varepsilon_1 a_1 + \varepsilon_2 a_2 + \varepsilon_1 \varepsilon_2 a_3 = A + \varepsilon^* A^*$ can be given as

$$\mathbb{A}^{-1} = \frac{1}{A} - \varepsilon^* \frac{A^*}{A^2}, \ a_0 \neq 0$$
(3.3)

that means a hyper-dual number $\mathbb{A} = A + \varepsilon^* A^*$ providing $A = 0 + \varepsilon a_1 = \varepsilon a_1$ does not have an multiplicative-inverse.

The square root of a hyper-dual number $\mathbb{A} = A + \varepsilon^* A^*$ can be defined by

$$\sqrt{\mathbb{A}} = \sqrt{A} + \varepsilon^* \frac{A^*}{2\sqrt{A}}, \ a_0 > 0 \tag{3.4}$$

or

$$\sqrt{\mathbb{A}} = \sqrt{a_0} + \varepsilon_1 \frac{a_1}{2\sqrt{a_0}} + \varepsilon_2 \frac{a_2}{2\sqrt{a_0}} + \varepsilon_1 \varepsilon_2 \left(\frac{a_3}{2\sqrt{a_0}} - \frac{a_1 a_2}{4a_0\sqrt{a_0}}\right), \ a_0 > 0.$$
(3.5)

www.iejgeo.com

An alternative representation of the Taylor series expension of a hyper-dual function given by Equation (2.26) can be given by the following theorem.

Theorem 2. Let $\mathbb{A} = A + \varepsilon^* A^*$ be a hyper-dual number, where $A = a_0 + \varepsilon a_1$, $A^* = a_2 + \varepsilon a_3 \in \mathbb{D}$. Then, the Taylor series expansion of the hyper-dual function $f(x_0 + \varepsilon x_1 + \varepsilon^* x_2 + \varepsilon \varepsilon^* x_3)$ about a point $x_0 + \varepsilon x_1 + \varepsilon^* x_2 + \varepsilon \varepsilon^* x_3 = a_0 + \varepsilon a_1 + \varepsilon^* a_2 + \varepsilon \varepsilon^* a_3 \in \mathbb{D}$ can be given as

$$f(A + \varepsilon^* A^*) = f(A) + \varepsilon^* A^* f'(A), \tag{3.6}$$

where $f'(A) = f'(a_0 + \varepsilon a_1)$ is the first derivative of the dual function $f(x_0 + \varepsilon x_1)$ with respect to x_0 at the point $x_0 + \varepsilon x_1 = a_0 + \varepsilon a_1 \in \mathbb{D}$, i.e.

$$f'(x_0) = f'(x_0 + \varepsilon 0) = \frac{d}{dx_0} f(x_0).$$
(3.7)

Proof. From Equation (2.7), the Taylor series expansions of f(A) and f'(A) can be given, respectively, as

$$f(A) = f(a_0 + \varepsilon a_1) = f(a_0) + \varepsilon a_1 f'(a_0),$$
(3.8)

$$f'(A) = f'(a_0 + \varepsilon a_1) = f'(a_0) + \varepsilon a_1 f''(a_0),$$
(3.9)

where the prime represents differentiation with respect to x_0 , i.e.

$$f'(x_0) = f'(x_0 + \varepsilon 0) = \frac{d}{dx_0} f(x_0),$$
(3.10)

$$f''(x_0) = f''(x_0 + \varepsilon 0) = \frac{d}{dx_0} f'(x_0).$$
(3.11)

Using the Equation (2.26), we get

$$f(\mathbb{A}) = f(a_0) + \varepsilon a_1 f'(a_0) + \varepsilon^* a_2 f'(a_0) + \varepsilon \varepsilon^* (a_3 f'(a_0) + a_1 a_2 f''(a_0))$$

$$= (f(a_0) + \varepsilon a_1 f'(a_0)) + \varepsilon^* (a_2 f'(a_0) + \varepsilon (a_3 f'(a_0) + a_1 a_2 f''(a_0)))$$

$$= (f(a_0) + \varepsilon a_1 f'(a_0)) + \varepsilon^* (a_2 f'(a_0) + \varepsilon a_1 a_2 f''(a_0) + \varepsilon a_3 f'(a_0))$$

$$= (f(a_0) + \varepsilon a_1 f'(a_0)) + \varepsilon^* (a_2 (f'(a_0) + \varepsilon a_1 f''(a_0)) + \varepsilon a_3 (f'(a_0) + \varepsilon a_1 f''(a_0)))$$

$$= (f(a_0) + \varepsilon a_1 f'(a_0)) + \varepsilon^* (a_2 + \varepsilon a_3) (f'(a_0) + \varepsilon a_1 f''(a_0)).$$

(3.12)

Inserting Equations (3.8) and (3.9) in the Equation (3.12), we also get

$$f(A + \varepsilon^* A^*) = f(A) + \varepsilon^* (a_2 + \varepsilon a_3) f'(A), \qquad (3.13)$$

and using $A^* = a_2 + \varepsilon a_3$, we obtain

$$f(A + \varepsilon^* A^*) = f(A) + \varepsilon^* A^* f'(A).$$
(3.14)

We need to define the concept line in \mathbb{D}^3 to give the geometric interpretations of hyper-dual numbers in \mathbb{D}^3 .

