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al. Powstańców Warszawy 10, 35-959 Rzeszów, POLAND

Abstract. The bihyperbolic numbers are extension of hyperbolic numbers

to four dimensions. In this paper we introduce the concept of Pell and Pell-
Lucas bihypernomials as a generalization of bihyperbolic Pell and Pell-Lucas

numbers, respectively.

1. Introduction

Let consider Pell and Pell-Lucas numbers which belong to the family of the
Fibonacci type numbers, for details see [14]. We recall that the nth Pell number Pn

is defined by Pn = 2Pn−1+Pn−2 for n ≥ 2 with P0 = 0, P1 = 1. The nth Pell-Lucas
number Qn is defined by Qn = 2Qn−1 +Qn−2 for n ≥ 2 with Q0 = Q1 = 2.

For the nth Pell number and the nth Pell-Lucas number the explicit formulas
have the form

Pn =
(1 +

√
2)n − (1−

√
2)n

2
√
2

Qn = (1 +
√
2)n + (1−

√
2)n.

The above equations are named as Binet type formulas for Pell and Pell-Lucas
numbers, respectively. For other properties of Pn andQn see [5,6,9]. In [7] Horadam
and Mahon introduced Pell and Pell-Lucas polynomials and next their properties
were studied among others in [4].
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Let x be any variable quantity. Polynomials Pn(x) and Qn(x) defined as follows

Pn(x) = 2x · Pn−1(x) + Pn−2(x) for n ≥ 2 with P0(x) = 0, P1(x) = 1

Qn(x) = 2x ·Qn−1(x) +Qn−2(x) for n ≥ 2 with Q0(x) = 2, Q1(x) = 2x

generalize Pell and Pell-Lucas numbers and they are called as Pell polynomials and
Pell-Lucas polynomials, respectively. Clearly Pn(1) = Pn and Qn(1) = Qn.

Let

α(x) = x+
√

x2 + 1, β(x) = x−
√
x2 + 1 (1)

be roots of the characteristic equation for the Pell and Pell-Lucas polynomials.
Then solving this equation we have

Pn(x) =
αn(x)− βn(x)

α(x)− β(x)
(2)

and

Qn(x) = αn(x) + βn(x), (3)

respectively.
We recall selected identities for Pell and Pell-Lucas polynomials, which will be

used in the next part of this paper.

Theorem 1. [7] Let n be an integer. Then

Pn+1(x) + Pn−1(x) = Qn(x) = 2x · Pn(x) + 2Pn−1(x), for n ≥ 1, (4)

Qn+1(x) +Qn−1(x) = 4(x2 + 1)Pn(x), for n ≥ 1, (5)

n−1∑
l=1

Pl(x) =
Pn(x) + Pn−1(x)− 1

2x
, for n ≥ 2, (6)

n−1∑
l=1

Ql(x) =
Qn(x) +Qn−1(x)− 2− 2x

2x
, for n ≥ 2. (7)

For Pell numbers and Pell polynomials we can find different generalizations given
by the kth order linear recurrence relations, k ≥ 2. One of the fundamental gener-
alization of Pell polynomials is Horadam polynomials which describe a wide family
of polynomials defined by linear recurrence relations of order two. Some properties
of the Horadam polynomials can be found in [8]. Horadam polynomials play an
important role in the theory of hypercomplex numbers, for details see [12–14]. In
this paper we will use Pell and Pell-Lucas polynomials in the theory of bihyperbolic
numbers.

Let H2 be the set of bihyperbolic numbers ζ of the form

ζ = x0 + j1x1 + j2x2 + j3x3,

where x0, x1, x2, x3 ∈ R and j1, j2, j3 /∈ R are operators such that

j2
1 = j2

2 = j2
3 = 1, j1j2 = j2j1 = j3, j1j3 = j3j1 = j2, j2j3 = j3j2 = j1. (8)
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From the definition of bihyperbolic numbers follows that their multiplication can
be made analogously to the multiplication of algebraic expressions. The addition
and the subtraction of bihyperbolic numbers is done by adding and subtracting
corresponding terms and hence their coefficients.

Since the addition and multiplication on H2 are commutative and associative,
so (H2,+, ·) is a commutative ring.

