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Abstract

In this paper, a matrix-free method for solving large-scale system of nonlinear equations is presented. The
method is derived via quasi-Newton approach, where the approximation to the Broyden's update is done
by constructing diagonal matrix using acceleration parameter. A fascinating feature of the method is that
it is a matrix-free, so is suitable for solving large-scale problems. Furthermore, the convergence analysis of
the new method is discussed based on some standard condition. Preliminary numerical results on some test
problems show that the method is promising.
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1. Introduction

Many of problems in sciences, engineering and economics can be expressed as optimization problems or
nonlinear system of equations, which are usually solved using iterative methods. This paper focuses on the
following system

F (x) = 0, (1)

where x ∈ Rn and the nonlinear function F : Rn → Rn is continuous. Throughout this paper, the symbol Rn
denotes the n−dimensional real space equipped with the Euclidean norm ‖ · ‖, Fk = F (xk) where xk ∈ Rn
is the point at certain iteration k = 1, 2, . . ..
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Moreover, the system (1) can be obtained from general unconstrained optimization problems [9]. Let
f : Rn → R be a merit function de�ned by

f(x) =
1

2
‖F (x)‖2, x ∈ Rn. (2)

Then the nonlinear equations problem (1) is equivalent to the following unconstrained optimization problem

min f(x), x ∈ Rn.

The study of such mappings is applied in a variety of scienti�c areas, including economic and chemical
equilibrium systems [37, 39, 38]. Some iterative methods for solving these problems include Newton method
[41], the quasi-Newton methods [4, 6, 9], the Levenberg-Marquardt methods [42, 43], the double direction
methods [23, 33, 29], The double step length methods [17, 18, 28], and derivative-free methods [34, 45, 46, 44].
But, the famous method used to solve (1) is Newton method that determines the search direction dk by solving
the following linear system of equations,

Fk + F ′kdk = 0, (3)

where F ′k is the Jacobian matrix of F at xk. The Newton method is appealing because it converges quadrat-
ically from a reasonably good starting point [14]. Despite its excellent convergence property, the method
has some shortcomings, which includes storing of Jacobian matrix and solving system of linear equations in
every iteration. In order to overcome some of the challenges associated with Newton method, alternatives
such as quasi-Newton methods have been developed [4, 6]. These Methods avoid the computation of the
exact Jacobian matrix and a matrix which is an approximation the Jacobian matrix or its inverse is used
instead. This matrix is there by updated in every iteration. It has been shown that most of the quasi-Newton
methods have supperlinear order of convergence [14]. One of the successful quasi-Newton method, known as
Broyden's method, generates a sequence of iterates {xk} using

xk+1 = xk −B−1k Fk, k = 0, 1, 2, . . . , (4)

where the Broyden matrix Bk is the approximation of the Jacobian matrix, such that the following quasi-
Newton equation

Bk+1(xk+1 − xk) = Fk+1 − Fk, (5)

is satis�ed for all k. It is important to note that Broyden's method requires the computation and storage
of n × n matrix at every iteration. Therefore, for large-scale problems, this could result to serious memory
constraints. E�orts have been made by di�erent researchers to reduce the storage problem associated with
quasi-Newton methods. For instance, some modi�cations of the Broyden's method have been done in the
literature in order to reduce its computational cost [5, 8, 11, 12]. These methods are usually referred to as
limited memory Broyden methods [12, 16].

As mentioned earlier, the quasi-Newton methods has contributed in overcoming of the shortcomings of
Newton's method which is computing Jacobian matrix in every iteration. However, the prize paid by the
quasi-Newton method is that only superlinear rate of convergence can be achieved instead of quadratic rate.
In order to improve the convergence order of quasi-Newton method, many higher order approaches have been
proposed. There is a great deal of literature on the family of derivative-free methods used to solve nonlinear
equations. In [16], a family of conjugate gradient methods for solving nonlinear monotone equations has
been presented. The advantage of the method is that, the computation of Jacobian matrix is completely
avoided throughout the iteration process. Also, a derivative-free methods for nonlinear monotone equations
has been proposed in [26] and it hs shown to converged Q-linearly to the solution of the monotone equations
based on the assumption that the underlying function is Lipschitz continuous. Recently. some matrix-free
methods have been proposed [19, 20, 21, 24, 21, 25].

