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Abstract

We introduce the concept of b-θ -metric space as a generalization of θ -metric space and
investigate some of its properties. Then, we establish a fixed point theorem in b-θ -metric
spaces via b-simulation functions. Thus, we deduce Banach type fixed point in such spaces.
Also, we discuss some fixed point results in relation to existing ones.

1. Introduction

Fixed point theory plays a fundamental role in various fields of mathematics, engineering and applied science. A basic result in
fixed point theory is the Banach contraction principle which is an important tool for solving nonlinear analysis’ problems. This
result has been generalized and extended in various generalized metric spaces.
Many authors have generalized metric spaces in several ways. Bakhtin [1] introduced the concept of b-metric space, which is a
generalized form of metric space (see also [2]). Since then, several authors have many fixed point results for single- valued and
multi- valued operators in b- metric spaces (see [2]-[4]).
Khojasteh et al. [5] introduced θ -metric space by using a more generalized inequality instead of triangle inequality. They are
inspired by fuzzy metric spaces, which are generalizations of metric spaces. Then they proved Banach and Caristi type fixed
point in θ -metric spaces.
Khojasteh et al. [6] introduced Z -contraction as a new type of nonlinear contractions via simulation function which is useful
to express a family of contractivity conditions. After then Chanda and Dey [7] obtained some fixed point results on θ -metric
spaces by using simulation functions. Also, Demma et al.[8] deduced several related results in fixed point theory in b-metric
space via b-simulation functions.
In this paper, we defined b-θ -metric space as a generalization of b-metric space with the help of B-action and studied its
fundamental properties. Also, we compare it to both b-metric and θ -metric space. Then we obtain a fixed point result in
b-θ -metric spaces by using b-simulation functions. So we get the Banach contraction principle in such spaces. Finally, we give
some fixed point results regarding existing ones in b-metric spaces and θ -metric spaces.

2. Preliminaries

Definition 2.1. [1, 2] Let W be a nonempty set and b≥ 1 be a given real number. A function d : W ×W → [0,∞) is a b-metric
on W iff it satisfies the following conditions for all ω,ϖ ,ρ ∈W.

(b1) d(ω,ϖ) = 0 iff ω = ϖ .
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(b2) d(ω,ϖ) = d(ϖ ,ω).

(b3) d(ω,ϖ)≤ b[d(ω,ρ)+d(ρ,ϖ)].
Then, the pair (W,d) is called a b-metric space.

Definition 2.2. [5] Let θ : [0,∞)× [0,∞)→ [0,∞) be a continuous mapping with respect to each variable. θ is called an
B-action iff it satisfies the following conditions:

(B1) θ(0,0) = 0 and θ(ω,ϖ) = θ(ϖ ,ω) for all ω,ϖ ≥ 0,

(B2) θ(ω,ϖ)< θ(ρ,ν) if ω < ρ and ϖ ≤ ν or ω ≤ ρ and ϖ < ν .

(B3) For each r ∈ Im(θ)−{0} and for each ω ∈ (0,r], there exists ϖ ∈ (0,r] such that θ(ω,ϖ) = r, where Im(θ) = {θ(ω,ϖ) :
ω > 0,ϖ ≥ 0}.
(B4) θ(ω,0)≤ ω for all ω > 0.
The set of all B-actions is denoted by M .

Definition 2.3. [5] Let W be a nonempty set. A mapping dθ : W ×W → [0,∞) is called a θ -metric on W with respect to
B-action θ ∈M if dθ satisfies the following conditions:

(θ1) dθ (ω,ϖ) = 0 iff ω = ϖ ,

(θ2) dθ (ω,ϖ) = dθ (ϖ ,ω),

(θ3) dθ (ω,ϖ)≤ θ(dθ (ω,ρ),dθ (ρ,ϖ)) for all ω,ϖ ,ρ ∈W.
Then, the pair (W,dθ ) is called a θ -metric space.

