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Abstract

In this paper, we study the forced oscillatory theory for higher order fractional differential
equations with damping term via Ψ-Hilfer fractional derivative. We get sufficient condi-
tions which ensure the oscillation of all solutions and give an illustrative example for our
results. The Ψ-Hilfer fractional derivative according to the choice of the Ψ function is a
generalization of the different fractional derivatives defined earlier. The results obtained in
this paper are a generalization of the known results in the literature, and present new results
for some fractional derivatives.

1. Introduction

Arbitrary order differential and integration notions are notions that combine and generalize integer order derivatives and n-fold
integrals. Fractional differential theory is a very good tool that can be used to describe the inherited properties of various items
and operations. This is an important advantage for fractional derivatives compared to integer order derivatives. This advantage
of fractional derivatives is used in mathematical modeling of the mechanical and electrical properties of objects, in many other
fields such as fluid theory, electrical circuits, electro-analytical chemistry [1]-[6]. Many definitions of fractional derivatives and
integrals have been made, for more details, we recommend the monographs [7]-[10]. In recent years, the behavior of solutions
of fractional differential equations has been an attractive area for researchers. Especially, the oscillation behavior of solutions
has been studied by many researchers [11]-[19]. We also refer the reader to the papers [20], [21] for the oscillation of dynamic
equations on time scales and to the papers [22], [23] for the oscillation of functional differential equations.
In [14] the authors considered the oscillatory criteria of nonlinear fractional differential equations by taking fractional initial
value problem

Dµ
a x(t)+ f1(t,x) = v(t)+ f2(t,x), t > a, 0 < µ ≤ 1

lim
t→a+

J1−µ
a x(t) = b,

where Dµ
a shows µ order Riemann-Liouville fractional derivative, J1−µ

a is 1−µ order Riemann-Liouville fractional integral.
Recently, in [24] Vivek et al. studied the oscillatory theory for Ψ-Hilfer fractional type fractional differential equations

HDµ,ν ;Ψ
a+ x(t)+ f1(t,x) = ω(t)+ f2(t,x), 0 < µ < 1, 0≤ ν ≤ 1

I1−η ;Ψ
a+ x(t) = b1

where HDµ,ν ;Ψ
a+ denotes Ψ-Hilfer fractional derivative and I1−η ;Ψ

a+ is the Ψ-Riemann-Liouville fractional integral with η =
µ +ν(1−µ).
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In [18] the authors examined oscillation of the solutions of forced fractional differential equations with damping term via the
Riemann-Liouville fractional derivative(

D1+µ

0+ y
)
(t)+ p(t)

(
Dµ

0+y
)
(t)+q(t) f (y(t)) = g(t), t > 0(

I1−µ

0+ y
)
(0+) = b,

where µ ∈ (0,1).
In this paper, inspired by the above articles, we studied the oscillation properties of forced fractional differential equations with
damping term

D
(

HDµ,ν ;Ψ
a+ y(x)

)
+ p(x)HDµ,ν ;Ψ

a+ y(x)+q(x) f (y(x)) = g(x), x > 0 (1.1)(
1

Ψ′(x)
d
dx

)m−i

I1−η ;Ψ
a+ y(x)|a = yi, i = 1,2, . . . ,m

where m− 1 < µ < m, 0 ≤ ν ≤ 1 is a constant and η = µ +ν(m− µ), HDµ,ν ;Ψ
a+ y(x) is the Ψ-Hilfer fractional differential

operator of order µ type ν of y(x). Throughout this paper, we assume that
(A) p(x) ∈C(R+,R), q(x) ∈C(R+,R+), f (x) ∈C(R,R) and f (y)/y > 0 for all y 6= 0, g(x) ∈C(R+,R).

Definition 1.1 ([25]). A solution y(x) of problem (1.1) is said to be oscillatory if it has arbitrarily large zeros for x≥ x0 there
exists a sequence of zeros {xn} of y such that limn→∞ xn = ∞. Otherwise, y is said to be non-oscillatory.