Note that bihyperbolic numbers are a generalization of hyperbolic numbers. For
the definition of hyperbolic numbers and their properties see [10, 11]. For the
algebraic properties of bihyperbolic numbers see [1].

A special kind of bihyperbolic numbers, namely bihyperbolic Pell numbers, were
introduced in [2] in the following way.

The nth bihyperbolic Pell number BhPn is defined as

BhPn = Pn + j1Pn+1 + j2Pn+2 + j3Pn+3. (9)

By analogy

BhQn = Qn + j1Qn+1 + j2Qn+2 + j3Qn+3 (10)

is the nth bihyperbolic Pell-Lucas number. Note that some combinatorial properties
of bihyperbolic Pell numbers we can find in [3].

Based on definitions of BhPn and BhQn we introduce Pell and Pell-Lucas bihy-
pernomials.

For n ≥ 0 Pell and Pell-Lucas bihypernomials are defined by

BhPn(x) = Pn(x) + j1Pn+1(x) + j2Pn+2(x) + j3Pn+3(x) (11)

and

BhQn(x) = Qn(x) + j1Qn+1(x) + j2Qn+2(x) + j3Qn+3(x), (12)

respectively. Note that BhPn(1) = BhPn and BhQn(1) = BhQn.

2. Main results

In this section we will give some identities for Pell bihypernomials and Pell-Lucas
bihypernomials.

Theorem 2. Let n ≥ 0 be an integer. For any variable quantity x, we have

BhPn(x) = 2x ·BhPn−1(x) +BhPn−2(x) for n ≥ 2 (13)

with BhP0(x) = j1 + j2 · 2x+ j3 · (4x2 + 1)
and BhP1(x) = 1 + j1 · 2x+ j2 · (4x2 + 1) + j3 · (8x3 + 4x).
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Proof. If n = 2 we have

BhP2(x) = P2(x) + j1P3(x) + j2P4(x) + j3P5(x)

= 2x+ j1 · (4x2 + 1) + j2 · (8x3 + 4x) + j3 · (16x4 + 12x2 + 1)

= 2x · (1 + j1 · 2x+ j2 · (4x2 + 1) + j3 · (8x3 + 4x))

+ j1 + j2 · 2x+ j3 · (4x2 + 1)

= 2x ·BhP1(x) +BhP0(x).

Let n ≥ 3. By the definition of Pn(x) we obtain

BhPn(x) = Pn(x) + j1Pn+1(x) + j2Pn+2(x) + j3Pn+3(x)

= (2x · Pn−1(x) + Pn−2(x)) + j1(2x · Pn(x) + Pn−1(x))

+ j2(2x · Pn+1(x) + Pn(x)) + j3(2x · Pn+2(x) + Pn+1(x))

= 2x (Pn−1(x) + j1Pn(x) + j2Pn+1(x) + j3Pn+2(x))

+ Pn−2(x) + j1Pn−1(x) + j2Pn(x) + j3Pn+1(x)

= 2x ·BhPn−1(x) +BhPn−2(x),

which ends the proof. □

Using the same method we can prove the next result.

Theorem 3. Let n ≥ 0 be an integer. For any variable quantity x, we have

BhQn(x) = 2x ·BhQn−1(x) +BhQn−2(x) for n ≥ 2

with BhQ0(x) = 2 + j1 · 2x+ j2 · (4x2 + 2) + j3 · (8x3 + 6x)
and BhQ1(x) = 2x+ j1 · (4x2 + 2) + j2 · (8x3 + 6x) + j3 · (16x4 + 16x2 + 2).

Note that some identities for BhPn(x) and BhQn(x) can be found based on
identities for Pell and Pell-Lucas polynomials mentioned in the introduction of this
paper.

Theorem 4. Let n ≥ 1 be an integer. Then

BhPn+1(x) +BhPn−1(x) = BhQn(x) = 2x ·BhPn(x) + 2BhPn−1(x).