Motivated by the above contributions, this paper aimed at proposing the derivative-free method for
solving large-scale problem (1) that is globally convergent. The remaining part of the paper is organized as
follows. In Section 2, we present the algorithms of the proposed method. Convergence analysis is presented
in Section 3. Numerical results of the methods are reported in Section 4. Concluding remarks are given in
Section 5.
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2. Main Result

In this section, we present the proposed method for solving large scale system of nonlinear equations.
The method is based on approximation of quasi-Newton's update in (4) via

Bk ≈ λkI, (6)

where λk ∈ Rn and I is an identity matrix.
In order to enhance good direction toward the solution, we suggest new direction dk to be de�ned as

dk = −λ−1k Fk, (7)

where λk ∈ R is an acceleration parameter to be determined.
Furthermore, the search direction dk is usually needed to satisfy the descent condition

∇f(xk)
Tdk < 0.

Now, consider the Broyden's matrix updating formula given by

Bk+1 = Bk +
(yk −Bksk)sTk

sTk sk
, (8)

where sk = xk+1 − xk and yk = Fk+1 − Fk. Despite the attractive features of this method, it is not suitable
for solving the large-scale problems due the matrix storage at each iteration. Motivated by this reason, this
work is aim at proposing a new matrix-free method for solving large-scale problems.
Now, from (6) and (8), it can be deduced that

λk+1I = λkI +
(yk − λksk)sTk

sTk sk
, (9)

and by multiplying (8) by Fk, we have

λk+1Fk = λkFk +
(yk − λksk)sTk Fk

sTk sk
. (10)

Again, multiplying (10) by sTk , we have

λk+1s
T
k Fk = λks

T
k Fk +

sTk (yk − λksk)sTk Fk
sTk sk

, (11)

Dividing (11) by sTk Fk, where s
T
k Fk 6= 0 yields

λk+1 = λk +
sTk (yk − λksk)

sTk sk
. (12)

We �nally present our iterative scheme as

xk+1 = xk + αkdk, (13)

where αk > 0 is the step length and dk is the search direction. Moreover, inexact line search proposed in [9]
is used in this work to compute the step length αk as follows.

Given some positive constants η1, η2 > 0 and let h ∈ (0, 1). Suppose that {ωk} is a sequence of some
positive numbers for which

∞∑
k=0

ωk < ω <∞, (14)
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and
f(xk + αdk)− f(xk) ≤ −η1‖αF (xk)‖2 − η2‖αdk‖2 + ωkf(xk), (15)

where α = hi with i being the least nonnegative integer for which (15) holds. Set αk = α.

Algorithm 1: On E�cient Matrix-Free Method Via Quasi-Newton Approach (EMQN)

Input: Given x0, λ0 = 0.01, ε = 10−4, set k = 0.
Step 1: Compute F (xk).
Step 2: If ‖Fk‖ ≤ ε then stop, else go to Step 3.
Step 3: Compute dk = −λ−1k F (xk).
Step 4: Compute step length αk (15).
Step 5: Set xk+1 = xk + αkdk.
Step 6: Compute Fk+1.

Step 7: Determine λk+1 = λk +
sTk (yk−λksk)

sTk sk
.

Step 9: Set k = k + 1, and go to Step 2.

Remark 2.1. It can be seen that the parameter λk+1 de�ned by (12) is a scalar for all k. In addition, the
gradient of F is not needed in the implementation of Algorithm 1. With these into consideration, we can
conclude that the Algorithm 1 is derivative-free as well as matrix-free. Therefore, Algorithm 1 is suitable for
large-scale problems as well as nonsmooth problems. Furthermore, we show in Lemma 3.4 that the search
direction generated by Algorithm 1 is su�ciently descent.

3. Convergence Result

In this section, we present the global convergence of our method (EMQN). To start, let the level set be
de�ned as

Ω = {x|‖F (x)‖ ≤ ‖F (x0)‖}. (16)

Assumption 3.1. We now state the following assumptions to establish the convergence result of EMQN
Algorithm .
(1) There exists a point x∗ ∈ Rn such that F (x∗) = 0.
(2) F is continuously di�erentiable in some neighborhood say A of x∗ containing Ω.
(3) The Jacobian of function F is positive de�nite bounded on A, namely, there exists some positive constants
G > g > 0 such that

‖F ′(x)‖ ≤ G, ∀x ∈ A, (17)

and
g‖d‖2 ≤ dTF ′(x)d, ∀x ∈ A, d ∈ Rn. (18)

Remark 3.2. Assumption (3.1) implies that there exists a constants G > g > 0 such that

g‖d‖ ≤ ‖F ′(x)d‖ ≤ G‖d‖, ∀x ∈ A, d ∈ Rn. (19)

g‖x− y‖ ≤ ‖F (x)− F (y)‖ ≤ G‖x− y‖, ∀x, y ∈ A. (20)

Since λkI approximates F ′k along direction dk, let us state the following assumption.

