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ABSTRACT

One-center nuclear attraction and kinetic energy integrals are defined in terms of overlap
integrals with nonintegral-n Slater-type orbitals. Stirling’s series used to overcome the difficulty
introduced by the presence of nonintegral quantum numbers in the overlap integrals. Our results are
satisfactory lower and large quantum numbers.
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1. INTRODUCTION

It is important to calculate of the multicenter integrals which are seen in ab-
initio molecular calculations. Because of nature with multicenter, operator and basis
functions are defined at the different center, calculation of the integrals even in not
relativistic situation is rather difficult. In ab-initio calculations usually use two type
basis functions. One of them is Gaussian-type basis functions, and the other is
exponential-type basis functions. Gaussian-type orbitals (GTOs) are used widely in
molecular calculations because two GTOs at a different center can be defined easily
in terms of any GTO at a new center. The main advantage of the Gaussian functions
is that multicenter molecular integrals can be evaluated easily. However, the usage
of GTOs is not without problem in large scale calculations. But, GTOs do not
represent the correct behavior of the wave function at the nuclei and at large
distances of the nuclei. Compared to GTOs, exponential-type orbitals (ETOs),
usually Slater-type orbitals (STOs), have the advantage that they can represent the
two properties of the exact wave function: at the nuclear centers, the exact wave
function must fulfill the cusp conditions and at large distance it should decrease
exponentially[1]. We note the correct representations of the cusp is necessary for
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rapid convergence of variational energy calculation. Consequently, for problems in
which the long part of the wave function or its behavior in the neighborhood of the
nuclei is important, it is desirable to use STOs which describe the physical situation
more accurately than GTOs. However, the calculation of multicenter integrals over
STOs is rather difficult and very dull. This situation is a more serious problem for
larger molecules. Most of multicenter integrals seen while investigating of physical
properties of atoms and molecules by Hartree-Fock method can be defined in terms
of overlap integrals. Therefore, many researchers have put in a great deal of effort to
develop new methods for effective calculation of the overlap integrals [2-5]. Most
existing programs for overlap integrals over STOs assume that the principal
quantum number # is a positive integer and cannot be used in the case of nonintegral
values of n. However, it is well-known that nonintegral-n STOs provide a more
flexible basis for molecular calculations than integer-n STOs [6]. Thus, it is of
interest to consider the principal quantum number 7 as an adjustable or variational
parameter as for instance the scaling parameter [7,8].

The calculation of molecular integrals with nonintegral-n STOs can be
found in the older literature. Saturno and Parr [9] and Snyder [10] have employed
these functions in calculations on atoms and for the methane molecule. Parr and Joy
[11] have suggested the use of Slater functions of nonintegral principal quantum
numbers and applied them to the hydrogen molecule. Geller [12] has also proposed
some formulas for the calculation of overlap integrals over nonintegral-n STOs.
Silverstone [6] also developed some formulas for two-center overlap integrals with
nonintegral-n STOs by the Fourier transform convolution technique. He has
expressed the overlap integral in terms of one-dimensional integrals whose
integrands are the product of two Fourier transform radial functions and spherical
Bessel function. However, the formulas developed by this author contain
complicated differential operators and are rather difficult to program for arbitrary
quantum numbers and scaling parameters. In this study, Gamma functions which
depend on nonintegral-# into the analytical expression of overlap, nuclear attraction
and kinetic energy integrals have been expanded with respect to Stirling series.

2. DEFINITIONS AND TYPES OF INTEGRALS

We will use complex Slater-type orbitals with possible nonintegral values of the
principal quantum number n. The STOs designated by y are given by

Zntme (rOP) = [F%z_ﬂ)} e?Y,,(04), (1)

where nfm is the orbital quantum numbers, ¢ is the scaling parameter, I'(z)

donates the Gamma function[13] and Y,,(6¢)shows the complex spherical

harmonic functions. In this study, we have used the complex spherical harmonic
functions in Condon-Shortly phase condition as follows
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With respect to postulate interested in the expectation value of quantum mechanics,

if the operator F equivalents to any physical observable of atoms and molecule, the
expectation value of this observable are given as follows

F= [ 2me t0) ) F Zyomp (rO8)dr @)
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where F is the operator which equivalents to the F observable.