2. Preliminaries

In this section, we mention some basic definitions and theorems which will be used in the study.

Definition 2.1 ([8]). Let f be a function defined on [a,b], (−∞< a< b<∞). µ-th left-sided and right-sided Riemann-Liouville
fractional integrals of f are given by

Iµ

a+ f (x) :=
1

Γ(µ)

∫ x

a
(x− t)µ−1 f (t)dt, x > a, µ > 0

and

Iµ

b− f (x) :=
1

Γ(µ)

∫ b

x
(t− x)µ−1 f (t)dt, x < b, µ > 0

respectively.

Definition 2.2 ([8]). Assume dµe= m, m ∈ N0 and f (x) ∈Cm(a,b). Left-sided and right-sided Riemann-Liouville fractional
derivatives of f of order µ , are defined respectively by

Dµ

a+ f (x) =

(
d
dx

)m

Im−µ

a+ f (x)

=
1

Γ(m−µ)

(
d
dx

)m ∫ x

a
(x− t)m−µ−1 f (t)dt

and

Dµ

b− f (x) = (−1)m
(

d
dx

)m

Im−µ

b− f (x)

=
(−1)m

Γ(m−µ)

(
d
dx

)m ∫ b

x
(t− x)m−µ−1 f (t)dt.

In [26], Hilfer generalized the Riemann-Liouville fractional derivative operator by introducing a right-sided fractional derivative
operator.

Definition 2.3. Let dµe=m, m∈N0, ν ∈ [0,1] and f (x)∈Cn(a,b). The left-sided and right sided Hilfer fractional derivatives
of f of order µ and type ν are given by

Dµ,ν
a+ f (x) = Iη−µ

a+

(
d
dx

)m

I(1−ν)(m−µ)
a+ f (x)
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and

Dµ,ν
b− f (x) = Iη−µ

b−

(
− d

dx

)m

I(1−ν)(m−µ)
b− f (x)

where η = µ +ν(m−µ).

Due to a large number of definitions, the next definition is a significant approach because of the kernel has an arbitrary function
Ψ.

Definition 2.4 ([8]). Let f be a function defined on (a,b), (−∞≤ a < b≤ ∞) and µ > 0 and also assume Ψ(x) is a positive
monotone and increasing function on (a,b], Ψ′(x) is continuous on (a,b). The left and right-sided fractional integrals of f
with respect to Ψ of order µ are given by

Iµ;Ψ
a+ f (x) =

1
Γ(µ)

∫ x

a
(Ψ(x)−Ψ(t))µ−1 f (t)Ψ′(t)dt

and

Iµ;Ψ
b− f (x) =

1
Γ(µ)

∫ b

x
(Ψ(t)−Ψ(x))µ−1 f (t)Ψ′(t)dt.

Lemma 2.5 ([8]). Assume µ > 0 and ν > 0. Then,

Iµ;Ψ
a+ Iν ;Ψ

a+ f (x) = Iµ+ν ;Ψ
a+ f (x)

and

Iµ;Ψ
b− Iν ;Ψ

b− f (x) = Iµ+ν ;Ψ
b− f (x)

semigroup property hold.

Definition 2.6 ([8]). Assume f is a function defined on [a,b], Ψ(x) 6= 0 and dµe = m, m ∈ N. The right and left-sided
Riemann-Liouville derivatives of f with respect to another function Ψ of order µ are given respectivly by

Dµ;Ψ
a+ f (x) =

(
1

Ψ′(x)
d
dx

)m

Im−µ;Ψ
a+ f (x)

=
1

Γ(m−µ)

(
1

Ψ′(x)
d
dx

)m ∫ x

a
(Ψ(x)−Ψ(t))m−µ−1

Ψ
′(t) f (t)dt

and

Dµ;Ψ
b− f (x) =

(
− 1

Ψ′(x)
d
dx

)m

Im−µ;Ψ
b− f (x)

=
1

Γ(m−µ)

(
− 1

Ψ′(x)
d
dx

)m ∫ b

x
(Ψ(t)−Ψ(x))m−µ−1

Ψ
′(t) f (t)dt.

