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ABSTRACT

The laminar flow of Newtonian and non-Newtonian fluids with constant and variable
shear-rate parameters are studied theoretically. Numerical solutions for the concentration,
velocity, particle path are obtained using finite differences and A.D.I. method in 2D cavity.
Mixing properties are investgated by tracking the motion of a number of selected fluid
particles and by simulating the dispersive mixing of a ‘coloured’ fluid injected into the
cavity while at rest. The stability of concentration intensity is investigated for a wide range
of Newtonian and non-Newtonian fluids. The effects of inertia and elasticity are of particular
interest. The instabilities are characterised by control parameters: the Reynolds, Weissenberg
and Schmidt numbers.

1. INTRODUCTION

This paper is aimed to make a contribution to the study of the
mixing of viscoelastic fluids at Re=1 and Re=100. Such mixing of
viscoelastic fluids is a commonly used but is not well understood in the
industrial processing of the fluids due to difficulties that occur with
computing the velocity field [1] and these difficulties make the analysis of
mixing flow very complicated. Both Newtonian and non-Newtonian fluids
are considered for the concentration results and the dispersive mixing
generated by the flow patterns of the cavity flows. Furthermore it is
assumed that the dye initially occupies the half of the cavity and there is
no chemical reaction in the concentration flow equation. Results for fluid
particle speed and concentration results are obtained by numerical

simulation.
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2. THEORY

The governing equations of motion are applied to driven cavity flow.
Cartesian (x,y) co-ordinate system are taken with velocity vector V. =(uyv),
the driven cavity geometry is shown in Figure 1 with gravity acting

!

vertically.

'
9C/dy = 0
CcC=2
9CRox = 0 oC/ox =0
C=0
3C/3y = 0 o x

Figure 1. Flow Geometry, Boundary Conditions and initial condition for Concentration

Dispersion
Non-dimensionalising by writing
X =x/8 y =y = wU, vV = VU, o = ko/U, t = UL

Vv =yUL v =yU 7 =nm0),

where the dashed notation “(s)”” is the non-dimensionalised variable, U is
a characteristic velocity, £ is a characteristic length, u and v are the
velocity components in x and y direction respectively, 1 is the viscosity,
o the vorticity, y the stream function, t is the time and *.y the shear-rate.
For convenience from now on we shall omit the dashes after the
non-dimensionalisation process.

Subsequently, for the relation between the stres tenser O and the
velocity we choose the Criminale-Erickson-Filbey (CEF) [2] fluid model
with equation of state

. . « V
Gik = 211(7) dik + 4X(,Y)d1_]d_;k - 2§(’Y)dik ° (1)
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where n(;()is the solvent viscosity, § " 4X(3()d1 2&(.7)3 is the polymeric
part and modelled by the Cmmnale-Erlckson-Fﬂbey (CEF) (7) d, is
defined as Jate of str’am tenser. Now4x('y) 1IN (y)+N2('y) 2&(7) = N (y),
where Nl(y) and Nz('y) arc known as the primary and secondary. normal
stress coefficients, respectively. Since we work with the CEF model Y.N,N,
completely determine the state of stress in a rheological shear flow. It

remains only to define the upper convected derivative in equation (1) as;
v

- D T
dik = adlk - Ldik B dka @

where

D) - éa_(o) +(V,VX®) and L = ¥V, and L' = (V)"
t

Depending on the form of the variable viscosity M(Y) equation (1)
yields the viscosity function model such as the Cross model which is

given by:
n(.y) = 'n(oo) + M (3)
1+ (M)Hl

In this model M(e) represents the infinite shear viscosity for very large
deformation rates, and M(0) represents the zero shear rate viscosity for
very small rates of shear.

The equations of motion of unsteady incompressible flow of a CEF
fluid with shear-rate dependent viscosity may be written as:

9w _ ool 1p
3 H(Tl ) { o +V ay} * Re C)]
= VZW, ; )
where

2 0w 2 dw

H N+ 2 A
{ (ﬂ ax) ¥ ay (ﬂ dy )} ©
= -1 - - 7
F = M(y)M() + L)L) 5 {Sxx Syy} L{ Sxy; M

Here Re represents Reynolds’ number which is defined as Re = pUAm(0).