Definition 1. (**Dual line**) Let \hat{A} be a unit dual vector and \hat{P} be a point in \mathbb{D}^3 . Then, a line in \mathbb{D}^3 can be defined by

$$\hat{d} = \hat{P} + T\hat{A},\tag{3.15}$$

where the parameter *T* is a dual number, the unit dual vector \hat{A} is the direction vector of \hat{d} , and \hat{P} is a point on \hat{d} . We will call a line in \mathbb{D}^3 as dual line.

Definition 2. (Hyper-dual vectors) The set of all hyper-dual vectors is defined by

$$\tilde{\mathbb{D}}^{3} = \left\{ \tilde{\mathbb{A}} = \hat{A} + \varepsilon^{*} \hat{A}^{*} : \hat{A}, \, \hat{A}^{*} \in \mathbb{D}^{3} \right\}$$
(3.16)

$$=\left\{\widetilde{\mathbb{A}}=\boldsymbol{a}_{0}+\varepsilon\boldsymbol{a}_{1}+\varepsilon^{*}\boldsymbol{a}_{2}+\varepsilon\varepsilon^{*}\boldsymbol{a}_{3}:\boldsymbol{a}_{0},\boldsymbol{a}_{1},\boldsymbol{a}_{2},\boldsymbol{a}_{3}\in\mathbb{R}^{3}\right\},$$
(3.17)

and each element $\widetilde{\mathbb{A}}$ of $\widetilde{\mathbb{D}}^3$ is called a hyper-dual vector.

The scalar and vector products of any hyper-dual vectors $\widetilde{\mathbb{A}} = \hat{A} + \varepsilon^* \hat{A}^* = \mathbf{a}_0 + \varepsilon \mathbf{a}_1 + \varepsilon^* \mathbf{a}_2 + \varepsilon \varepsilon^* \mathbf{a}_3$ and $\widetilde{\mathbb{B}} = \hat{B} + \varepsilon^* \hat{B}^* = \mathbf{b}_0 + \varepsilon \mathbf{b}_1 + \varepsilon^* \mathbf{b}_2 + \varepsilon \varepsilon^* \mathbf{b}_3$ are defined, respectively, by

$$\left\langle \widetilde{\mathbb{A}}, \widetilde{\mathbb{B}} \right\rangle_{HD} = \left\langle \hat{A}, \hat{B} \right\rangle_{D} + \varepsilon^{*} \left(\left\langle \hat{A}, \hat{B}^{*} \right\rangle_{D} + \left\langle \hat{A}^{*}, \hat{B} \right\rangle_{D} \right)$$

$$= \left\langle \boldsymbol{a}_{0}, \boldsymbol{b}_{0} \right\rangle + \varepsilon \left(\left\langle \boldsymbol{a}_{0}, \boldsymbol{b}_{1} \right\rangle + \left\langle \boldsymbol{a}_{1}, \boldsymbol{b}_{0} \right\rangle \right) + \varepsilon^{*} \left(\left\langle \boldsymbol{a}_{0}, \boldsymbol{b}_{2} \right\rangle + \left\langle \boldsymbol{a}_{2}, \boldsymbol{b}_{0} \right\rangle \right)$$

$$(3.18)$$

$$+\varepsilon\varepsilon^{*}(\langle \boldsymbol{a}_{0},\boldsymbol{b}_{3}\rangle+\langle \boldsymbol{a}_{1},\boldsymbol{b}_{2}\rangle+\langle \boldsymbol{a}_{2},\boldsymbol{b}_{1}\rangle+\langle \boldsymbol{a}_{3},\boldsymbol{b}_{0}\rangle), \qquad (3.19)$$

$$\widetilde{\mathbb{A}} \times_{HD} \widetilde{\mathbb{B}} = \hat{A} \times_D \hat{B} + \varepsilon^* \left(\hat{A} \times_D \hat{B}^* + \hat{A}^* \times_D \hat{B} \right).$$
(3.20)

$$= \mathbf{a}_0 \times \mathbf{b}_0 + \varepsilon (\mathbf{a}_0 \times \mathbf{b}_1 + \mathbf{a}_1 \times \mathbf{b}_0) + \varepsilon^* (\mathbf{a}_0 \times \mathbf{b}_2 + \mathbf{a}_2 \times \mathbf{b}_0) + \varepsilon \varepsilon^* (\mathbf{a}_0 \times \mathbf{b}_3 + \mathbf{a}_1 \times \mathbf{b}_2 + \mathbf{a}_2 \times \mathbf{b}_1 + \mathbf{a}_3 \times \mathbf{b}_0).$$
(3.21)

Since $\langle \hat{A}, \hat{B} \rangle_D$ and $\langle \hat{A}, \hat{B}^* \rangle_D + \langle \hat{A}^*, \hat{B} \rangle_D$ are dual numbers, $\langle \widetilde{\mathbb{A}}, \widetilde{\mathbb{B}} \rangle_{HD}$ is a hyper-dual number. And since $\hat{A} \times_D \hat{B}$ and $\hat{A} \times_D \hat{B}^* + \hat{A}^* \times_D \hat{B}$ are dual vectors, $\widetilde{\mathbb{A}} \times_{HD} \widetilde{\mathbb{B}}$ is a hyper-dual vector.

