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Botella and Peyret 1998, Bruneau and Saad 2006, Erturk 
et al. 2005). Recently, (Erturk 2018) solved the 2-D steady 
incompressible annular cavity flow using an efficient 
numerical method which can obtain solutions at high 
Reynolds numbers and compared the results with those in 
the previous study. (Hriberšek and Škerget 2005) presented 
new advances in the boundary domain integral method 
(BDIM) for computation of viscous fluid flows, governed 
by the Navier–Stokes equations. They tested the accuracy of 
the new numerical algorithm for several problems, including 
the standard driven cavity with up to Re = 10000, driven an 
L shaped cavity with up to Re = 7500 and flow in a Z shaped 
channel with up to Re = 400.

Studies examining the qualitative properties of the 
streamline are related to vortex formation, flow bifurcation 
and local analysis of streamline. For example, (Bakker 
1991) used a Taylor series expansion of the velocity vector 
field to investigate flow topology and structural stability 
of flow patterns near a critical point on a stationary wall. 
(Brøns and Hartnack 1999) revealed flow structure near a 

1. Introduction
Cavity type problems are such evergreen research topic 
which has been studied for many years in different fields 
of mathematics and engineering including aerodynamic 
applications (Olsman and Colonius 2011, Yang et al. 2014), 
coating flow (Gaskell et al. 1995, Hellebrand 2006), heat 
transfer (Mahmoodi 2011, Oztop and Dagtekin 2004), 
biological process (Sheu and Chiang 2014). Lid-driven 
cavity flow problems are the most common of these topics. 
Studies on the cavity flow can be categorized into two main 
issues: computational fluid dynamics (CFD) and qualitative 
properties of streamlines.

In computational view, there are many studies in the 
literature on testing new algorithms and numerical methods 
developed for non-zero Reynolds flow (An et al. 2019, 
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transformation of structure at the critical point. Recently, 
(Deliceoğlu and Çelik 2019) studied the viscous flow in 
the T-shaped domain where the upper lid governs the flow. 
They construct the ( ,h h1 2 ) control space diagram to show 
new vortex formation scenarios. 

In this study, unlike the above geometries, the flow topology 
in the Z-shaped region with a single lid is examined. To do 
this, boundary value problem is formed and Stokes equation 
governing the flow is solved analytically. Flow patterns in 
the region are obtained by changing the parameters of lower 
cavity height h1  and upper cavity height h2 , and the effect 
of separating lines near the corner points on the formation 
of new vortex is investigated.

2. Material and Methods
A two-dimensional Z-shaped cavity with boundary 
condition is shown in Figure 1. The cavity is filled with an 
incompressible fluid, and it is assumed that the width of 
the cavity is fixed and all walls, except the upper lid with 
horizontal motion, are stationary. The flow is driven by the 
motion of the upper lid with constant speed u = 1. Under 
the Stokes approximation, the equations of motion reduce 
to the biharmonic equation for the stream function
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The velocity components are obtained by derivatives of 
stream function }
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The no-slip boundary conditions for the upper lid and seven 
fixed walls can be written by using the relations (2) in terms 
of derivatives of the stream function as follow:

simple degenerate critical points away from boundaries by 
using normal form transformations which are a tool for 
eliminating the higher-order terms in the stream functions. 
(Hartnack 1999) also used the same method for critical 
points which is closed to a fixed wall. Recently, (Deliceoğlu 
et al. 2019) made a local analysis of the vector field by 
simplified the streamlines of the Hamiltonian system using 
the homotopy invariance of the index theory. Then, as a 
theoretical framework, they considered an L‐shaped cavity 
with lids moving in the same directions to determine the 
sequence of flow structures by which eddies are generated.

As a closed flow domain, a rectangular cavity is the most 
probably preferred due to the simplicity of the application 
of the boundary conditions. Some of the significant studies 
included the rectangular cavity is (Gürcan 2003,Gürcan et 
al. 2003, Gürcan et al. 2006, Shankar 1993). In addition to 
the rectangular, flow structures and bifurcations in different 
types of shapes, such as annular, L-shaped, T-shaped, have 
been of interest. (Gaskell et al. 1997) formulated a boundary 
value problem which is solved for the stream function }
for a half-filled annulus. They showed that the flow domain 
consists of two (one) large eddies (eddy), each having a 
stagnation point on the centerline for both counter-rotating  
S 01  and co-rotating S 02  cases. As A  and S  are 
varied, there is a change in the flow structure of the stationary 
point such that it turns into a saddle from a center or vice 
versa. (Gürcan et al. 2016) analyzed the Stokes flow within 
the annular region formed by a pair of stationary side walls 
surrounded by straight lids moving in the opposite direction. 
They identified that after various flow transformations in 
the area, the new eddy appeared and was fully developed for 
[ , )S 1 0! -  and [ . , . )A 1 6 6 5! .