The concentration equation becomes

IC._L v¢
D  SRe ®)
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where Sc represents the Schmidt number and describes the relationship
between the viscosity and the molecular diffusity (K ), with Sc defined as:

Sc = NO)/PK.. ©

Eqations (4)-(5) and (8) will be solved by the stream function and
vorticity approach. The boundary conditions are shown in Figure 1. For
the concentration equation we employ the homogenos Neumann type
boundary for impermeable walls. We_use the gradient or flux condition at
every point of boundary which is —— = 0, where n is outward normal.
The dye is “injected” into the top half of the cavity within which the
fluid is initially at rest. Subsequently we ‘observe’ how the concentration
intensity varies with respect to time, due to fluid motion. We choose the

overall concentration in the area (A) to be unity. Therefore, we have
Il,coxynaa = 1 (10)

The integral is evaluated numerically to second order by using the

trapezium rule.

The other consideration for the concentration equation is the initial
condition. The ordinary differential equations of particle paths are given in
the following system with respect to Cartesian co-ordinates (X.y)

(% 50 = V{x0) (11)

where i = 1,2, x, = x and x, = y. The variable V, represents the velocity
components in the x and y direction, respectively. The above system is
considered with initial conditions x(0) = x, and y(©) = y,. The velocity
field is obtained numerically by the initially setting starting points (X,.y)
and then proceeding with the solution through using u=- N and v———
The solution is obtained to O(At?, h%, k%) in the AD.L r}’xethod or tﬁls
approaches we employ the second order modified-Euler method [3] to
track particles. We formulate the Euler method by re-arranging (11) initial
conditions to obtain

0
5. = 5+ 8 [V + Vi) (12)
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where y, = X + AtVO(xi). The system uses known values of V® and VN
which are old and new values of the velocity components respectively.

3. THE FINITE DIFFERENCE METHOD
Taking a grid defined by
X.

1

y, = idy j=0,1, ., N (14)

iAx i=0,1.,M (13)

where Ax and Ay denote the grid spacing in the x and y directions,
respectively and also t = nAt, n = 0, 1 ... with At as the time increment
where n is the number increments nceded to reach some desired time nAt.
For simplicity, we call Ax=h and Ay=k and soh = .)_(M_ ,h = & ,where
Xy and Y represent the height and width, respectively. T% quantit}ll\I o=k

=2

is defined as the grid aspect ratio of the cavity.

We have the equatinos (5, 6, 8) which will be discretised by using
finite differences approximation. The stream function-vorticity equation can
be expresed in a standart notation as

B = BWiyy + Bawiyy + By, + By, + Bg (13
where the coefficients in equation (13) become

= — - o2 _ - )
B =2a+1),B,=8B =0’ B, =B, =1and B, = k', .

3 1

On using the A.D.I [4, 5] method to solve the time-dependent equations
by using standart central differences with r = At and s = At 4

. h K
(1-§L2)<D=(1+%Ll;)d)n+42-t—fn, (16)
K n+l h * A
[1-s)e™ =(tsru)o sarg. (7

Here L contains space derivatives and L = L + Ly, with L  having only
X derivatives and Ly only y derivatives. Let ®" be the value of o at
t = nAt and ®™*! that at t = (n + 1)At. Also ®" denotes intermediate
approximation between old time t and the new time t + At. For a PDE,
such as the vorticity and concentration equations, the error due to
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discretsion is found to be second order in both time and space. The finite
difference method gives to rise to systems of non-algebraic equations. We
let Ax = b denote the non-linear algebraic equations, with A, an NxN
matrix, b, Nx1 column vector of given, and x, Nx1 vector of unknowns
interior mesh values. However, the method yields a pair of implicit
equations. The solution of each equation is obtained through the Gaussian
Elimination direct type method which is well explained in Smith [6].

4. RESULTS

All results are produced for the time-dependent viscous and
visco-clastic fluid flow for the dispersive mixing generated by the cavity
flow. In the 2D numerical simulation, we first considered the convergence
properties of the numerical solutions by comparing calculations for various
grid widths denoted by h. On comparing values of concentration we had
evidence that convergence to 4 decimal places has been achieved for
Re=1 and Re=100 and where Schmidt number is taken as 50. Figure 2
shows result for the convergence of the concentration test criterion with
respect to the mesh size. As seen, while the mesh size decreases the
convergence values decrease as well. In this case the results are
acceptable as long as the time increment is sufficiently small.