In [27], Sousa and Oliveria presented a new fractional derivative which unifies Hilfer fractional derivative and Riemann-Lioville
derivative with respect to another function.

Definition 2.7. Assume dµe = m, m ∈ N and ν ∈ [0,1]. Also let f ∈ Cn([a,b],R), −∞ ≤ a < b ≤ ∞, Ψ be an increasing
function on [a,b] and Ψ′(x) 6= 0, for all x ∈ [a,b]. The right and left-sided Ψ−Hilfer fractional derivatives of f of order µ and
type ν , are given by

HDµ,ν ;Ψ
a+ f (x) = Iν(m−µ);Ψ

a+

(
1

Ψ′(x)
d
dx

)m

I(1−ν)(m−µ);Ψ
a+ f (x)

and

HDµ,ν ;Ψ
b− f (x) = Iν(m−µ);Ψ

b−

(
− 1

Ψ′(x)
d
dx

)m

I(1−ν)(m−µ);Ψ
b− f (x).

Remark 2.8 ([27]). The Ψ-Hilfer fractional derivative can be given as following for η = µ +ν(m−µ)

HDµ,ν ;Ψ
a+ f (x) = Iη−µ;Ψ

a+ Dη ;Ψ
a+ f (x)

and

HDµ,ν ;Ψ
b− f (x) = Iη−µ;Ψ

b− (−1)mDη ;Ψ
b− f (x).
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Theorem 2.9 ([27]). Let f ∈Cm[a,b], dµe= m and ν ∈ [0,1]. Then

Iµ;Ψ
a+

HDµ,ν ;Ψ
a+ f (x) = f (x)−

m

∑
i=1

(Ψ(x)−Ψ(a))η−i

Γ(η− i+1)

(
1

Ψ′(x)
d
dx

)m−i

I(1−ν)(m−µ);Ψ
a+ f (a) (2.1)

and

Iµ;Ψ
b−

HDµ,ν ;Ψ
b− f (x) = f (x)−

m

∑
i=1

(−1)i (Ψ(b)−Ψ(x))η−i

Γ(η− i+1)

(
1

Ψ′(x)
d
dx

)m−i

I(1−ν)(m−µ);Ψ
b− f (b).

3. Main results

Theorem 3.1. Assume (A) and the following conditions meet

liminf
x→+∞

(Ψ(x))1−η Iµ;Ψ
T+

(
M

V (x)
+

1
V (x)

∫ x

x0

g(t)V (t)dt
)
=−∞, (3.1)

limsup
x→+∞

(Ψ(x))1−η Iµ;Ψ
T+

(
M

V (x)
+

1
V (x)

∫ x

x0

g(t)V (t)dt
)
= ∞, (3.2)

where M ∈ R is a constant and V (t) = exp
∫ t

x0
p(ξ )dξ . Then each solution of (1.1) oscillates for every sufficiently large T .

Proof. To obtain contradiction, assume that y(x) is a non-oscillatory solution of (1.1). We can suppose that there exist T > 0,
x0 > x without losing any generality, such that y(x)> 0 for all x≥ x0. According to (1.1) and (A),[

HDµ,ν ;Ψ
a+ y(x) V (x)

]′
= D

[
HDµ,ν ;Ψ

a+ y(x)
]

V (x)+H Dµ,ν ;Ψ
a+ y(x) p(x)V (x)

= −q(x) f (y(x))V (x)+g(x)V (x)

< g(x)V (x).

