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ABSTRACT

Although double-shear theories of martensite crystallography were considered more suc-
cessful than the classical theories, still it is not possible to explain the complete nature of the trans-
formations especially in Fe alloys with {225}f and {259}f habit planes. Since the double-shear
theories give better results than the classical theories and more than two simple shear elements
were observed by electron microscope observations in these transformations, it is concluded that
the number of the simple shears used in these theories should be increased. The triple-shear model
which was based on the above mentioned results was found to be in good agreement with ths ob-
servations in some Fe alloys with {225}f habits. The same model was also applied to the Fe-Ni-C
alloys with {259}f habits and gave succesful results,

INTRODUCTION

The first crystallographic martensite theories were developed by
Wechsler, Lieherman and Read (1953) and Bowles and Mackenzie (1954).
These phenomenologic theories, later were shown by Christian as to be
be mathematically equivalent and were only able to predict the relations
between parent and product phases, but could not explain how the atoms
have gone to their last positions during the transformation. They consi-
dered the Bain strain (1924) as the base of the macroscopic shape change
after the transformation. The invariant nature of an interface plane bet-
ween parent and product phases which was called “the kabit plane” of
pew phase was explained by these theories with an existance of a lattice
invariant shear. The both theories consider the lattice invariant shear
as slip or twinning type lattice imperfections. Although these early theo-
ries were very successful to explain the whole nature of martensite crys-
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tallography in the phase transformations with {3 10 15}y habits, the sa-
me success could not be obtained in especially Fe alloys with {22537
and {259}y habit planes. The “dilatation parameter” consept of the
Bowles Mackenzie theory could also not be able to overcome this dise-
repancy.
"The macroscopic shave change reduced bv a homogeneous strain
P 1 gep y g ]
is given in these thcories as,
F=RPS
where, F, R, P and S are matrices with 3x3 type ard represent the total
shapo strain, rigid bedy rotation, Bain strain and simple shear respecti-
vely.
In general, an invariant plane strain is given by,
Bij = ¥ + m dipj, (i, j = 1,2,3)
where, 8;; is Kronecker delta, P; the unit normal of invariant plane and
d; and m are the unit vecter along the displacement direction and the

magnitude of displacement respectively. If the condition, p . d
— 0, is satisfied, the invariant plane strain then becomes a simple shear

or lattice invariant strain.

Actor, and Bevis (1969) and Ross and Crocker (1970) suggested new
double lattice invariant shear models to overcome the discrepancies bet-
ween the results given by the classical theories and the observations.
Undoubtedly, the doubleshear theories are more flexible than the pre-
vious descriptions but even thesc theories are not very successful in
predicting all the crystellographic parameters of those transformations
which do not fit the standart theorics.

Since the deuble-shear theories give more successful results than the
classical theories and the presence of more than two shears dedected by
Wayman, Hanefece and Read (1961), Shimizu and Nishiyama (1972),
Durlu (1978), the total shape strain producing the macroscopic shape
change was given by Wayman (1972) as,

F=RPS,...5:8

In the multiple-shear model, the most prominent difficulty is the appli-
cation order of the simple shears.

The case of triple-shear was studied by Dikici and Durlu (1978) and

shown that the triple-shear model is. more con enient than the early
theories in explaining the observed discrepancies.
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The aim of the present study is to apply the tripleshear model to
the martensitic transformations with {259}y habits in some Fe alloys.

II. DETERMINATION OF THE CRYSTALLOGRAPHIC PARAME-
TERS

In the crystallographic martensite model with tripleshear, the ho-
mogeneous strain giving the macroscopic shape change is given as,

F=RPTSK (1)

where, T, S and K are complementary shears. The habit plane change
caused by Bain strain can be restored with the opposite effects of these
three shears and the rigid body rotation, R, also satisfies the condition
that the undistorted habit plane does net rotate. All these matrices are
3x3 types.

The planes and directions of T, S and K have been chosen from the
shear elements which can be observed experimentally and elements of
P matrix could easily be determined by using lattice parameters of both
austenite and martensite crystals. Therefore, we need to determine the
F and R matrices, and the magnitudes of simple shear. Firstly, the mag-
nitudes of simple shears were limited in such a way that F is an invari-
ant plane strain, and then the strain F was found. Secondly, the rigid
body rotation, R, was determired from Equation 1. v

II. 1 Boundary Conditicn for the Magnitudes cf Simple Shears

If a homogeneous strain keeps the habit plane undisterted and also

unrotated, this strain should not change any < vector on the ha-
bit plane. This can be shown in the matrix representation as Fx = x.
Since the length of this vector is not changed during the transformation,
this may be written as the form,

x'x=xF Fx (2)
where, the exponent (') shows the transpose of the matrix. The Equation

2 gives the condition for an undistorted habit plane, and represents the
cone of lines remained unchanged in length during the transformation.

-

Since  x is on the habit plane, the unit normal of this plane fits to the

>
condition, h . x = 0, which indicates the existence of two per-
pendicular lines. By using F'F matrix multiplication in the Equation
2 and R’ = R-1, we find,
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Z=K STPPTSK
and Equation 2 becomes,
X (Z—I)x=10

to find nonsingular solutions to this Equation, following condition is
to be satisfied,

Det (Z — 1) = 0 (3)

this gives a limitation to the magnitudes of simple shears for which the
homogeneous strain I is an invariant plane strain.