0.06
q

0.05 X
0.04 —X— Sc=1

—O—Sc=50
0.03

0.02

Concentration test

0.01

0.1 0.05 0.033 0.025 0.02

Mesh size

Figure 2. Convergence Criterion for concentration test problem
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A second comparison is a graphical comparison of centre line
u-velocity, which is the x component of velocity vector, for a Reynolds
number of 100 and 1000 for both Newtonian and non-Newtonian fluids.
In the literature only Newtonian fluid data was found with which to
compare our results. Our results agree very well with Tosoka et al. [7]
both qualitatively and quantitatively as seen in figure 4. In addition,
non-Newtonian pseudoplastic result were obtained at Re=100 and Re=1000
and displayed and interesting and significant change from the Newtonian
case.

Re=100 Re=1000
y y

P 1

u u
Figure 3a. u velocity profile along vertical centre line at Re=100 and Re=1000 for

Newtonian fluid.

Re=100 ' Re=1000
Y

-0.5 o] 0.5 1 -0.5 0 0.5 1

Figure 3b. u velocity profile along vertical centre line at Re=100 and Re=1000 for

pseudoplastic fluid.
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Before summarising the results for each case, we shall explain how
the flow of shear-thinning and shear-thickening, viscous an visco-clastic
fluids were simulated. For the shear-thinning fluid the zero shear viscosity
is taken as 1 and the infinite viscosity is taken 0.1, and vice versa in the
case of shear-thickening fluids. We organise all results for concentration
field in terms of the following cases.

1) Standart cavity driven flow with the top wall moving
2) Two walls moving in the opposite direction
3) Two walls moving in the same direction.

1 . /-’E‘;“’_’-’" N f“‘r:"——ﬁ'.

. »r
R

*
2N
¥
N \t
3

~
e

‘%\ :
ey

Figure 4. Comparison of u velocity profiles along vertical centre line at Re=100 and

Re=1000. Tosaka et al..
4.1. Standart Cavity Driven Flow

In this case, when Re=1 both viscous and viscoelastic fluids exhibit
similar behaviour. A figure is presented for Newtonian fluid below. When
non-Newtonian and Newtonian cases are compared it was seen that the
non-Newtonian fluid streamlines are located in a relatively higher position
in the flow domain. This is because the shear-thinning fluid moves more



MIXING PROPERTIES OF A VISCOELASTIC FLUID 9

rapidly near the top plate where the fluid is tinner. In contrast for the
dilatant fluid streamlines are lower than the Newtonian case and the fluid
is slower moving near the top plate.

30x30 Re=1, Sc=505.25 VT=1

093 3 1W

Figure 5. Concentration contours for Newtonian flow at Re=1, Sc=50.

For Re=100 the advection force is more dominant in the concentration
equation. In this case the seperation of the coloured band becomes an
interface like, and concentration is therefore high near the top plate. The
results for non-Newtonian fluids are similar to the Newtonian fluid, except
the coloured band is a little higher in the cavity ad less spread out near
the top plate. We present a figure for Newtonian at Re=100 below.

30x30 5.25 VT=1 Re=100 Sc=50

0.4

0.4 115 /
\\E%:—’“ /

0.2+

0 T T T T
0 02 04 0.¢ 08 1

Figure 6. Concentration contours for Newtonian flow at Re=100, Sc=50.
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42. Two Walls Moving in Opposite Direction

In this case both viscous and viscoelastic fluids are examined with
constant and variable shear-rate. All fluids showed little difference when
compared to Newtonian case shown in figure 7. The contours indicate
that the concentration intensity are more wave like in appearance, and
they are almost seen to be symmetric about the positive diagonal (y = X)
of the cavity. For Re=100 the advection terms again dominate in the
concentration equation. Moreover in the pseudoplastic case the location of
the coloured band is higher in the cavity and less spread out near the top
wall.

30x30 Re=1 Sc=50 5.2s VT=-¥B=1

o.e—J@g:Z, \__,/-“7”+
_._::«-l 405/,-—_\\\1\0\95 .‘75/—
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Figure 7. Concentration contours for Newtonan fluid at Re=1, Sc=50.
43. Two Walls Moving in the Same Direction

For Re=1 the concentration contours are shown below; they are
almost symmetric about the horizontal mid-line of the flow domain in
appearance and yet the concentration values are roughly twice as high in
the top half of the cavity than in the lower half.