Definition 2.4. [8] Let (W,d) be a b-metric space. A b-simulation function is a function ς : [0,∞)× [0,∞)→R satisfying the
following conditions:

(ς1) ς(ω,ϖ)< ϖ −ω for all ω,ϖ > 0.

(ς2) If {ωn},{ϖn} are sequences in (0,∞) such that

0 < limn→∞ ωn ≤ limn→∞ infϖn ≤ limn→∞ supϖn ≤ b limn→∞ ωn < ∞

then

limn→∞ supς(bωn,ϖn)< 0.

3. Main results

Definition 3.1. Let W be a nonempty set and b ≥ 1 be a given real number. A mapping db
θ

: W ×W → [0,∞) is called a
b-θ -metric on W with respect to B-action θ ∈M if it satisfies the following properties for each ω,ϖ ,ρ ∈W.

(bθ1) db
θ
(ω,ϖ) = 0 iff ω = ϖ .

(bθ2) db
θ
(ω,ϖ) = db

θ
(ϖ ,ω).

(bθ3) db
θ
(ω,ϖ)≤ bθ(db

θ
(ω,ρ),db

θ
(ρ,ϖ)).

Then, the pair (W,db
θ
) is called b-θ -metric space.

Remark 3.2. Every θ -metric space is b-θ -metric space and the concept of b-θ -metric space coincides with the concept of
θ -metric space when b = 1.

Example 3.3. Let W = {ω,ϖ ,ν} and db
θ

: W ×W → [0,∞) be defined by

db
θ
(ω,ϖ) = db

θ
(ϖ ,ω) = db

θ
(ω,ν) = db

θ
(ν ,ω) = 1

db
θ
(ϖ ,ν) = db

θ
(ν ,ϖ) = 2, db

θ
(ω,ω) = db

θ
(ϖ ,ϖ) = db

θ
(ν ,ν) = 0.

Suppose that θ(u,ρ) = 1
2 (u+ρ). Then, (W,db

θ
) is b-θ -metric space with b = 2 but it is not θ -metric space since db

θ
(ϖ ,ν)>

θ(db
θ
(ϖ ,ω),db

θ
(ω,ν)).

Remark 3.4. The concept of b-θ -metric space coincides with the concept of b-metric space when θ(u,ρ) = u+ρ . Every
b-θ -metric space is b-metric space when θ(u,ρ) = k(u+ρ),k ∈ (0,1].

Example 3.5. Let W = {ω,ϖ ,ν} and db
θ

: W ×W → [0,∞) be defined by

db
θ
(ν ,ω) = db

θ
(ω,ν) = db

θ
(ϖ ,ν) = db

θ
(ν ,ϖ) = 1

db
θ
(ω,ϖ) = db

θ
(ϖ ,ω) = 3, db

θ
(ω,ω) = db

θ
(ϖ ,ϖ) = db

θ
(ν ,ν) = 0.

Suppose that θ(u,ρ) = uρ

1+uρ
. Then, (W,db

θ
) is b-metric space with b = 3

2 but it is not b-θ -metric space.

Definition 3.6. Let (W,db
θ
) be a b-θ -metric space. We define the open ball with center ω and radius r > 0 by
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Bdb
θ

(ω,r) = {ϖ ∈W : db
θ
(ω,ϖ)< r}

Example 3.7. W = { 1
n : n ∈N}∪{0} and let db

θ
: W ×W → [0,∞) be defined by

db
θ
(0,1) = db

θ
(1,0) = 2,

db
θ
(1, 1

n ) = db
θ
( 1

n ,1) =
1
n if n≥ 2,

db
θ
(0, 1

n ) = db
θ
( 1

n ,0) = 3 if n≥ 2,

db
θ
( 1

n ,
1
m ) = db

θ
( 1

m ,
1
n ) =

1
n +

1
m if m,n≥ 2,

db
θ
(m,n) = 0 iff m = n.

Suppose that θ(u,ρ) = u+ρ +uρ . Then, (W,db
θ
) is a b-θ -metric space with b = 2. Bdb

θ

(0,3) = {0,1} and there is no open
ball with center 1 contained in Bdb

θ

(0,3). Thus, Bdb
θ

(0,3) is not open.