Proof. Using (4) we have

BhPn+1(x) +BhPn−1(x)

= Pn+1(x) + j1Pn+2(x) + j2Pn+3(x) + j3Pn+4(x)

+ Pn−1(x) + j1Pn(x) + j2Pn+1(x) + j3Pn+2(x)

= (Pn+1(x) + Pn−1(x)) + j1(Pn+2(x) + Pn(x))

+ j2(Pn+3(x) + Pn+1(x)) + j3(Pn+4(x) + Pn+2(x))

= Qn(x) + j1Qn+1(x) + j2Qn+2(x) + j3Qn+3(x)

= BhQn(x).
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On the other hand

2x ·BhPn(x) + 2BhPn−1(x)

= 2x · (Pn(x) + j1Pn+1(x) + j2Pn+2(x) + j3Pn+3(x))

+ 2 (Pn−1(x) + j1Pn(x) + j2Pn+1(x) + j3Pn+2(x))

= (2x · Pn(x) + 2Pn−1(x)) + j1(2x · Pn+1(x) + 2Pn(x))

+ j2(2x · Pn+2(x) + 2Pn+1(x)) + j3(2x · Pn+3(x) + 2Pn+2(x))

= Qn(x) + j1Qn+1(x) + j2Qn+2(x) + j3Qn+3(x)

= BhQn(x).

□

Theorem 5. Let n ≥ 1 be an integer. Then

BhQn+1(x) +BhQn−1(x) = 4(x2 + 1)BhPn(x).

Theorem 6. Let n ≥ 2 be an integer. Then

n−1∑
l=1

BhPl(x) =
BhPn(x) +BhPn−1(x)−BhP0(x)−BhP1(x)

2x
.

Proof. For an integer n ≥ 2 we have

n−1∑
l=1

BhPl(x) = BhP1(x) +BhP2(x) + · · ·+BhPn−1(x)

= P1(x) + j1P2(x) + j2P3(x) + j3P4(x)

+ P2(x) + j1P3(x) + j2P4(x) + j3P5(x) + · · ·
+ Pn−1(x) + j1Pn(x) + j2Pn+1(x) + j3Pn+2(x)

= P1(x) + P2(x) + · · ·+ Pn−1(x)

+ j1(P2(x) + P3(x) + · · ·+ Pn(x) + P1(x)− P1(x))

+ j2(P3(x) + P4(x) + · · ·+ Pn+1(x) + P1(x) + P2(x)− P1(x)− P2(x))

+ j3(P4(x) + P5(x) + · · ·+ Pn+2(x) + P1(x) + P2(x) + P3(x)

− P1(x)− P2(x)− P3(x)).
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Using (6) we obtain

n−1∑
l=1

BhPl(x) =
Pn(x) + Pn−1(x)− 1

2x

+ j1

(
Pn+1(x) + Pn(x)− 1

2x
− P1(x)

)
+ j2

(
Pn+2(x) + Pn+1(x)− 1

2x
− P1(x)− P2(x)

)
+ j3

(
Pn+3(x) + Pn+2(x)− 1

2x
− P1(x)− P2(x)− P3(x)

)
=

Pn(x) + Pn−1(x)− 1

2x

+ j1
Pn+1(x) + Pn(x)− 1− 2x

2x

+ j2
Pn+2(x) + Pn+1(x)− 1− 2x− 4x2

2x

+ j3
Pn+3(x) + Pn+2(x)− 1− 2x− 4x2 − 2x(4x2 + 1)

2x

=
Pn(x) + j1Pn+1(x) + j2Pn+2(x) + j3Pn+3(x)

2x

+
Pn−1(x) + j1Pn(x) + j2Pn+1(x) + j3Pn+2(x)

2x

+
−(0 + 1)− j1(1 + 2x)− j2(2x+ (4x2 + 1))− j3((4x

2 + 1) + (8x3 + 4x))

2x

=
BhPn(x) +BhPn−1(x)−BhP0(x)−BhP1(x)

2x
.

Thus the Theorem is proved. □

Theorem 7. Let n ≥ 2 be an integer. Then

n−1∑
l=1

BhQl(x) =
BhQn(x) +BhQn−1(x)−BhQ0(x)−BhQ1(x)

2x
.

Now we give Binet type formulas for Pell and Pell-Lucas bihypernomials.

Theorem 8. (Binet type formula for Pell bihypernomials) Let n ≥ 0 be an integer.
Then

BhPn(x) =
αn(x)

α(x)− β(x)

(
1 + j1α(x) + j2α

2(x) + j3α
3(x)

)
− βn(x)

α(x)− β(x)

(
1 + j1β(x) + j2β

2(x) + j3β
3(x)

)
,

(14)
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where α(x), β(x) are given by (1).