For Re=100 the advection forces dominate the flow and the
concentration intensity spread out in the ‘slow’ flow region and this is



casy to sec from figure 9. Here the concentration is slightly more spread
out near the left wall because the circulation is weaker and diffusion
effects are greater as compared to the right wall. All fluids considered for
and viscoelastic cases produced very similar

both viscous

comparatable with a viscoelastic dilatant fluid shown in figure 9.
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Figure 8. Concentration contours for Newtonian fluid at Re=1, Sc=50.
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Figure 9. Concentration contours for viscoelastic dilatant fluid at Re=100, Sc=50.
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4.4. Particle Paths And Discontinuous Periodic Cavity Flow

In this section particle paths are investigated by using a
discontinuous periodic motion with two wall motion as the top and
bottom plates move with a periodic motion as shown in figure 10. This
motion was firstly investigated by Aref [8] within a cylindirical
configuration for incompressible fluid. This solution depends on the period
of the motion (T), and on the Reynolds number Re. At first the top wall
moves to the right for a period of T. Then its stops and the bottom wall
starts moving in the opposite direction for a duration of T. This cycle is
repeated until the desired number of times. The flow is simulated for a
duration of 60 seconds for two different periods T=1 and T=2.
Furthermore, there were three particles considered initially located in the
cavity's vertical middle line (x = 0.5).

Fluid Fluid Fluid

0<t<T T <t<?2T 2t <t < 3T

Figure 10, Discontinuous periodic motion for cavity flow

For a Newtonian fluid at Re=1 the trace paths of three particles are
shown in figure 11. The outer particle (top figure) paths travel a wider
orbit in the cavity. However, all three particle paths become flatter near
the cavity’s top wall. The middle and lower figures show the traces
obtained for the periodic motion of the particles by considering the x and
y positions with time. Similar behaviour is obtained for the
non-Newtonian fluids as compared with Newtonian fluid. Later we
produced results at Re=100 and it was seen that the fluid particle paths
tend to become flatter near the top wall due to the increase in the fluid
inertia. Also all three particles were seen that move quickly and travel
wider distances in the cavity. Moreover, the outer particle path become
more ‘tightly bound’ as shown in figure 12 for a viscoelastic fluid.
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Figure 11. Re=1, Newtonian fluid after 60s, T=1s Imtially placed in vertical line.
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Figure 12. Re=100, viscoelastic dilatant fluid after 60s, T=2s Initially placed in vertical line

5. CONCLUSION

The computational analysis indicates that the scrutimisation of mixing
behavior of viscoelastic fluids using a cavity flow domain on a discretised
fields is possible within an acceptable amount of error associated with the
pumerical technique used. In this study, the flow was investigated from
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two view points: firstly by analysing the dispersive mixing of a ‘coloured’
portion of the fluid ‘injected’ into cavity at rest and secondly by the
tracing of a number of selected fluid particles within the flow field. The
flow process is very stable for low Re and as Re number increases the
advection term starts dominating the flow. It is therefore shown that the
poorest mixing was obtained for the cases where either one of the walls
is in the motion or walls are in motion opposing. Furthermore the most
rapid mixing was found to occur at low Reynolds’ number due to
concentration intensity spread out horizontally in the cavity’s centre
region. This is because of the relatively weak flow induced that lead to
greater diffusion. Moreover, the mixing quality was changed by shear
thinning effects. It was usually seen that the mixing process for a viscous
fluid is faster that viscoelastic fluids. This is because of the fact that
mixing of the viscoelastic fluids is slower due to the elastic effect;
mixing improves with stronger inertial forces. In this study Weissenberg
number Wi of 107 is used so that the elastic effect was not strong. As a
result the findnes for viscous and viscoelastic fluids were in agreement
both qualitatively and quantitatively.

When the mixing properties were investigated by tracking the motion
of a number of selected fluid particles under discontinuous periodic wall
motion it was found that for low Reynolds number the particles followed
‘flatter’ paths nearer the top plate. Moreover, as Re increases the particle
paths become more ‘tightly bound’ for both viscos and viscoelastic fluids.
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