Integrating the inequality from x0 to x, we get

HDµ,ν ;Ψ
a+ y(x) V (x)< HDµ,ν ;Ψ

a+ y(x0) V (x0)+
∫ x

x0

g(t)V (t)dt = M+
∫ x

x0

g(t)V (t)dt,

where M = HDµ,ν ;Ψ
a+ y(x0) V (x0). From (2.1) we can obtain

y(x)<
m

∑
i=1

(Ψ(x)−Ψ(a))η−i

Γ(η− i+1)
yi + Iµ;Ψ

a+

(
M

V (x)
+

1
V (x)

∫ x

x0

g(t)V (t)dt
)
. (3.3)

Multiplying the both sides of inequality (3.3) with (Ψ(x))1−η we obtain

(Ψ(x))1−η y(x) ≤ (Ψ(x))1−η
m

∑
i=1

(Ψ(x)−Ψ(a))η−i

Γ(η− i+1)
yi

+(Ψ(x))1−η Iµ;Ψ
a+

(
M

V (x)
+

1
V (x)

∫ x

x0

g(t)V (t)dt
)

≤ (Ψ(x))1−η
m

∑
i=1

(Ψ(x)−Ψ(a))η−i

Γ(η− i+1)
yi

+(Ψ(x))1−η 1
Γ(µ)

∫ T

a
(Ψ(x)−Ψ(τ))µ−1

Ψ
′(τ)

(
M

V (τ)
+

1
V (τ)

∫
τ

x0

g(t)V (t)dt
)

dτ

+(Ψ(x))1−η Iµ;Ψ
T+

(
M

V (x)
+

1
V (x)

∫ x

x0

g(t)V (t)dt
)
, x≥ T.

Define

Φ(x) = (Ψ(x))1−η
m

∑
i=1

(Ψ(x)−Ψ(a))η−i

Γ(η− i+1)
yi



138 Fundamental Journal of Mathematics and Applications

and

Ψ(x,T ) = (Ψ(x))1−η 1
Γ(µ)

∫ T

a
(Ψ(x)−Ψ(τ))µ−1

Ψ
′(τ)

(
M

V (τ)
+

1
V (τ)

∫
τ

x0

g(t)V (t)dt
)

dτ.

Then we get,

0 < (Ψ(x))1−η y(x)≤Φ(x)+Ψ(x,T )+(Ψ(x))1−η Iµ;Ψ
T+

(
M

V (x)
+

1
V (x)

∫ x

x0

g(t)V (t)dt
)
, x≥ T. (3.4)

We take two cases as follows.

Case(1): Assume 0 < µ ≤ 1 and so on 0 < η ≤ 1. Then m = 1 and |Φ(x)|=
∣∣∣y1 (Ψ(x))1−η (Ψ(x)−Ψ(a))η−1

Γ(η)

∣∣∣. For x > T1 > T , we
get

|Φ(x)|=

∣∣∣∣∣y1
1

Γ(η)

(
Ψ(x)−Ψ(a)

Ψ(x)

)η−1
∣∣∣∣∣≤ |y1|

Γ(η)

(
Ψ(T1)−Ψ(a)

Ψ(T1)

)η−1

:= c1(T1).

Furthermore we have

|Ψ(x,T )| =

∣∣∣∣(Ψ(x))1−η 1
Γ(µ)

∫ T

a
(Ψ(x)−Ψ(τ))µ−1

Ψ
′(τ)

(
M

V (τ)
+

1
V (τ)

∫
τ

x0

g(t)V (t)dt
)

dτ

∣∣∣∣
≤ 1

Γ(µ)

∫ T

a

∣∣∣∣∣ (Ψ(x)−Ψ(τ))µ−1

(Ψ(x))η−1 Ψ
′(τ)

(
M

V (τ)
+

1
V (τ)

∫
τ

x0

g(t)V (t)dt
)∣∣∣∣∣dτ

≤ 1
Γ(µ)

∫ T

a

(
Ψ(x)−Ψ(τ)

(Ψ(x))1−ν

)µ−1

Ψ
′(τ)

∣∣∣∣ M
V (τ)

+
1

V (τ)

∫
τ

x0

g(t)V (t)dt
∣∣∣∣dτ

≤ 1
Γ(µ)

∫ T

a

(
Ψ(T1)−Ψ(τ)

(Ψ(T1))
1−ν

)µ−1

Ψ
′(τ)

∣∣∣∣ M
V (τ)

+
1

V (τ)

∫
τ

x0

g(t)V (t)dt
∣∣∣∣dτ

:= c2(T,T1).