Definition 3.8. Let (W,db
θ
) be a b-θ -metric space. Then, a sequence {ϖn} in W is said to be

1. convergent iff there exists ϖ ∈W such that db
θ
(ϖn,ϖ)→ 0 as n→ ∞ and we write limn→∞ ϖn = ϖ ,

2. Cauchy iff db
θ
(ϖn,ϖm)→ 0 as n,m→ ∞.

Definition 3.9. The b-θ -metric space (W,db
θ
) is complete if every Cauchy sequence in W converges to ϖ ∈W.

Proposition 3.10. If (W,db
θ
) is a b-θ -metric space, then the following hold:

1. The limit of a convergent sequence is unique.
2. Each convergent sequence is a Cauchy sequence.

Proof.

1. Suppose that limn→∞ ϖn = ϖ and limn→∞ ϖn = ω . We claim that ϖ = ω . Since limn→∞ ϖn = ϖ and limn→∞ ϖn = ω ,
then db

θ
(ϖn,ϖ)→ 0 and db

θ
(ϖn,ω)→ 0 as n→ ∞. From (bθ3), we have

0≤ db
θ
(ϖ ,ω)≤ bθ(db

θ
(ϖn,ϖ),db

θ
(ϖn,ω)).

Letting n→ ∞ in the above inequality, using the continuity of θ , we get db
θ
(ϖ ,ω) = 0. Thus, ϖ = ω .

2. It is obvious.

Example 3.11. Let W =N∪{∞} and let db
θ

: W ×W → [0,∞) be defined by

db
θ (ϖ ,ω) =

 5 if ϖ ,ω ∈N(ϖ 6= ω),
2 if one of ϖ ,ω ∈N and the other is ∞,
0 if ϖ = ω.

Suppose that θ(u,ρ) =
√

u2 +ρ2. Then, (W,db
θ
) is a b-θ -metric space with b = 2. Let ϖn = 5n for each n ∈ N. Then,

db
θ
(5n,2)→ 5 as n→ ∞. But db

θ
(∞,2)→ 2 since ϖn→ ∞. Thus, it is not continuous.

4. Fixed point results

Let W 6= /0 and T be a self mapping on W . Let ϖ0 ∈W and ϖn = T ϖn−1 for all n ∈N. Then, {ϖn} is called a Picard sequence
of initial point at ϖ0 and Fix(T ) = {ϖ ∈W : ϖ = T ϖ} is the set of fixed points of T .

Theorem 4.1. Let (W,db
θ
) be a complete b-θ -metric space and let T : W →W be a mapping. Suppose that there exists a

b-simulation function ς such that

ς(bdb
θ
(T ϖ ,T ρ),db

θ
(ϖ ,ρ))≥ 0 for all ϖ ,ρ ∈W.

Then, T has a unique fixed point.

Proof. Let {ϖn} be a sequence of Picard with initial point ϖ0 ∈W . Suppose that ϖn 6= ϖn−1 for all n ∈N. We prove this
theorem in 4 cases.
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Case 1: We claim that limn→∞ db
θ
(ϖn−1,ϖn) = 0.

By the hypotheses and using (ς1), respectively, we have

0 ≤ ς(bdb
θ (ϖn,ϖn+1),db

θ (ϖn−1,ϖn))

< db
θ (ϖn−1,ϖn)−bdb

θ (ϖn,ϖn+1).

Thus, for all n ∈N, we get

bdb
θ (ϖn,ϖn+1)< db

θ (ϖn−1,ϖn).

That is, {db
θ
(ϖn−1,ϖn)} is a decreasing sequence of positive real numbers. Hence, there exists r≥ 0 such that limn→∞ db

θ
(ϖn−1,ϖn)=

r. Assume r > 0. From (ς2) for νn = db
θ
(ϖn,ϖn+1),ωn = db

θ
(ϖn−1,ϖn), we obtain

0 ≤ limn→∞ supς(bdb
θ
(ϖn,ϖn+1),db

θ
(ϖn−1,ϖn))< 0.