The norm of a hyper-dual vector $\widetilde{\mathbb{A}} = \hat{A} + \varepsilon^* \hat{A}^* = a_0 + \varepsilon a_1 + \varepsilon^* a_2 + \varepsilon \varepsilon^* a_3$ is defined to be

$$N_{\widetilde{\mathbb{A}}} = \left\langle \widetilde{\mathbb{A}}, \widetilde{\mathbb{A}} \right\rangle_{HD} = \left| \hat{A} \right|_{D}^{2} + 2\varepsilon^{*} \left\langle \hat{A}, \hat{A}^{*} \right\rangle_{D}$$

$$(3.22)$$

$$= |\boldsymbol{a}_{0}|^{2} + 2\left(\varepsilon \langle \boldsymbol{a}_{0}, \boldsymbol{a}_{1} \rangle + \varepsilon^{*} \langle \boldsymbol{a}_{0}, \boldsymbol{a}_{2} \rangle + \varepsilon \varepsilon^{*} (\langle \boldsymbol{a}_{0}, \boldsymbol{a}_{3} \rangle + \langle \boldsymbol{a}_{1}, \boldsymbol{a}_{2} \rangle)\right).$$
(3.23)

And the modulus (i.e., square root of the norm) of the hyper-dual vector $\widetilde{\mathbb{A}}$ is defined to be

$$\left|\widetilde{\mathbb{A}}\right|_{HD} = \sqrt{\left\langle\widetilde{\mathbb{A}},\widetilde{\mathbb{A}}\right\rangle_{HD}} = \left|\hat{A}\right|_{D} + \varepsilon^{*} \frac{\left\langle\hat{A},\hat{A}^{*}\right\rangle_{D}}{\left|\hat{A}\right|_{D}}$$
(3.24)

$$= |\boldsymbol{a}_{0}| + \varepsilon \frac{\langle \boldsymbol{a}_{0}, \boldsymbol{a}_{1} \rangle}{|\boldsymbol{a}_{0}|} + \varepsilon^{*} \frac{\langle \boldsymbol{a}_{0}, \boldsymbol{a}_{2} \rangle}{|\boldsymbol{a}_{0}|} + \varepsilon \varepsilon^{*} \left(\frac{\langle \boldsymbol{a}_{0}, \boldsymbol{a}_{3} \rangle}{|\boldsymbol{a}_{0}|} + \frac{\langle \boldsymbol{a}_{1}, \boldsymbol{a}_{2} \rangle}{|\boldsymbol{a}_{0}|} - \frac{\langle \boldsymbol{a}_{0}, \boldsymbol{a}_{1} \rangle \langle \boldsymbol{a}_{0}, \boldsymbol{a}_{2} \rangle}{|\boldsymbol{a}_{0}|^{3}} \right),$$
(3.25)

where $|\boldsymbol{a}_0| \neq 0$.

If $\left|\widetilde{\mathbb{A}}\right|_{HD}^{0} = 1$ (i.e., $\left|\hat{A}\right|_{D} = 1$ and $\left<\hat{A}, \hat{A}^{*}\right>_{D} = 0$), then $\widetilde{\mathbb{A}} = \hat{A} + \varepsilon^{*}\hat{A}^{*}$ is called a unit hyper-dual vector.

Definition 3. (**Unit hyper-dual sphere**) Unit hyper-dual sphere $\tilde{\mathbb{S}}$, consisting of all unit hyper-dual vectors, can be defined as

$$\tilde{\mathbb{S}} = \left\{ \tilde{\mathbb{A}} = \hat{A} + \varepsilon^* \hat{A}^* : \left| \tilde{\mathbb{A}} \right|_{HD} = 1; \ \hat{A}, \ \hat{A}^* \in \mathbb{D}^3 \right\}.$$
(3.26)

Theorem 3. (E. Study mapping for unit hyper-dual vectors) To each point on unit hyper-dual sphere \tilde{S} corresponds a directed dual line \hat{d} in \mathbb{D}^3 . In other words, there is a one to one correspondence between the points of unit hyper-dual sphere \tilde{S} and the directed dual lines in \mathbb{D}^3 .