Assumption 3.3. λkI is a good approximation to F ′(xk), i.e.,

‖(F ′(xk)− λkI)dk‖ ≤ ε‖F (xk)‖, (21)

where ε ∈ (0, 1) [13].



M. Abdullahi et al., Adv. Theory Nonlinear Anal. Appl. 5 (2021), 568�579. 572

Lemma 3.4. Suppose that Assumption (3.3) holds and let {xk} be generated by EMQN algorithm. Then dk
is a descent direction of f at xk i.e

∇f(xk)
Tdk < 0. (22)

Proof. From (7), we have

∇f(xk)
Tdk = F Tk F

′
kdk

= F Tk [(F ′k − λkI)dk − Fk]
= F Tk (F ′k − λkI)dk − ‖Fk‖2,

(23)

by Chauchy-Schwarz we have,

∇f(xk)
Tdk ≤ ‖Fk‖‖(F ′k − λkI)dk‖ − ‖Fk‖2

≤ −(1− ε)‖Fk‖2.
(24)

Hence for ε ∈ (0, 1) we have (22).
Since the search direction satis�ed the decent condition in (22), it means that the inequality ‖Fk+1‖ ≤ ‖Fk‖
holds.

Lemma 3.5. Suppose that Assumption (3.3) holds and {xk} be generated by EMQN algorithm. Then {xk} ⊂
Ω.

Proof. From lemma (3.4) we have ‖Fk+1‖ ≤ ‖Fk‖. In addition, for all k we have

‖Fk+1‖ ≤ ‖Fk‖ ≤ ‖Fk−1‖ ≤ . . . ≤ ‖F0‖.

This shows that {xk} ⊂ Ω.

Lemma 3.6. (see[3]) Suppose that Assumption (3.1) holds and {xk} be generated by EMQN algorithm. Then
there exists a constant g > 0 such that for all k

yTk sk ≥ g‖sk‖2. (25)

Lemma 3.7. Suppose that Assumption (3.1) holds and {xk} is generated by EMQN algorithm. Then we
have

lim
k→∞

‖αkdk‖ = lim
k→∞

‖sk‖ = 0, (26)

and
lim
k→∞

‖αkFk‖ = 0. (27)

Proof. By (15), we have for all k > 0,

η2‖αkdk‖2 ≤ η1‖αkFk‖2 + η2‖αkdk‖2

≤ ‖Fk‖2 − ‖Fk+1‖2 + ωk‖Fk‖2.
(28)

By summing the inequality above, we have

η2

k∑
i=0

‖αidi‖2 ≤
k∑
i=0

(
‖Fi‖2 − ‖Fi+1‖2

)
+

k∑
i=0

ωi‖Fi‖2

= ‖F0‖2 − ‖Fk+1‖2 +
k∑
i=0

ωi‖Fi‖2

≤ ‖F0‖2 + ‖F0‖2
k∑
i=0

ωi

≤ ‖F0‖2 + ‖F0‖2
∞∑
i=0

ωi.

(29)
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So from the level set and fact that {ωk} satis�es (14) then the series
∞∑
i=0

‖αidi‖2 is convergent. This implies

(26). Following the similar arguments as above but with η1‖αkFk‖2 on the left hand side, we obtain (27).

Lemma 3.8. Suppose that Assumption (3.1) holds and let {xk} be generated by algorithm 1. Then there
exists a constant m3 > 0 such that for all k > 0,

‖dk‖ ≤ m3. (30)

Proof. From (7) and (25) we have,

‖dk‖ = ‖ − λ−1k Fk‖

=

∥∥∥∥∥∥−
(
λk−1I +

(yk−1 − λk−1sk−1)sTk−1
sTk−1sk−1

)−1
Fk

∥∥∥∥∥∥
=

∥∥∥∥∥∥−
(
λk−1 +

yTk−1sk−1

sTk−1sk−1
− λk

sTk−1sk−1

sTk−1sk−1

)−1
Fk

∥∥∥∥∥∥
=

∥∥∥∥∥− ‖sk−1‖2yTk−1sk−1
Fk

∥∥∥∥∥
≤ ‖sk−1‖

2‖Fk‖
g‖sk−1‖2

≤ ‖F0‖
g

.