(Deliceoğlu and Aydin 2013) investigated flow 
transformation and eddy genesis in a steady, viscous 
L-shaped cavity with the lids moving in opposite directions 
by  Galerkin finite element method with a stabilization 
technique. They focused on the flow transformation as well 
as the effect of the corner point on the vortex formation 
and observed an unprecedented separation bubble around 
the re-entrant corner point. Also, by taking Re = 500, they 
found that the Reynolds number accelerated the formation 
of new vortices in the upper part of the cavity. In the 
following, (Deliceoğlu and Aydin 2014) presented flow 
patterns formed by varying cavity heights in the L-shaped 
region with a moving single lid. For . h1 4 011 1-  and 
. .h0 1 3 221 1 , they obtained the ( ,h h1 2 ) parameter space 

which is formed by the bifurcation curves expressing the Figure 1. Boundary conditions for a lid-driven Z-shaped 
cavity. 
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The boundary value problem formed for the cavity can be 
solved analytically or numerically. In this paper, we solve the 
biharmonic equation using Papkovich-Fadle eigenfunctions, 
which arise from the separation of variables. The region is 
divided into simple sub-regions and the stream function is 
defined for each sub-region in terms of these eigenfunctions 
which satisfy all the sidewall conditions. By applying these 
boundary conditions to the eigenfunctions, a linear equation 
system consisting of unknown coefficients is obtained.

The stream function for the first region can be written as:
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where the functions, 
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are the symmetric and anti-symmetric eigenfunctions, 
respectively (Fadle 1940, Papkovich 1970). The sidewall 
boundary conditions (3) are used to obtain the eigenvalues 
s ,na  and s ,s n  which satisfy the following equations:

( ) , ( ) .sin sin2 2 2 2, , , ,a n a n s n s nm m m m= - = -   (9) 

The eigenvalues are determined by the Newton iteration 
procedure described by (Robbins and Smith 1948). Similarly, 
the stream function can be derived for the other sub-regions. 
Finally, stream function ( , )x y}  for the domain is given by 

( , ) ( , ) ( , ) ( , ) ( , ) .x y x y x y x y x y1 2 3 4} } } } }= + + +   (10) 

This solution procedure was used by (Driesen et al. 1998, 
Trogdon and Joseph 1982).

3. Results
In this section, the vortex formation mechanism in 
the Z-shaped cavity with upper-lid moving horizontal 
directions will be examined. In the next part of the article, 
for the sake of convenience it is assume that h h2 1 1=u  and 

h h2 2 2=u  . A lower part of cavity height h1  and upper 
part of cavity height h2  are considered as a parameter. The 
topological structure of the degenerate critical point within 
the region changes as the heights of the parameters vary. 
This transformation occurs from the saddle to the centre or 
vice versa for incompressible flow and is expressed in terms 
of flow bifurcation in fluid dynamics.

Using the analytical solution of the Stokes equation in 
Section 2, a ,h h1 2^ h  parameter space (bifurcation diagram), 
which includes the curves representing flow bifurcations is 
generated (Figure 2). h1  is fixed, while h2  is changing or vice 
versa to obtain all bifurcation curves. It is sufficient to consider 
parameters in the range of . . ,h h2 8 0 1 0 21 21 1 1 1- ,   to 
examine flow transformations which increase  the number 
of vortices in the region. In this range, the parameter space 
contains a set of the co-dimension-bifurcation curve, and 
each curve represents the flow bifurcation at degenerate 
critical points.

3.1. Streamline Topologies Near a Stationary Wall

In the literature, degenerate critical points are classified as 
simple or non-simple depending on the Jacobian matrix 
of the velocity field. (Hartnack 1999) studied local flow 
topology at a simple degenerate critical point which has a 
singular and non-zero Jacobian matrix. Moreover, he used 
the generation function to simplify the fourth-order terms 
of the stream function in the normal form approach. We skip 
computational ways and only give the following theorem 
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and ci , i = 1,..., N - 2 are transformed small parameters.

3.2 Forming Control Space Diagram and Eddy 
Generation

The curves in the control space diagram are named according 
to the bifurcation type. The lower index shows the number 
of bifurcation, while the upper index indicates the place 
which part of the cavity bifurcation occurs (Up or Down). 
Three types of flow bifurcation, one on the wall and the 
others inside the flow, are observed during the study flow 
bifurcation. The first type, the two saddle points on the wall 
approach and, then coalesce with each other at one point 
on the wall to produce a saddle in the flow (Figure 3-(b)). 
This bifurcation is shown in the diagram by BM (bubble 
merging). The second type of bifurcation occurs inside the 
flow where the degenerate critical point is bifurcated to a 
saddle with a centre point (Figure 4). This type of bifurcation 
is called CP (cusp-bifurcation). Sometimes the topological 
structure of the flow transformation to another form, but 
there is no change in the number of critical points, such 
transformations are labelled with GB (global).  All curves 
divide the bifurcation diagram ( ,h h1 2 ) into 51 different 
regions as shown in Figure 2, and all flow patterns in each 
region are shown in the Figure 5-7.