Proof. A directed line in \mathbb{D}^3 (i.e., directed dual line) can be given by any two points \hat{X} and \hat{Y} on it. The parametric equation of this dual line is

$$\hat{Y} = \hat{X} + T\hat{A},\tag{3.27}$$

where *T* is a non-zero dual constant and \hat{A} is a unit dual vector. The moment of the vector \hat{A} with respect to the origin \hat{O} is

$$\hat{A}^* = \hat{X} \times_D \hat{A} = \hat{Y} \times_D \hat{A}. \tag{3.28}$$

That means; the direction vector \hat{A} of the dual line and its moment vector \hat{A}^* are independent of choice of the points of the dual line. The two vectors \hat{A} and \hat{A}^* are not independent of one another; so they satisfy the equations

$$\left| \hat{A} \right|_{D} = 1 \text{ and } \left\langle \hat{A}, \hat{A}^{*} \right\rangle_{D} = 0.$$
 (3.29)

The six dual components A_i , A_i^* (for i = 1, 2, 3) of \hat{A} and \hat{A}^* are Plückerian homogeneous dual line coordinates. Hence the two dual vectors \hat{A} and \hat{A}^* determine the directed dual line. A point \hat{Z} is on the dual line of dual vectors \hat{A} and \hat{A}^* if and only if

$$\hat{Z} \times_D \hat{A} = \hat{A}^*. \tag{3.30}$$

The set of directed dual lines is in one to one correspondence with pairs of dual vectors in \mathbb{D}^3 subject to the conditions (given by Equation (3.27)). Consequently; since \hat{A} is a unit dual vector (i.e., $|\hat{A}|_D = 1$) and $\langle \hat{A}, \hat{A}^* \rangle_D = 0$, the unit hyper-dual vector $\tilde{\mathbb{A}} = \hat{A} + \varepsilon^* \hat{A}^*$ represents a dual line, see Figure 3.

Figure 3. Geometric representation of E. Study mapping in \mathbb{D}^3

Example 1. (Application of E. Study mapping for unit hyper-dual vectors) Let us take the unit hyperdual vector $\widetilde{\mathbb{A}} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} + \varepsilon, \frac{1}{\sqrt{3}} - \varepsilon) + \varepsilon^*(-2 + \varepsilon, 1, 1 - \varepsilon)$ that can be written in the form $\widetilde{\mathbb{A}} = \hat{A} + \varepsilon^* \hat{A}^*$ for $\hat{A} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} + \varepsilon, \frac{1}{\sqrt{3}} - \varepsilon)$ and $\hat{A}^* = (-2 + \varepsilon, 1, 1 - \varepsilon)$. If \hat{d} is the corresponding dual line in \mathbb{D}^3 to $\widetilde{\mathbb{A}}$, and \hat{Z} is the nearest point from the origin \hat{O} to the line \hat{d} , then the equalities

$$\hat{Z} \times_D \hat{A} = \hat{A}^* \text{ and } \left\langle \hat{Z}, \hat{A} \right\rangle_D = \left\langle \hat{Z}, \hat{A}^* \right\rangle_D = 0$$
 (3.31)

can be given. From these equations, we get

$$\hat{Z} = \left(\varepsilon\left(2 - \frac{1}{\sqrt{3}}\right), -\sqrt{3} + \varepsilon\left(2 + \frac{2}{\sqrt{3}}\right), \sqrt{3} + \varepsilon\left(2 - \frac{1}{\sqrt{3}}\right)\right).$$
(3.32)

Since the unit dual vector \hat{A} is the direction vector of \hat{d} , and \hat{Z} is a point on \hat{d} , we can give the corresponding dual line to unit hyper-dual vector \widetilde{A} as

$$\hat{d} = \left(\varepsilon(2 - \frac{1}{\sqrt{3}}), -\sqrt{3} + \varepsilon(2 + \frac{2}{\sqrt{3}}), \sqrt{3} + \varepsilon(2 - \frac{1}{\sqrt{3}})\right) + T\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} + \varepsilon, \frac{1}{\sqrt{3}} - \varepsilon\right),$$
(3.33)

where the parameter T is a dual variable.

Theorem 4. Let us take a subset of unit hyper-dual sphere $\tilde{\mathbb{S}}$ as

$$\tilde{\mathbb{S}}_{1} = \left\{ \tilde{\mathbb{A}} = \hat{A} + \varepsilon^{*} \hat{A}^{*} : \left| \hat{A}^{*} \right|_{D} = 1, \, \tilde{\mathbb{A}} \in \tilde{\mathbb{S}} \right\}.$$
(3.34)

Then, there exists a one to one correspondence between the points of \tilde{S}_1 and any two intersecting perpendicular directed lines in \mathbb{R}^3 .

Proof. Since $\widetilde{\mathbb{A}} \in \widetilde{\mathbb{S}}_1$; \hat{A} and \hat{A}^* are unit dual vectors and $\widetilde{\mathbb{A}} = \hat{A} + \varepsilon^* \hat{A}^*$ is a unit hyper-dual vector satisfying $|\hat{A}|_D = 1$ and $\langle \hat{A}, \hat{A}^* \rangle_D = 0$. According to Theorem 1, let \hat{A} and \hat{A}^* represent the directed lines d_1 and d_2 in \mathbb{R}^3 , respectively. Thus, from Equation (2.18), the property $\langle \hat{A}, \hat{A}^* \rangle_D = 0$ shows that d_1 and d_2 are perpendicular intersecting directed lines.