Using inequality (3.4), we obtain

0 < (Ψ(x))1−η y(x)≤ c1(T1)+ c2(T,T1)+(Ψ(x))1−η Iµ;Ψ
T+

(
M

V (x)
+

1
V (x)

∫ x

x0

g(t)V (t)dt
)
,

and then

(Ψ(x))1−η Iµ;Ψ
T+

(
M

V (x)
+

1
V (x)

∫ x

x0

g(t)V (t)dt
)
≥− [c1(T1)+ c2(T,T1)] . (3.5)

Taking limit of (3.5) as x→ ∞ we get

liminf
x→∞

(Ψ(x))1−η Iµ;Ψ
T+

(
M

V (x)
+

1
V (x)

∫ x

x0

g(t)V (t)dt
)
≥− [c1(T1)+ c2(T,T1)]>−∞

which contradicts the condition (3.1).
Case(2): Assume µ > 1. Then m≥ 2 and m−1≤ η ≤ m. For x≥ T2 we get

|Φ(x)| =

∣∣∣∣∣(Ψ(x))1−η
m

∑
i=1

(Ψ(x)−Ψ(a))η−i

Γ(η− i+1)
yi

∣∣∣∣∣
≤

(
Ψ(x)−Ψ(a)

Ψ(x)

)η−1 m

∑
i=1

(Ψ(x)−Ψ(a))1−i

Γ(η− i+1)
|yi|

≤
m

∑
i=1

(Ψ(x)−Ψ(a))1−i

Γ(η− i+1)
|yi|

≤
m

∑
i=1

(Ψ(T2)−Ψ(a))1−i

Γ(η− i+1)
|yi| := c3(T2).
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Since η = µ +ν(m−µ)≥ µ , (Ψ(x)−Ψ(a))µ−1

(Ψ(x))η−1 ≤ 1 for m−1 < µ < m. Then we have

|Ψ(x,T )| =

∣∣∣∣(Ψ(x))1−η 1
Γ(µ)

∫ T

a
(Ψ(x)−Ψ(τ))µ−1

Ψ
′(τ)

(
M

V (τ)
+

1
V (τ)

∫
τ

x0

g(t)V (t)dt
)

dτ

∣∣∣∣
≤ 1

Γ(µ)

∫ T

a

(Ψ(x)−Ψ(τ))µ−1

(Ψ(x))η−1 Ψ
′(τ)

∣∣∣∣ M
V (τ)

+
1

V (τ)

∫
τ

x0

g(t)V (t)dt
∣∣∣∣dτ

≤ 1
Γ(µ)

∫ T

a
Ψ
′(τ)

∣∣∣∣ M
V (τ)

+
1

V (τ)

∫
τ

x0

g(t)V (t)dt
∣∣∣∣dτ

:= c4(T ).

Using inequality (3.4), we conclude that

(Ψ(x))1−η Iµ;Ψ
T+

(
M

V (x)
+

1
V (x)

∫ x

x0

g(t)V (t)dt
)
≥− [c3(T2)+ c4(T )] , (3.6)

hence taking limit of (3.6) as x→ ∞ we obtain

liminf
x→∞

(Ψ(x))1−η Iµ;Ψ
T+

(
M

V (x)
+

1
V (x)

∫ x

x0

g(t)V (t)dt
)
≥− [c3(T2)+ c4(T )]>−∞,

which contradicts (3.1).