This is a contradiction. Thus, r = 0. That is limn→∞ db
θ
(ϖn−1,ϖn) = 0.

Case 2: Our aim is to show that {ϖn} is a bounded sequence.
Suppose that ϖn is not a bounded sequence. Then, there exists a subsequence {ϖn(k)} of {ϖn} such that n(1) = 1 and n(k+1)
is the minimum integer for each k ∈N such that

db
θ
(ϖn(k+1),ϖn(k))> 1 and db

θ
(ϖm,ϖn(k))≤ 1 for n(k)≤ m≤ n(k+1)−1.

Thus, by using (bθ3), we have

1 < db
θ (ϖn(k+1),ϖn(k)) ≤ bθ(db

θ (ϖn(k+1),ϖn(k+1)−1),d
b
θ (ϖn(k+1)−1,ϖn(k)))

≤ bθ(db
θ (ϖn(k+1),ϖn(k+1)−1),1).

By taking the limit from two sides of above inequality, we get

1 < limk→∞ db
θ
(ϖn(k+1),ϖn(k))≤ b.

From Case 1 and (bθ3), we have

bdb
θ (ϖn(k+1),ϖn(k)) ≤ db

θ (ϖn(k+1)−1,ϖn(k)−1)

≤ bθ(db
θ (ϖn(k+1)−1,ϖn(k)),d

b
θ (ϖn(k),ϖn(k)−1))

≤ bθ(1,db
θ (ϖn(k),ϖn(k)−1)).

Again by taking the limit from two sides of above inequality, we obtain

b < limk→∞ bdb
θ
(ϖn(k+1),ϖn(k))≤ limk→∞ db

θ
(ϖn(k+1)−1,ϖn(k)−1)≤ b

Thus,

limk→∞ db
θ
(ϖn(k+1)−1,ϖn(k)−1) = b and limk→∞ db

θ
(ϖn(k+1),ϖn(k)) = 1.

Now, by (ς2), with νk = db
θ
(ϖn(k+1),ϖn(k)) and ωk = db

θ
(ϖn(k+1)−1,ϖn(k)−1), we get

0≤ limk→∞ ς(bνk,ωk)< 0.

This is a contradiction. Hence, {ϖn} is a bounded sequence.

Case 3: We will show that {ϖn} is a Cauchy sequence.
Let Mn = sup{db

θ
(ϖi,ϖ j) : i, j ≥ n and n ∈N}. From Case 2, for each n ∈N, Mn < ∞. Here, Mn is a positive decreasing

sequence. So, there exists M ≥ 0 such that limn→∞ Mn = M.
Assume that M > 0. For k ∈N, there exist n(k),m(k) ∈N such that m(k)> n(k)≥ k and

Mk− 1
k < db

θ
(ϖm(k),ϖn(k))≤Mk.

After taking the limit in the above inequality, we have

limk→∞ db
θ
(ϖm(k),ϖn(k)) = M.

From Case 1 and the definition of Mn, we obtain
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bdb
θ
(ϖm(k),ϖn(k))≤ db

θ
(ϖm(k)−1,ϖn(k)−1)≤Mk−1.

Again, by taking the limit, we find

bM ≤ limk→∞ infdb
θ
(ϖm(k)−1,ϖn(k)−1)≤ limk→∞ supdb

θ
(ϖm(k)−1,ϖn(k)−1)≤M.

If b > 1, then M = 0. If b = 1, from (ς2) with νk = db
θ
(ϖm(k),ϖn(k)) and ωk = db

θ
(ϖm(k)−1,ϖn(k)−1), we obtain

0≤ limk→∞ supς(bνk,ωk)< 0.

This is a contradiction. Thus, M = 0. This implies that {ϖn} is a Cauchy sequence.

Case 4: Since (W,db
θ
) is a complete b-θ -metric space and {ϖn} is a Cauchy sequence from Case 3, there exists ρ ∈W such

that limn→∞ ϖn = ρ . We must show that ρ ∈ Fix(T ). From Case 1,

bdb
θ
(T ϖn,T ρ)≤ db

θ
(ϖn,ρ) for all n ∈N.