Example 2. (Application of the subset $\tilde{\mathbb{S}}_1$) Let us take the unit hyper-dual vector $\widetilde{\mathbb{A}} = (\varepsilon, 1, 0) + \varepsilon^*(-\varepsilon, 0, 1)$ that can be written in the form $\widetilde{\mathbb{A}} = \hat{A} + \varepsilon^* \hat{A}^*$ for

$$\hat{A} = (\varepsilon, 1, 0) = (0, 1, 0) + \varepsilon(1, 0, 0),$$
(3.35)

$$\hat{A}^* = (-\varepsilon, 0, 1) = (0, 0, 1) + \varepsilon(-1, 0, 0).$$
 (3.36)

Since $|\hat{A}|_D = |\hat{A}^*|_D = 1$; \hat{A} and \hat{A}^* are unit dual vectors, and thus $\tilde{A} \in \tilde{S}_1$. According to Theorem 4, unit hyperdual vector \tilde{A} represents two perpendicular intersecting directed lines in \mathbb{R}^3 . And according to E. Study mapping, each of these lines correspond to a unit dual vector (one of them corresponds to \hat{A} and the other to \hat{A}^*), [11]. These lines will be obtained, respectively, as

$$d_1 = (0, 0, -1) + t_1(0, 1, 0), \qquad (3.37)$$

$$d_2 = (0, -1, 0) + t_2(0, 0, 1), \qquad (3.38)$$

where the parameters t_1 and t_2 are real variables. Direction vectors of d_1 and d_2 are $v_1 = (0, 1, 0)$ and $v_2 = (0, 0, 1)$, respectively. Since $\langle v_1, v_2 \rangle = 0$; d_1 and d_2 are perpendicular. And for $t_1 = -1$ and $t_2 = -1$; d_1 and d_2 intersect at the point (0, -1, -1).

Definition 4. (Hyper-dual angle)

Figure 4. Geometric representation of hyper-dual angle between the directed dual lines \hat{d}_1 and \hat{d}_2 in \mathbb{D}^3

The scalar product of any unit hyper-dual vectors $\widetilde{\mathbb{A}} = \hat{A} + \varepsilon^* \hat{A}^*$ and $\widetilde{\mathbb{B}} = \hat{B} + \varepsilon^* \hat{B}^*$ is

$$\left\langle \widetilde{\mathbb{A}}, \widetilde{\mathbb{B}} \right\rangle_{HD} = \left\langle \hat{A}, \hat{B} \right\rangle_{D} + \varepsilon^{*} \left(\left\langle \hat{A}, \hat{B}^{*} \right\rangle_{D} + \left\langle \hat{A}^{*}, \hat{B} \right\rangle_{D} \right).$$
(3.39)

If \hat{d}_1 and \hat{d}_2 are the directed dual lines in \mathbb{D}^3 corresponding, respectively, to the unit hyper-dual vectors $\widetilde{\mathbb{A}}$ and $\widetilde{\mathbb{B}}$, then then, \hat{A} and \hat{A}^* represent, respectively, the direction vector and the position of \hat{d}_1 ; and \hat{B} , \hat{B}^* represent, respectively, the direction vector and the position of \hat{d}_2 in \mathbb{D}^3 . In Equation (3.39), $\langle \hat{A}, \hat{B} \rangle_D$ is equal to

$$\left\langle \hat{A},\hat{B}\right\rangle _{D}=\cos\varphi,$$
(3.40)

where φ is the dual angle between the unit dual vectors \hat{A} and \hat{B} . Let $\hat{M} \in \hat{d}_1$ and $\hat{N} \in \hat{d}_2$ be the two closest points on \hat{d}_1 and \hat{d}_2 . Then, using $\hat{M} \times_D \hat{A} = \hat{A}^*$ and $\hat{N} \times_D \hat{B} = \hat{B}^*$ in Equation (3.39), we get

$$\left\langle \hat{A}, \hat{B}^* \right\rangle_D + \left\langle \hat{A}^*, \hat{B} \right\rangle_D = \left\langle \hat{A}, \left(\hat{N} \times_D \hat{B} \right) \right\rangle_D + \left\langle \left(\hat{M} \times_D \hat{A} \right), \hat{B} \right\rangle_D$$

$$= - \left\langle \hat{N}, \left(\hat{A} \times_D \hat{B} \right) \right\rangle_D + \left\langle \hat{M}, \left(\hat{A} \times_D \hat{B} \right) \right\rangle_D$$

$$= \left\langle \left(\hat{M} - \hat{N} \right), \left(\hat{A} \times_D \hat{B} \right) \right\rangle_D.$$

$$(3.41)$$

Let φ^* be the distance between the points \hat{M} and \hat{N} , then we can write

$$\left|\hat{M} - \hat{N}\right|_{D} = \varphi^{*}.$$
(3.42)