Consequently, we conclude that y(x) is an oscillatory solution of (1.1). If y(x) is eventually negative, a contradiction can be
obtained with (3.2) similarly.

Choosing a special Ψ function and specific µ and ν real numbers, the Ψ-Hilfer fractional derivative turn into 22 different
fractional derivative which is defined before. Sousa and Oliveira remarked on all of these 22 different situations in [27].

Remark 3.2. If we take limit ν → 0 and Ψ(x) = xρ , then we have the following fractional derivative

HDµ,ν ;Ψ
a+ y(x) =H Dµ,0;xρ

a+ y(x) =
(

1
xρ−1

d
dx

)m

Im−µ;xρ

a+ y(x)

which is defined by Katugampola in [28].

Remark 3.3. If we take limit ν → 1 and Ψ(x) = xρ , then we have Caputo type Katugampola fractional derivative which is
defined in [29] as follows

HDµ,1;xρ

a+ y(x) = I(m−µ);xρ

a+

(
1

xρ−1
d
dx

)m

y(x).

Remark 3.4. If we take limit ν → 0 and Ψ(x) = lnx, then we have Hadamard fractional derivative

HDµ,0;lnx
a+ y(x) =

(
x

d
dx

)m

Im−µ;lnx
a+ y(x).

Example 3.5. Consider the initial value problem

D
(

HD
3
2 ,0;lnx
a+ y(x)

)
− 1

x
HD

3
2 ,0;lnx
a+ y(x)+ ex2

y3ey = xsin(lnx) (3.7)

I
3
2 ;lnx

a+ y(t) = b.

Here µ = 3/2, ν = 0, Ψ = lnx, p(x) = −1/x, q(x) = ex2
, f (y) = y3ey, g(x) = xsin(lnx) and V (x) = exp

∫ x
x0

p(t)dt = x0/x.
Then ∫ x

x0

g(t)V (t)dt =
∫ x

x0

t sin(ln t)
x0

t
dt

= x0

∫ lnx

lnx0

eξ sinξ dξ

=
x0

2
[x(sin(lnx)− cos(lnx))+ x0 (cos(lnx0)− sin(lnx0))]

=
x0

2

[
2x√

2
sin
(

lnx− π

4

)
+ x0 (cos(lnx0)− sin(lnx0))

]
.
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Set x0 = 1. Then, we can obtain

I
3
2 ;lnx

a+

(
M

V (x)
+

1
V (x)

∫ x

x0

g(t)V (t)dt
)

=
1

Γ(3/2)

∫ x

a
(lnx− ln t)1/2

(
M

V (t)
+

1
V (t)

[
t√
2

sin
(

ln t− π

4

)
+

1
2

])
dt
t

=
2√
π

∫ x

a
(lnx− ln t)1/2

((
M+

1
2

)
t +

t2
√

2
sin
(

ln t− π

4

)) dt
t
.

Set lnx− ln t = ξ 2. Then the above integral can be written as the form:

2√
π

∫ x

a
(lnx− ln t)1/2

((
M+

1
2

)
t +

t2
√

2
sin
(

ln t− π

4

)) dt
t

=
2√
π

∫ 0
√

ln x
a

ξ

((
M+

1
2

)
xe−ξ 2

+
x2e−2ξ 2

√
2

sin
(

lnx−ξ
2− π

4

))
(−2ξ )dξ

=
2(2M+1)x√

π

∫ √ln x
a

0
ξ

2e−ξ 2
dξ +

2
√

2x2
√

π

∫ √ln x
a

0
ξ

2e−2ξ 2
sin
(

lnx−ξ
2− π

4

)
dξ

=
2(2M+1)x√

π

∫ √ln x
a

0
ξ

2e−ξ 2
dξ +

2
√

2x2
√

π
sin
(

lnx− π

4

)∫ √ln x
a

0
ξ

2e−2ξ 2
cos(ξ 2)dξ

−2
√

2x2
√

π
cos
(

lnx− π

4

)∫ √ln x
a

0
ξ

2e−2ξ 2
sin(ξ 2)dξ .