2.1. OVERLAP INTEGRALS WITH NONINTEGRAL-# STOs

From expressing the expectation value given with Eq.(4), the overlap integral is
defined as follows

Sk’ = tune 00D ZyeweropYdT . 5)
Using Eq.(1) into Eq.(5), we can obtained explicitly the overlap integrals :
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2.2, NUCLEAR ATTRACTION INTEGRAL WITH NONINTEGRAL-n STOs
The nuclear attraction integral in atomic units is given by -

Vs = [ me (r08) | ( )x.,p,,,g(remdr )

where Z denotes the nuclear charge. The nuclear attraction integral given by Eq.(7)
can be expressed in terms of overlap integral as follows

ntm + n m
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2.3. KINETIC ENERGY INTEGRAL WITH NONINTEGRAL-n STOs

The kinetic energy integrals in atomic units defined as
ni'm'(’ - Vz
Tnbi; ¢ = J‘[ln[im{ (rog) ] (_ TJ Z;:'e'm';'(79¢) dr, &)

can be expressed in terms of overlap integrals. We use
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As illustrated in Eq.(8) kinetic energy integrals can be reduced to the calculation of
integrals having the form of overlap integrals defined by Eq.(5).

3. RESULTS AND CONCLUSIONS

The calculation of overlap integrals having different quantum numbers and
scaling parameters in a more accurate and less time consuming manner has gained
great importance in the field of atomic and especially large molecular studies. So far,
many theoretical works have been performed for calculation of overlap integrals
over STOs, and in these works, principal integer quantum number has been
employed. However, there is too few studies taking into account of nonintegral
principal quantum numbers.

In determining the various physical parameters of atoms or molecules,
instead of real atomic orbitals, the ones constructed from linear combination of
Slater-type atomic orbitals have been generally used. In other words, for the purpose
of simulating the real atomic orbitals, the base functions consisting of many STOs
having nonintegral principal quantum numbers are employed. Because there have
been too many basis functions in multicenter integrals in the atomic and molecular
calculations, the procedure becomes lengthy and time consuming. But, it is possible
to define the real atomic orbitals by using a less number STOs including
nonintegral-n. Moreover, it is more convenient employ these wave functions in
computing of multicenter integrals. The main problem here, arises from the
numerical computations of factorial functions which have nonintegral principal
quantum numbers. This problem can be overcome by using the Stirling’s series that
converges more rapidly, instead of above mentioned functions. It is possible to use
the Maclaurin expansion for the numerical evaluation of the Gamma function (see
ref[13], p. 604). However, Stirling’s series for large integer positive values gives
much more rapid convergence. In addition, Stirling’s series gives also rather well
convergence for the nonintegral positive values. The calculated values of overlap,
nuclear attraction and kinetic energy integrals for random chosen quantum numbers
and screening constants are given in Table 1, 2 and 3 respectively in atomic units.
Unfortunately, because of the unavailability of literature values of overlap integrals,
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nuclear attraction and kinetic energy integrals with noninteger-n STOs, except for
Kogas et.al.[14] which their results are given as four-digits for overlap intgerals, it
was not possible for us to compare our values are reproduced. In our study, the
integral results have been given as ten-digits. In computing the analytical
expressions obtained for one center integrals, Pentium I111-933 PC and Lahey Fortran
77 Programming language have been employed.

Table 1. Overlap Integrals with Non-Integer n STOs in a.u.

' oy
n ¢ ¢ n' A ¢’ Some *
0995312 0 0 18509594 2.079508 0 0 2719940 1.7553137240E-2
1.8E-2°
1.827215 1 1 6.798603 2411421 1 1 2119813 2.9536938856E-1
2.95B-1°
2.644286 1 0 1.905761 2.830987 1 0 6.744730 3.3287274814E-1
3.33E-1?
2.648836 1 1 1.147838 3.100865 1 1 4.519049 3.0705216034E-1
3.07E-1°
2.035171 2 0 2.715351 2.567643 2 0 10.287745 4.3453578567E-1
4.35E-i®
2.395357 2 1 6.629406 2139111 2 1 1.410602 2.6660002039E-1
2.67E-1°
5.34 3 2 02468 8.6 3 2 124361 1.8496531010E-6
12.67 8 6 1.6328 8.74 8 6 0.8611 7.9867378361E-1
* Ref[14]

Table 2. Nuclear attraction integrals with Non-Iiiteger n STOs in a.u.

n { m C’ n' f’ m 4 V,,'Z,f,?{
0.9985 0 0 1.4258 2.0745 0 0 8.0621 -27.1189591164
4.2 1 1 01 4.2 2 1 01 -3.8094784851E-1
5.246 2 2 5.6819 3.942 2 2 2.0796 -6.9272438933
6.5 31 075 4.8 2 1 1042 -3.0026188120E-4
2.8 1 0 1522 8.8 0 0 3.4167 -2.4312156844E-3

Table 3. Kinetic energy integrals with Non-Integer # STOs in a.u.

’ ! ’ ! sy

L e W ¢ T

0.9985 0 0 1.4258 2.0745 0 0 8.0621 2.0691580520
4.2 1 I 01 4.2 2 1 0.1 1.3191262606E-3

5.246 2 1 56819 3.942 2 I 2.0796 1.2923950025
6.5 3 2 075 4.8 3 2 1042 -1.5552491709E-4
2.8 I 0 1522 8.8 1 0 34167 -4.8849905865E-4
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