It is obvious that φ^* is a dual number, because the modulus of \hat{M} and \hat{N} are dual numbers (see Equation (2.12)). Using $|\hat{M} - \hat{N}|_D = \varphi^*$ in Equation (3.41), we get

$$\left\langle \left(\hat{M} - \hat{N} \right), \left(\hat{A} \times_{D} \hat{B} \right) \right\rangle_{D} = \left\langle \left(\frac{\hat{M} - \hat{N}}{\left| \hat{M} - \hat{N} \right|_{D}} \varphi^{*} \right), \left(\hat{A} \times_{D} \hat{B} \right) \right\rangle_{D}$$
$$= \left\langle \left(\frac{\hat{A} \times_{D} \hat{B}}{\left| \hat{A} \times_{D} \hat{B} \right|_{D}} \varphi^{*} \right), \left(\hat{A} \times_{D} \hat{B} \right) \right\rangle_{D}$$
$$= \frac{\varphi^{*}}{\left| \hat{A} \times_{D} \hat{B} \right|_{D}} \left\langle \left(\hat{A} \times_{D} \hat{B} \right), \left(\hat{A} \times_{D} \hat{B} \right) \right\rangle_{D}$$
$$= \pm \varphi^{*} \left| \hat{A} \times_{D} \hat{B} \right|_{D}$$
$$= \pm \varphi^{*} \sin \varphi. \tag{3.43}$$

Inserting Equations (3.40) and (3.43) in Equation (3.39), we also get

$$\left\langle \widetilde{\mathbb{A}}, \widetilde{\mathbb{B}} \right\rangle_{HD} = \left\langle \hat{A}, \hat{B} \right\rangle_{D} + \varepsilon^{*} \left(\left\langle \hat{A}, \hat{B}^{*} \right\rangle_{D} + \left\langle \hat{A}^{*}, \hat{B} \right\rangle_{D} \right)$$

= $\cos \varphi - \varepsilon^{*} \varphi^{*} \sin \varphi.$ (3.44)

By using the Taylor series expansion given by Equation (3.6) in Equation (3.44), we obtain

$$\left\langle \widetilde{\mathbb{A}}, \widetilde{\mathbb{B}} \right\rangle_{HD} = \cos \varphi - \varepsilon^* \varphi^* \sin \varphi = \cos \tilde{\varphi}$$
 (3.45)

where $\tilde{\varphi} = \varphi + \varepsilon^* \varphi^*$ is a hyper dual angle, see Figure 4. Similarly, the modulus of the vector product of any unit hyper-dual vectors $\widetilde{\mathbb{A}} = \hat{A} + \varepsilon^* \hat{A}^*$ and $\widetilde{\mathbb{B}} = \hat{B} + \varepsilon^* \hat{B}^*$ can be given as

$$\left|\widetilde{\mathbb{A}} \times_{HD} \widetilde{\mathbb{B}}\right|_{HD} = \sin \varphi + \varepsilon^* \varphi^* \cos \varphi = \sin \tilde{\varphi}.$$
(3.46)

Proposition 1. If $\widetilde{\mathbb{A}}$ and $\widetilde{\mathbb{B}}$ are hyper-dual vectors, then

$$\widetilde{\mathbb{V}} = \frac{\widetilde{\mathbb{A}}}{\left|\widetilde{\mathbb{A}}\right|_{HD}} \text{ and } \widetilde{\mathbb{U}} = \frac{\widetilde{\mathbb{B}}}{\left|\widetilde{\mathbb{B}}\right|_{HD}}$$
(3.47)

are unit hyper-dual vectors. From the equations

$$\left\langle \widetilde{\mathbb{V}}, \widetilde{\mathbb{U}} \right\rangle_{HD} = \cos \widetilde{\varphi},$$
 (3.48)

$$\left|\widetilde{\mathbb{V}} \times_{HD} \widetilde{\mathbb{U}}\right|_{HD} = \sin \tilde{\varphi} \tag{3.49}$$

we can give

$$\left\langle \widetilde{\mathbb{A}}, \widetilde{\mathbb{B}} \right\rangle_{HD} = \left| \widetilde{\mathbb{A}} \right|_{HD} \left| \widetilde{\mathbb{B}} \right|_{HD} \cos \tilde{\varphi}, \tag{3.50}$$

$$\left|\widetilde{\mathbb{A}} \times_{HD} \widetilde{\mathbb{B}}\right|_{HD} = \left|\widetilde{\mathbb{A}}\right|_{HD} \left|\widetilde{\mathbb{B}}\right|_{HD} \sin \tilde{\varphi},\tag{3.51}$$

where $\tilde{\varphi}$ is a hyper-dual angle.