If we describe invariant plane strain matrices F, T, S and K in the
orthonormal austenite base, then the Z matrix is obtained as,

Zij = ¥ij 4+ y2 ushj -+ v (wh; + hiuy), (G, j = 1,2,3) (4)

-3
F strain also keep the habit plane normal h invariant. This can
also be describe in the matrix form as hF-1 = h. The condition for

-

undistorted h - vector after the transformation is,

hbh' = (h F-1) (h F-1) (5)
If Z-1 = F-1(F-1), then, by describing the determinant of F as D,
Zi71 = 8y + y?D %y — yD Y whj + huwy), (uj = 1,2,3) (6)

is obtained.
The determinant of F is,
D =1+ yihi = nynomy, (i = 1,2,3) (7

where, n;, n, and n; represent the Bain strains,
If the traces of the matrices, elements of which are given by Equations
4 and 6, and Equation 7 were used together we obtain,

Zii - 111211221132 Zji_l =1— 1121})221123, (l = 112,3) (8)
This equation does not include the values connected with F strain.
Thus, a limitation was emposed on the magnitudes of T, S and K simple
shears in such a way that F is undistorted plane strain.

I1. 2 Determination of the Crystallographic Parameters

The magnitude of the macroscopic displacement can be determined
by using the Equation 4 and 7 as,

¥2 = Zi —2amony — 1, (i = 1,2,3) 9)
If, i = « and j = B, the then habit plane normal is obtained from Kqua-
tion 4, ’ '
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h2g (Zaq — 1) — 2hghgZog — h2, (Zgg — 1) = 0 (10)
By repeting the same procedure, the direction of macroscopic strain can
also be found from Equation 6 and 7,

u2g (Zaa_l —1) — 2uauBZ_1ag — u2, (Zgg‘l — 1) =0 (].1)

Since the other parameters were determined eatlier, the rigid body rota-
tion, R, is the only unknown in Equation 1 and can be obtained as,

R=FK-1 81 T-1 P! (12)

III. CALCULATION OF THE CRYSTALLOGRAPHIC VALUES
I11. 1 Determination of the Simple Shear Elements.

In the Fe-Cr-C martensites with {225}y habits, the twinning plane
was found as the (112)y plane of new phase by Shimizu and Nishiyama
(1972) and same as in some Fe alloys with {3, 10 15 }¢ habits. It was also
shown in the same alloys that there were (011)y twins, and (112)y slip
traces which cross the (112)y twinning systems. Therefore, as being dif-
ferent from (112)y twins, (011)y twins and (112)y slip traces can be spe-
cial for the {225}p martensites. Since the (011)y twins were also obser-
ved in the {259} martensites of Fe-1.8 %, C alloys, the existence of (011)y
twinning systems depends on the tetragonality of martensite structure
rather than the type of habit planes. (112)y slips have not been observed
in {3 10 15}r martensites yet as indicated by Shimizu and Nishiyama
(1972).

In the application of the triple-shear medel to {259}r martensites
observed by Durlu in some Fe-Ni-C alloys (1978, 1979) were also taken
into account, in addition to above mentioned shear elements.

III. 2 Calculation of the Crystallograpkic Values

The crystallographic value needed to test the triple shear model
in some Fe alloys with {259} habits were obtained from the systems
in Section IIL.1 by using a computer programme.

Firstly, t, s and k magnitudes of complementary shears were deter-
mined by using Equation 8. In finding the third parameter, the first
two parameters were changed with 0.10 and 0.005 steps. The change of
v were then studied. It was shown that the mipimum values of y changed
with the composition of alloys and the planes, directions and magnitudes

_of simple shears, and the application order of complementary shears.
After the determination of t, s and k values, these were used in finding
the macroscopic strain elements and also in finding the orientation re-
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lationships. The results are given in Table 1 and 2, where 7, 0 and ¢
values illustrate the angles correspending to the rotations of the (111)r
plane and the [101 Jp and [112 ]g directions respectively. The martensite
habit plane normals of Fe-22 9, Ni-0.8 9, C steel is given in Figure 1.
Examination of this stgreographic projection in conjunction with the
‘computer outputs revealed that the habit plane ncrmals changed on the
lines between (3, 10 15)F, (252)r and. (10 15 3)g poles as depending on the
magnitudes of simple shears, and between (010)g and (111)F poles as
depending on the application order of simple shears.

0Oll

011

110

010 (a) 110 010 (b)

Figure 1 Austenite stereographic projections showing the martensite habit plane normals; (a) For

the shear comnination af‘a()l) [101 ], (011) [0-11 Jf and (111) [—101 Jg- (b) For the shear combina-

tion of (011) [011], (101) {T01]; and (111) [T01}.

(The full rounds show the common habit plane poles of Fe alloys and tbe broken lines indicate
the regions for possible habit plane normals).

IV. DISCUSSION OF THE RESULTS

The crystallographic parameters of austenite-martensite phase trans-
mations were calculated for Fe-22 ¢, Ni-0.8 %, C and Fe-17.1 9, Ni-0.81
9, C steels by using the triple-shear model and the results were compared,
with those of prior experiments.

For the cases 7-13 listed in Table 1, The habit plane normals and
the macroscopic shear directions were compared with the experimental
results of Greninger and Troiano (1949). and it was shown that the results
obtained by using the triple shear model are in good agreement with the
observations, and they are better than these of given by classical theori-
es. The results listed in Table 2 and the cases 1-6 in Table 1 show that
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the habit plane normals concentrated about the {259}y poles. The G-T
orientation relationships were also ensured for these two alloys, although
the angle values show a small difference of 0.10°-0.25° with the early
experimental measurements, but this can be explained in terms of sta-
tistical measurement errors.

As mentioned by Wayman (1972) the parameters of martensitic
transformation are very sensitive to the application order of simple she-
ars. The habit plane normals displace from the {3 10 15}p poles to the
{259}F or {225}y as depending on the numbers, orders and magnitudes
cf simple shears.

The triple shear model applied to the {259} transformations is
more convanient than the early theoretical models to explain the crys-
tallography of martensitic transformation.
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