(31)

Taking m3 = ‖F0‖
g , we have (30).

Theorem 3.9. Suppose that Assumption (3.1) holds and {xk} is generated by EMQN Algorithm. We further
assume that for all k > 0,

αk ≥ h
|F Tk dk|
‖dk‖2

, (32)

where h > 0. Then
lim
k→∞

‖Fk‖ = 0. (33)

Proof. From Lemma (3.8), we have (30). Therefore by (26) and the boundedness of {‖dk‖}, we have

lim
k→∞

αk‖dk‖2 = 0. (34)

From (32) and (34), we have
lim
k→∞

|F Tk dk| = 0. (35)

On the other hand from (7), we have
F Tk dk = −λ−1k ‖Fk‖

2, (36)

‖Fk‖2 = | − F Tk dkλk|
≤ |F Tk dk||λk|.

(37)

By using (20), we obtain

λk = λk−1 +
yTk−1sk−1

‖sk−1‖2
− λk−1‖sk−1‖2

‖sk−1‖2
=
yTk−1sk−1

‖sk−1‖2
≤ ‖yk−1‖‖sk−1‖

‖sk−1‖2
≤ G,
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which means,|λk| ≤ G. So from (37), we have

‖Fk‖2 ≤ |F Tk dk|G. (38)

Thus,
0 ≤ ‖Fk‖2 ≤ |F Tk dk|G→ 0. (39)

Therefore,
lim
k→∞

‖Fk‖ = 0. (40)

The proof is completed.

4. Numerical results

In this section, some numerical results are presented to demonstrate the e�ciency of the proposed method
by comparing it with the following existing methods in the literature.

• An improved derivative-free method via double direction approach for solving systems of nonlinear
equations (IDFDD) [3].

• Classical Broyden's method (CBM) for solving system of nonlinear equations.

The three algorithms were implemented using the same line search (15) in the course of the experiments and

the following parameters are set: η1 = η2 = 10−4, h = 0.35 and ωk =
1

(k + 1)2
. However, for the classical

Broyden's method, we set B0 = I, I is an identity matrix.
The computer codes used were written in Matlab 8.3.0.532 (R2014a) and run on a personal computer

equipped with a 1.40.00 GHz CPU processor and 4 GB RAM memory. We have tried the three methods
on three test problems with di�erent initial points and dimension (n−values) between 100 to 10,000. The
iteration is set to stop for all the methods if ‖Fk‖ ≤ 10−4. The symbol '�' represents failure due to:

(i) Failure to complete execution due to insu�cient memory.

(ii) Number of iterations exceed 1000 but no xk satisfy the stopping criterion.

Table 1: Initial points

INITIAL GUESS (IP) VALUES

x1
(
1
2 ,

1
2 , . . . ,

1
2

)T
x2 (−1.5,−1.5, . . . ,−1.5)T

x3 (−25,−25, . . . ,−25)T

x4 (5, 5, . . . , 5)T

x5 (14, 14, . . . , 14)T

Problem 1: [4].
Fi(x) = 2xi − sin |xi|, i = 1, 2, . . . , n.

Problem 2: [10].
Fi(x) = cos(x2i − 1)2 − 1, i = 1, 2, . . . , n.
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Problem 3.

F1(x) =
1

3
x31 +

1

2
x22

Fi(x) = −1

2
x2i +

i

3
x3i +

1

2
x2i+1, i = 1, 2, . . . , n− 1,

Fn(x) = −1

2
x2n +

n

3
x3n.

The results of the numerical experiments for the IDFDD and CBM methods as well as our proposed method

Table 2: Numerical results of EMQN, CMB and IDFDD methods for problem 1
EMQN CBM IDFDD

Dimension Initial Guess NIT CPUT NIT CPUT NIT CPUT

100 x1 28 0.142571 19 0.535173 23 0.143207
x2 24 0.028437 8 0.099478 25 0.112461
x3 9 0.055164 37 0.495608 - -
x4 147 0.366485 78 0.931389 366 1.349186
x5 9 0.044106 109 1.283275 - -

1000 x1 31 0.107026 18 27.2388 26 0.246356
x2 25 0.119676 8 11.92841 28 0.344145
x3 9 0.086169 42 91.47828 - -
x4 126 0.812398 140 242.139 397 3.385763
x5 9 0.070279 27 41.0478 - -

10000 x1 34 0.654757 - - 27 1.842495
x2 29 0.619744 - - 31 1.519259
x3 9 0.383985 - - - -
x4 146 3.49417 - - 428 23.4393
x5 9 0.384739 - - - -