Let $\tilde{\varphi}$, φ and θ be, respectively, a hyper-dual angle, a dual angle and a real angle. Then, the following four cases can be given related to the hyper-dual angle $\tilde{\varphi}$ by using $\left\langle \widetilde{\mathbb{A}}, \widetilde{\mathbb{B}} \right\rangle_{HD} = \cos \tilde{\varphi} = \cos \varphi - \varepsilon^* \varphi^* \sin \varphi$, where $\cos \varphi = \cos \theta - \varepsilon \theta^* \sin \theta$ and $\sin \varphi = \sin \theta + \varepsilon \theta^* \cos \theta$:

1. If

$$\cos\varphi = 0 \text{ and } \varphi^* \neq 0, \tag{3.52}$$

then $\theta = \frac{\pi}{2}$ and $\theta^* = 0$. Hence, $\left\langle \widetilde{\mathbb{A}}, \widetilde{\mathbb{B}} \right\rangle_{HD} = -\varepsilon^* \varphi^*$. Thus, dual lines \hat{d}_1 and \hat{d}_2 are perpendicular but not intersecting.

2. If

$$\rho^* = 0, \tag{3.53}$$

then $\left\langle \widetilde{\mathbb{A}}, \widetilde{\mathbb{B}} \right\rangle_{HD} = \cos \varphi$. Thus, dual lines \hat{d}_1 and \hat{d}_2 are intersecting. 3. If

$$\left\langle \widetilde{\mathbb{A}}, \widetilde{\mathbb{B}} \right\rangle_{HD} = 0,$$
 (3.54)

then $\cos \varphi = 0$ and $\varphi^* = 0$. Hence, $\theta = \frac{\pi}{2}$ and $\theta^* = 0$. Thus, \hat{d}_1 and \hat{d}_2 are perpendicular and intersecting lines.

4. If

$$\left\langle \widetilde{\mathbb{A}}, \widetilde{\mathbb{B}} \right\rangle_{HD} = 1,$$
 (3.55)

then $\theta = 0$ and $\varepsilon^* \varepsilon \varphi^* \theta^* = 0$. Thus, the following two cases can be given: (*i*) If $\theta^* = 0$, then $\varphi = 0$. Hence, \hat{d}_1 and \hat{d}_2 are parallel lines.

(*ii*) If $\varphi^* = 0$, then $\tilde{\varphi} = \varphi = \varepsilon \theta^*$.

Example 3. (Application of hyper-dual angle) Let us take the unit hyper-dual vectors $\widetilde{\mathbb{A}} = (1, \varepsilon, \varepsilon) + \varepsilon^*(\varepsilon, \varepsilon, -1)$ and $\widetilde{\mathbb{B}} = (0, 1, \varepsilon) + \varepsilon^*(2\varepsilon, \varepsilon, -1)$ that can be written in the form $\widetilde{\mathbb{A}} = \hat{A} + \varepsilon^*\hat{A}^*$ and $\widetilde{\mathbb{B}} = \hat{B} + \varepsilon^*\hat{B}^*$ for $\hat{A} = (1, \varepsilon, \varepsilon)$, $\hat{A}^* = (\varepsilon, \varepsilon, -1)$, $\hat{B} = (0, 1, \varepsilon)$ and $\hat{B}^* = (2\varepsilon, \varepsilon, -1)$. Hyper-dual angle $\tilde{\varphi}$ between $\widetilde{\mathbb{A}}$ and $\widetilde{\mathbb{B}}$ will be obtained as

$$\left\langle \widetilde{\mathbb{A}}, \widetilde{\mathbb{B}} \right\rangle_{HD} = \left\langle \hat{A}, \hat{B} \right\rangle_{D} + \varepsilon^{*} \left(\left\langle \hat{A}, \hat{B}^{*} \right\rangle_{D} + \left\langle \hat{A}^{*}, \hat{B} \right\rangle_{D} \right)$$

$$= \cos \varphi - \varepsilon^{*} \varphi^{*} \sin \varphi$$

$$= \cos \left(\varphi + \varepsilon^{*} \varphi^{*} \right)$$

$$= \cos \tilde{\varphi}.$$

$$(3.56)$$

Here; $\left\langle \hat{A}, \hat{B} \right\rangle_D$ is equal to

$$\left\langle \hat{A}, \hat{B} \right\rangle_{D} = \left\langle (1, \varepsilon, \varepsilon), (0, 1, \varepsilon) \right\rangle_{D}$$

$$= \varepsilon$$
(3.57)

and from the Equation (2.15), the equality

$$\hat{\langle} \hat{A}, \hat{B} \rangle_{D} = \cos \varphi$$

$$= \cos \left(\theta + \varepsilon \theta^{*}\right)$$

$$= \cos \theta - \varepsilon \theta^{*} \sin \theta$$

$$(3.58)$$

S. Aslan

can be given. Since Equations (3.57) and (3.58) are equal, we get

$$\theta = \frac{\pi}{2}$$
 and $\theta^* = -1$ so $\varphi = \frac{\pi}{2} - \varepsilon$. (3.59)

We can obtain $\left\langle \hat{A}, \hat{B}^* \right\rangle_D + \left\langle \hat{A}^*, \hat{B} \right\rangle_D$ as

$$\left\langle \hat{A}, \hat{B}^* \right\rangle_D + \left\langle \hat{A}^*, \hat{B} \right\rangle_D = \left\langle (1, \varepsilon, \varepsilon), (2\varepsilon, \varepsilon, -1) \right\rangle_D + \left\langle (\varepsilon, \varepsilon, -1), (0, 1, \varepsilon) \right\rangle_D$$
$$= \varepsilon.$$
(3.60)