Figure 4. Bifurcation series of the degenerate point inside the 
flow for N = 3 in Eq. (14).

This study aims to show how critical points turn into vortex 
after a series of structural bifurcations. For example, the 
lower region numbered with (1) contains one large vortex 
with inner separatrix. By changing the parameters, h1
and h2 , the lower corner vortices combine to form a new 
separatrix structure along the BM curve (zone 2). When h2  
is fixed and moved to zone 6, this structure leaves its place in 
the vortex after CP1 bifurcation. This basic transformation 
series is exactly equivalent to the series obtained by 
(Gürcan 2005) for the rectangular cavity with the upper 

for the stream function of codimension one. A detailed 
description of the method is found in (Hartnack 1999).

Figure 2. The control space diagram is divided into different 
regions by bifurcation curves. Flow patterns in Figure 5-7 are 
correspond to these regions.

Theorem 1: Let }  is expanded in a power series 
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Assuming the non-degenerate conditions ,a a0 0, ,0 3 2 2! !  a 
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and n  is a transformed small parameters. 

Figure 3. Local streamlines near the wall for a) v  =1  b) v   
= -1.

Theorem 2: Let , , ,a a a a, , , ,1 0 0 1 2 0 1 1  and ,a a, ,N3 0 1 0g -u u  be small 
parameters. Assuming the non-degeneracy conditions 

,a a0 0, ,N0 2 0! !u normal formal of order N for the stream 
function is
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bifurcations, the vortices on the bottom wall or the right 
wall generates a full vortex with the corners at the lower part 
of  cavity. These bifurcation are shown in Figure 8.

lid. However, unlike the rectangular cavity, surprisingly, 
the same bifurcation series also occurs on the right wall of 
the lower region 1 3 7" "^ h . After the same sequence of 

Figure 5. Schematic representation of the streamlines formed in each region in the control space diagram.
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Figure 6. Schematic representation of the streamlines formed in each region in the control space diagram (continued).
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Figure 7. Schematic representation of the streamlines formed in each region in the control space diagram (continued).
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So far, the separation line is below the left corner, and new 
vortices are formed in the lower-middle part of the cavity. 
When the h2  is fixed and moved horizontally between zones 
(29-37) in the diagram, structural bifurcation occurs at the 
bottom of the cavity. In the control space, when h1  is fixed, 
and h2  is increased, the bifurcation curve SL1U, which refers 
to the separation line passing the corner point, is first seen. 
This indicates that the separation line crosses the corner 
point before the changes in topological structure over the 
upper part of the cavity. Indeed, when the parameter space is 
examined, the separation line crosses the corner point firstly 
and then joins with the corner vortex on the upper cavity. 

Let us continue to examine the control space diagram by 
studying the role of the right corner point in the vortex 
formation. First, there are two primary vortices in the 
domain, and the separation line is on the horizontal wall 
(Figure 9-(19)).  Flow transformation 19 24 25" "^ h
shows that the lower-right part of the cavity acts as a 
rectangular cavity. Just before the separation line crosses the 
corner point, it joins with the left-lower corner vortex of the 
cavity to form a separatrix. After the separation line crosses 
the corner point, the value of  .h 0 552 . - , the separatrix 
in the region leaves its place in a full vortex, and the vortex 
formation is completed at the bottom of the cavity (Figure 
9).

Figure 8. Eddy generation at the lower part of the cavity by increasing h1 .
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diagram was generated for . . ,h h2 8 0 1 0 21 21 1 1 1- . 
The flow transformations in the cavity and the new vortex 
formation mechanism were examined by taking sections 
from different parts of the control space diagram. It is 
concluded that there is no new vortex in the upper part of 
the cavity unless the separation line exceeds the left corner 
point. It is surprising that after crossing the corner point 
of the separation line, the saddle-node bifurcation on the 
wall remains almost the same value h2 =1.62, regardless of 
h1 . This value is the same as that obtained for rectangular 
(Gürcan 2005) and L-shaped (Deliceoğlu and Aydin 2014) 
cavities with a single lid-driven by uniform motion. Thus, 
it was shown that this change in the shape of the flow field 
does not affect the formation of the vortex in the upper part 
of the cavity.

This value is constant regardless of h1  and is approximately 
h2 =1.626. When the length of the upper part of the cavity 
is further increased, the number of vortices in the upper part 
increased to two after cusp bifurcation ( CPU

1 ).

4. Discussion
In this study, we consider Stokes flow over Z-shaped 
cavity with moving upper lid. The matching biorthogonal 
eigenfunction expansions method which is used by (Trogdon 
and Joseph 1982, Driesen et. al 1998) for rectangular slot, 
(Phillips 1989) for contraction geometry and (Deliceoğlu 
and Aydin 2014) for L-shaped cavity is applied here for 
the first time for the Z-shaped cavity. Then, flow structures 
occurring in the region by changing the height of the 
Z-shaped cavity are presented. The ( ,h h1 2 ) control space 

Figure 9. The role of the separation line on the effect of eddy formation.
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