Table 3: Numerical results of EMQN, CMB and IDFDD methods for problem 2
EMQN CBM IDFDD

Dimension Initial Guess NIT CPUT NIT CPUT NIT CPUT

100 x1 9 0.054347 10 0.592524 4 0.091207
x2 6 0.026207 6 0.110625 - -
x3 10 0.01284 8 0.183785 4 0.016239
x4 7 0.009098 10 0.196762 - -
x5 8 0.010415 10 0.44328 - -

1000 x1 11 0.041969 11 19.17501 - -
x2 7 0.022809 7 12.06882 - -
x3 11 0.024054 9 15.57875 4 0.095884
x4 8 0.032852 11 19.02109 - -
x5 9 0.051642 11 19.28136 - -

10000 x1 12 0.177906 - - - -
x2 8 0.271242 - - - -
x3 12 0.269865 - - 4 0.566027
x4 10 0.171702 - - - -
x5 13 0.305941 - - - -

are reported in Tables 2-4, where NIT and CPUT are respectively stand for the number of iterations and
the number of time taken for each method to successfully obtained the solution of each problem. Tables 3-4
indicated that the proposed method EMQN has minimum number of iterations and CPU time, compared
to CBM and IDFDD methods, except at Table 2 with initial guesses x1 and x4 for the dimension 100 and
x1 and x2 in 1000 dimension, where the number of iteration of CBM method is less than that of EMQN
and IDFDD methods. Therefore, EMQN method out performed CBM and IDFDD methods. One can easily
observe that our claim is fully justi�ed from the Tables, that is, the proposed method has less CPU time and
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Table 4: Numerical results of EMQN, CMB and IDFDD methods for Problem 3
EMQN CBM IDFDD

Dimension Initial Guess NIT CPUT NIT CPUT NIT CPUT

100 x1 12 0.239779 21 0.700504 27 1.230928
x2 11 0.226276 19 0.513159 29 1.29121
x3 13 0.270103 21 0.656313 23 1.156257
x4 14 0.244887 24 0.687868 28 0.968806
x5 14 0.226145 25 0.764494 26 1.047147

1000 x1 14 0.944261 23 34.40515 35 5.13596
x2 11 0.892505 28 76.17269 29 5.233836
x3 13 0.951678 21 46.46457 31 5.45977
x4 14 0.947066 24 54.18002 32 6.261874
x5 14 1.036368 23 48.51827 40 7.275419

10000 x1 14 88.4897 - - 35 647.7165
x2 12 102.4096 - - 29 526.0935
x3 15 99.16974 - - 31 524.7104
x4 14 75.62304 - - 32 480.4203
x5 14 78.45776 - - 40 593.6609

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

τ

p
(τ

)

 

 

EMQN

CBM

IDFDD

Figure 1: Performance pro�le of EMQN,CBM and IDFDD methods with respect to the number of iteration for the problems
1-3.

number of iterations for each of the test problems with the exception of Problem 1. Furthermore, on average,
the CPU time of the proposed method is the smallest which signi�es that our method is fully derivative-free
and matrix-free (i.e., no computation of matrix at all).

Figures 1-2 show the summery of the numerical performance of the IDFDD and CBM methods against
the proposed method in terms of iterations number and CPU time. The summery is evaluated based on the
famous performance pro�les developed by Dolan and Moré [4]. This means, for each method, the fraction
P (τ) of the problems for which the method falls within a factor τ of the best time is plotted. The curve
that stays longer on the vertical axis corresponds to the method that solved highest percentage of the test
problems considered in a time that was within a factor τ of the best time.
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Figure 2: Performance pro�le of EMQN,CBM and IDFDD methods with respect to the CPU time (in second) for the problems
1-3.
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5. Conclusion

In this paper, an e�cient matrix-free method via quasi-Newton update for handling nonlinear system of
equations has been developed. This was achieved by approximating the Broyden's Update via acceleration
parameter. The proposed method is completely matrix-free iterative method that is globally convergent
under certain appropriate conditions. The e�ciency as well as the performance of the proposed method
have been compared with that of classical broyden method (CBM) and IDFDD method [3]. Numerical
comparisons have been done using a set of large-scale test problems. Moreover, Table 2-4 and Figure 1-2,
showed that the proposed method is quite e�cient because it has the least number of iteration compared to
IDFDD and CBM methods. Future research include using the proposed method to solve nonlinear problems
as discussed in [35, 36, 40].
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