Using the Taylor series expansion given by Equation (2.7), we get

$$\sin \varphi = \sin \left(\theta + \varepsilon \theta^*\right)$$

= $\sin \theta + \varepsilon \theta^* \cos \theta.$ (3.61)

And using Equation (3.59) in Equation (3.61), we obtain

$$\sin \varphi = 1. \tag{3.62}$$

From the equality of the Equations (3.41) and (3.43), we can write

$$\left\langle \hat{A}, \hat{B}^* \right\rangle_D + \left\langle \hat{A}^*, \hat{B} \right\rangle_D = -\varphi^* \sin \varphi.$$
 (3.63)

Inserting Equations (3.60) and (3.62) in Equation (3.63), we obtain

$$\varepsilon = -\varphi^*. \tag{3.64}$$

Finally; from Equations (3.59) and (3.64), hyper-dual angle $\tilde{\varphi}$ is obtained as

$$\tilde{\varphi} = \left(\frac{\pi}{2} - \varepsilon\right) - \varepsilon^* \varepsilon. \tag{3.65}$$

4. Conclusions

In this paper, the basic and kinematic concepts of hyper-dual numbers are given by using properties of dual numbers. The concept "dual line" is defined to represent the geometric interpretation of unit hyper-dual vectors in \mathbb{D}^3 . Using these concepts, the geometric interpretations of E. Study mapping and hyper-dual angle are given. Furthermore; by taken $|\hat{A}^*|_D = 1$ in the unit hyper-dual vectors set $\tilde{\mathbb{S}} = \{\tilde{\mathbb{A}} = \hat{A} + \varepsilon^* \hat{A}^* : |\tilde{\mathbb{A}}|_{HD} = 1; \hat{A}, \hat{A}^* \in \mathbb{D}^3\}$, we have defined the subset $\tilde{\mathbb{S}}_1$. And it is shown that there exists a one to one correspondence between the points of the subset $\tilde{\mathbb{S}}_1$ and any two intersecting perpendicular directed lines in \mathbb{R}^3 .

References

- [1] Agrawal, O. P.: Hamilton operators and dual-number-quaternions in spatial kinematics. J. Mech. Mach. Theory. 22(6), 569-575 (1987).
- [2] Clifford, W. K.: Preliminary sketch of biquaternions. Proc London Mathematical Society. 4(64), 381-395 (1873).
- [3] Cohen, A., Shoham, M.: Application of hyper-dual numbers to multi-body kinematics. J. Mech. Rob. 8, (2015). doi: 10.1115/1.4030588.
- [4] Cohen, A., Shoham, M.: Application of hyper-dual numbers to rigid bodies equations of motion. J. Mech. Mach. Theory. 111, 76-84 (2017).

[5] Cohen, A., Shoham, M.: Principle of transference-An extension to hyper-dual numbers. J. Mech. Mach. Theory. 125, 101-110 (2018).

- [6] Fike, J. A.: Numerically exact derivative calculations using hyper-dual numbers, 3rd Annual Student Joint Workshop in Simulation-Based Engineering and Design, (2009).
- [7] Fike, J. A., Alonso, J. J.: The development of hyper-dual numbers for exact second-derivative calculations. 49th AIAA Aerodpace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 4-7 (2011).
- [8] Fike, J. A., Alonso, J. J.: Automatic differentiation through the use of hyper-dual numbers for second derivatives. in: Lecture Notes in Computational Science and Engineering. 87(201), 163-173 (2011).
- [9] Fike, J. A., Jongsma, S., Alonso, J. J., van der Weida, E.: Optimization with gradient and hessian information calculated using hyper-dual numbers. 29 AIAA Applied Aerodynamics Conference. (2011).

- [10] Kotelnikov, A. P.: Screw calculus and some applications to geometry and mechanics. Annal Imp. Univ. Kazan, Russia, (1895).
- [11] Study, E.: Geometry der Dynamen. Leipzig. (1901).
- [12] Veldkamp, G. R.: On the use of dual numbers, vectors and matrices in instantaneous, spatial kinematics. J. Mech. Mach. Theory. 11(2), 141-156 (1976).
- [13] Yuca, G., Yaylı, Y.: Dual Transformation Between $S\hat{O}(3)$ and $S\hat{O}(2,1)$ and Its Geometric Applications. Proc. Natl. Acad. Sci. India, Sect. A Phys. Sci. 88, 267–273 (2018).
- [14] Yuca, G., Yaylı, Y.: Dual Transformations and Instantaneous Screw Axes. International Journal of Mathematics Trends and Technology. 15 (2), (2014).

Affiliations

SELAHATTIN ASLAN **ADDRESS:** Ankara University, Department of Mathematics, 06100, Ankara-Turkey. **E-MAIL:** selahattinnaslan@gmail.com **ORCID ID:** 0000-0001-5322-3265