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ABSTRACT

In this paper, we employ an integral involving Hermite polynomials and Meijer’s G-func-
tion to obtain solutions of the problems of simple harmonic oscillator and heat conduction.

INTRODUCTION

In this paper, we establish three integrals involving Hermite poly-
nomials in terms of gamma functions, which are extremely useful for
evaluating integrals involving generalized hypergeometric functions.
We use one of the three integrals to evaluate an integral involving Her-
mite polynomials and Miejer’s G-function and employ this integral to
obtain a solution of the simple harmonic oscillator problem occuring
in quantum mechanies and a solution of a heat conduction problem gi-

ven by Bhonsle (1).

On specializing the parameters, Meijer’s G-function may be redu-
ced to almost ail special functions and elementary functions appearing
in.applied mathematics and engineering (2). Therefore the solutions gi-
ven in this paper are of a general character and hence may encompass
several cases of intercst.

The following formulae3 are required in the proofs.
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© __s r 0, k = m;
j ¢ Hin(x) Hi(x)dx — _ 3)
— o0 2mm! 4/m, k # m.
In what follows for sake of brevity a, stands for a;,...,ap, p is a
positive integer and the symbol A (p, «) represents the set of parame-
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INTEGRALS INVOLVING HERMITE POLYNOMIALS

The integrals to be evaluated are
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where k > m, k and m are zero or positive integers.
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where k >> m, k and m are zero or positive integers.
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2
where n > m, n and m are either 1,3,5,. . .0r0,2,4, . . ..

Proof: On multiplying both sides of (1) by e X’ Hyy g (x), in-
tegrating with respect to x from — oc, to oo and using (3), the result
(4) is obtained. ‘

On multiplying both sides of (2) by e H,nm (x), integrating
with respect to x from — o0, to oo, the formula (5) is obtained.

The integral (6) follows from (4) and (5).
INTEGRAL INVOLVING HERMITE POLYNOMIALS AND MEI-
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The integral to be evaluated is
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where 2(u4-v) < p+q, largz| < utv—Lip—1q)w.

Proof. On expressing the G-function in the integrand as a Mellin-
Barnes type integral?, interchanging the order of integrations, evalu-
ating the inner-integral with the help of (4), and using the multiplica-
tion formula for gamma function? and the Mellin-Barnes type integral

representation of the G-function?, the value of the integral (7) is obta-
ined. ‘

Note 1. On applying the above procedure and using (5) and (6),
we can easily establish two other integrals involving Hermite polyno-
mials and Meijer’s G-function.

SIMPLE-HARMONIC OSCILLATOR PROBLEM

One of the fundamental problems in quantum mechanics involving
Schrodinger’s equation belongs to the one- dimensional motion of a par-
ticle bounded in a potential well. The bounded solution of Schrodinger’s
equation for such a problem is possible only for certain discrete energy
levels of the particle within the well. A particular problem of this im-
portant category of problems is the simple harmonic oscillator problem,
the solution of which involves Hermite polynomials.

Schrodinger’s equation for the simple harmonic-oscillator prob-
lem in terms of dimensionless parameters takes the form:

g 4+ h—x2) g =0, — 0 < x < 0, t3)

where & is related to the corresponding wave function and A is propor-
tional to the possible energy levels.

The solution of @ must satisfy the boundary condition:
lim g (x) = 0. 9)
x| - oo
To obtain a bounded solution of (8), we see that for large values
of x, A becomes negligible compared with x2. Therefore, asympotati-
cally we expect the solution of (8) to behave as
+x2 ’
F(x) e, x| > o0, (10)
where the negative sign in the exponent is appropriate in order that (9)
is satisfied. Therefore, the solution of (8) may be assumed of the form:
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—x2 /2 (11)
a(x) = y(x) e

Substituting the value of 2 (x) from (1.1) into (8), yields the fol-
lowing differential equation :

Yo—2xy (=1 y =0 (12)

It has been established4 that the only solution of (12) satisfying
(9) are those for which x — 1 = 2n, i.e.

A= 12y = 2n +4 1, n=0,1,2,.., . (13)

The above values of A are called energy levels or eigenvalues of the
oscillator. Now (12) becomes

y// o 2Xy’ _}_ 2n-}r — O, (14‘)
which is Hermite’s equation with solutions y = Hy(x).

We see that to each eigenvalue i, given by (13), there corresponds
the solutions of (8) given by

X2 /2

@n(x) = Hyp e ,n = 012, ... . (15)
The linear combination of the solutions of (8) takes the form:

o0 —x2 /2
Z(x) = I Cp Hy(x) e . (16)

n=0

SOLUTION OF THE SIMPLE-HARMONIC OSCILLATOR PROB-
LEM

Let us consider

—x2/2 u,v 2N | ap
@(x) == x2tl e G [ zZX ] (17)
P9q by
From (16) and (17), we have
—x2 /2 u,v 2u fap w0 2 /2
x2K+2 G [zx ] — X CpHy(x)e (18)
P-q by =0

Multiplying both sides of (18) by e—xz Hom,(x), integrating
with respect to x from — o to 0, and using (3) and (7), we get
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From (18) and (19}, for the value of @(x) given in (17), the follo-
wing solution of the problem is obtained
From (18} and (19}, for the value of @(x) given in (17), the follo-
wing solation of the problem is vbtained
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P2 /gt p by, Ay, S ky |,
where n = 1,3,5,. . .2(u-+v) < p-tq, |argz| < (u--v—%p — iq) 7.

Note 2. In view of Note 1, two other solutions of the problem can
be obtained easily.

SOLUTION OF THE HEAT CONDUCTION PROBLEM
Bhonsle! obtained the following solution:

~(1-+2r) kt—x2/2 HL (), 1)

ve}
u(x,t) = IEO Al‘ e

for the following partial differential equtaion

o 2
o k 2 — kux? , (22)

ot ox2

which is related to the following problem of heat conductions.

du o’u
et k S h (w — wuyp), (23)

provided uy = 0 and h = kx2.

Now, we consider the problem of determining the function

o8} —x2
= E Are
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u(x,0) = x e G [zx ' ]
b,

/2
Hy(x) (24)
b-q
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Multiplying both sides of (24) by e X212 H,u,(x), integrating with
respect to x from — oo to o« ,and using (3) and (7) we get

1/2—p. /2

(27) potmil W2y [ u} AQ2p.—2w-1),ap
Z

Ay = =
m ,\/1':(2111*‘[—1)! p_%—zp_‘q%-‘ul

From (21) and (25), for the value of u(x,0) given in (24), the follow-
ing solution of the problem is obtained

be, A(pm—w) Jes

1/2—p /2, w12 r /2 e-(1+2r)kt—xz /2

27 ©
a(xt) — (27) _ S ‘ Hy(x)
\/TC r=| o
w,v--2p T | AQp, —2w —1), ay 7l
X X r 1
P+2u.q-+u bq’ A, 5~ T Ty T w) |, (26)

wherer=1,3,5,. . .2(u+tv)<p-tgq, Jargz| < (u+-v—4ip— § g)m.
Note 3. In view of Note 1, two other solutions of the problem can

be obtained easily.
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