Letting x→+∞, because of |ξ 2e−2ξ 2
cos(ξ 2)| ≤ ξ 2e−2ξ 2

, |ξ 2e−2ξ 2
sin(ξ 2)| ≤ ξ 2e−2ξ 2

and

lim
x→+∞

∫ √ln x
a

0
ξ

2e−2ξ 2
dξ = lim

x→∞

[
−ξ e−2ξ 2

4

∣∣∣√ln x
a

0
+

1
4

∫ √ln x
a

0
e−2ξ 2

dξ

]
= 0+

1
4

√
2π

4
=

√
2π

16
,

we know that limx→+∞

∫√ln x
a

0 ξ 2e−2ξ 2
cos(ξ 2)dξ and limx→+∞

∫√ln x
a

0 ξ 2e−2ξ 2
sin(ξ 2)dξ are convergent. Thus, we can set

lim
x→+∞

∫ √ln x
a

0
ξ

2e−2ξ 2
cos(ξ 2)dξ = K and lim

x→+∞

∫ √ln x
a

0
ξ

2e−2ξ 2
sin(ξ 2)dξ = L.

Selecting sequence {xk}= {e
5π
2 + π

4 +2kπ−arctan −L
K }, limk→∞ xk = ∞, then we calculate

lim
k→∞

{
(lnxk)

−1/2 xk

[
2M+1√

π

∫ √ln xk
a

0
ξ

2e−ξ 2
dξ +

√
2xk√
π

(
sin
(

lnxk−
π

4

)∫ √ln xk
a

0
ξ

2e−2ξ 2
cos(ξ 2)dξ

− cos
(

lnxk−
π

4

)∫ √ln xk
a

0
ξ

2e−2ξ 2
sin(ξ 2)dξ

)]}
.

Firstly, let compute the following limit.

lim
k→∞

(
sin
(

lnxk−
π

4

)∫ √ln xk
a

0
ξ

2e−2ξ 2
cos(ξ 2)dξ − cos

(
lnxk−

π

4

)∫ √ln xk
a

0
ξ

2e−2ξ 2
sin(ξ 2)dξ

)

= K · lim
k→∞

sin
(

5π

2
+2kπ− arctan

−L
K

)
−L · lim

k→∞
cos
(

5π

2
+2kπ− arctan

−L
K

)
= K sin

(
5π

2
− arctan

−L
K

)
−Lcos

(
5π

2
− arctan

−L
K

)
=
√

K2 +L2.

Hence, we have

lim
k→∞

{
(lnxk)

−1/2 xk

[
2M+1√

π

∫ √ln xk
a

0
ξ

2e−ξ 2
dξ +

√
2xk√
π

(
sin
(

lnxk−
π

4

)∫ √ln xk
a

0
ξ

2e−2ξ 2
cos(ξ 2)dξ

−cos
(

lnxk−
π

4

)∫ √ln xk
a

0
ξ

2e−2ξ 2
sin(ξ 2)dξ

)]}

= (+∞)

[
2M+1√

π

√
π

4
+(+∞)

√
K2 +L2

]
= ∞.
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Then we obtain

limsup
x→+∞

(Ψ(x))1−η Iµ;Ψ
T+

(
M

V (x)
+

1
V (x)

∫ x

x0

g(t)V (t)dt
)
= ∞.

Similarly, selecting the sequence xl = {e
3π
2 + π

4 +2lπ−arctan −L
K }, we can obtain

liminf
x→+∞

(Ψ(x))1−η Iµ;Ψ
T+

(
M

V (x)
+

1
V (x)

∫ x

x0

g(t)V (t)dt
)
=−∞.

Therefore, all solutions of (3.7) are oscillatory by Theorem 3.1.
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