Thus,

0≤ db
θ (ρ,T ρ) ≤ bθ(db

θ (ρ,ϖn+1),db
θ (ϖn+1,T ρ))

< bθ(db
θ (ρ,ϖn+1),

1
b

db
θ (ϖn,ρ)).

By taking the limit from two sides of above inequality, we get db
θ
(ρ,T ρ) = 0 since limn→∞ ϖn = ρ . Therefore, ρ = T ρ .

Finally, we must show that the uniqueness of fixed point. Assume that there exists w ∈W such that w = Tw and w 6= ρ . By
Case 1, we get

0≤ bdb
θ
(Tw,T ρ)≤ db

θ
(w,ρ).

This implies that b≤ 1. This is a contradiction with our assumption. Hence, T has a unique fixed point.

Corollary 4.2. Let (W,db
θ
) be a complete b-θ -metric space and T : W →W be a mapping satisfies the following inequality

bdb
θ
(T ω,T ϖ)≤ αdb

θ
(ω,ϖ)

for each ω,ϖ ∈W, where α ∈ [0,1). Then, T has a unique fixed point.

Proof. It follows from Theorem 4.1 if we take b-simulation function as ς(ν ,ρ) = αρ−ν for all ν ,ρ ≥ 0.

Remark 4.3. Let (W,db
θ
) be a complete b-θ -metric space.

1. Theorem 3.4 in [8] is obtained from Theorem 4.1 by taking θ(ν ,ρ) = ν +ρ .
2. Theorem 3.3 in [7] is obtained from Theorem 4.1 by taking b = 1.

Now, we illustrate the validity of fixed point result in Theorem 4.1 by the following examples.

Example 4.4. Let W = [0,∞) and db
θ

: W ×W → [0,∞) be defined by db
θ
(ω,ϖ)) = | ω−ϖ |3. Also, we take θ(ν ,ρ) =

ν +ρ +νρ . Then, (W,db
θ
) is a complete b-θ -metric space with b = 4. Define a mapping T : W →W by T ω = ω

a for all
ω ∈W and a > 0,a 6= 1. From Theorem 4.1, T has a unique fixed point u = 0 for b-simulation function ς(ν ,ρ) = λρ−ν

where λ ≥ 4
a3 for all ν ,ρ ∈ [0,∞), since

ς(4db
θ (T ω,T ϖ),db

θ (ω,ϖ)) = λdb
θ (ω,ϖ)−4db

θ (T ω,T ϖ)

= λ (| ω−ϖ |3)−4(| T ω−T ϖ |3)

= λ (| ω−ϖ |3)−4(| ω

a
− ϖ

a
|
3
)

= (λ − 4
a3 )(| ω−ϖ |3)

≥ 0.
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Example 4.5. Let W = [0,1] and db
θ

:W×W→ [0,∞) be defined by db
θ
(ω,ϖ)= | ω−ϖ |2. Also, we take θ(ν ,ρ)=

√
ν2 +ρ2.

Then, (W,db
θ
) is a complete b-θ -metric space with b = 2

√
2. Define a mapping T : [0,1]→ [0,1] by T ω = ω√

2
+ a for all

ω ∈W and a <
√

2−1√
2

. From Theorem 4.1, T has a unique fixed point u =
√

2a√
2−1

for b-simulation function ς(ν ,ρ) = λρ−ν

where λ ≥
√

2 for all ν ,ρ ∈ [0,∞), since

ς(2
√

2db
θ (T ω,T ϖ),db

θ (ω,ϖ)) = λdb
θ (ω,ϖ)−2

√
2db

θ (T ω,T ϖ)

= λ (| ω−ϖ |2)−2
√

2(| T ω−T ϖ |2)

= λ (| ω−ϖ |2)−2
√

2(| ω√
2
− ϖ√

2
|
2
)

= (λ − 2
√

2
2

)(| ω−ϖ |2)

≥ 0.
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