Proof. Using (2) and (11) we obtain

BhPn(x) = Pn(x) + j1Pn+1(x) + j2Pn+2(x) + j3Pn+3(x)

=
αn(x)− βn(x)

α(x)− β(x)
+ j1

αn+1(x)− βn+1(x)

α(x)− β(x)

+ j2
αn+2(x)− βn+2(x)

α(x)− β(x)
+ j3

αn+3(x)− βn+3(x)

α(x)− β(x)

and by simple calculations the result follows. □

In the same way, using (3) and (12), we obtain the next theorem.

Theorem 9. (Binet type formula for Pell-Lucas bihypernomials) Let n ≥ 0 be an
integer. Then

BhQn(x) = αn(x)
(
1 + j1α(x) + j2α

2(x) + j3α
3(x)

)
+ βn(x)

(
1 + j1β(x) + j2β

2(x) + j3β
3(x)

)
,

(15)

where α(x), β(x) are given by (1).

Using Binet type formulas for Pell and Pell-Lucas bihypernomials we can obtain
Catalan type identity, Cassini type identity and d’Ocagne type identity for Pell and
Pell-Lucas bihypernomials.

For simplicity of notation let

α̂(x) = 1 + j1α(x) + j2α
2(x) + j3α

3(x),

β̂(x) = 1 + j1β(x) + j2β
2(x) + j3β

3(x).

Consequently we can write (14) and (15) as

BhPn(x) =
αn(x)α̂(x)− βn(x)β̂(x)

α(x)− β(x)
(16)

and

BhQn(x) = αn(x)α̂(x) + βn(x)β̂(x). (17)

Moreover,

α(x) · β(x) = −1,

α(x) + β(x) = 2x,

α(x)− β(x) = 2
√

x2 + 1,

α3(x) + β3(x) = (α(x) + β(x))3 − 3α(x)β(x)(α(x) + β(x)) = 8x3 + 6x,
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and

α̂(x) · β̂(x) = β̂(x) · α̂(x)

= 1 + j1β(x) + j2β
2(x) + j3β

3(x) + j1α(x)− 1− j3β(x)− j2β
2(x)

+ j2α
2(x)− j3α(x) + 1 + j1β(x) + j3α

3(x)− j2α
2(x) + j1α(x)− 1

= j1 (2α(x) + 2β(x)) + j3

(
α3(x) + β3(x)− α(x)− β(x)

)
= j1 · 4x+ j3

(
8x3 + 4x

)
.

Theorem 10. (Catalan type identity for Pell bihypernomials) Let n ≥ 0, r ≥ 0 be
integers such that n ≥ r. Then

BhPn−r(x) ·BhPn+r(x)− (BhPn(x))
2

=
(−1)n−r+1((x+

√
x2 + 1)r − (x−

√
x2 + 1)r)2

4x2 + 4

(
j1 · 4x+ j3

(
8x3 + 4x

))
.

Proof. By formula (16) we have

BhPn−r(x) ·BhPn+r(x)− (BhPn(x))
2

= − αn−r(x)

α(x)− β(x)
α̂(x)

βn+r(x)

α(x)− β(x)
β̂(x)− βn−r(x)

α(x)− β(x)
β̂(x)

αn+r(x)

α(x)− β(x)
α̂(x)

+
αn(x)

α(x)− β(x)
α̂(x)

βn(x)

α(x)− β(x)
β̂(x) +

βn(x)

α(x)− β(x)
β̂(x)

αn(x)

α(x)− β(x)
α̂(x)

=
αn(x)βn(x)

(α(x)− β(x))2
α̂(x)β̂(x)

2αr(x)βr(x)− (βr(x))2 − (αr(x))2

(α(x)β(x))r

=
(α(x)β(x))

n

(α(x)− β(x))2
α̂(x)β̂(x)(−1)

(αr(x)− βr(x))2

(α(x)β(x))r

=
(−1)n−r+1(αr(x)− βr(x))2

(α(x)− β(x))2
α̂(x)β̂(x),

so the result follows. □

Theorem 11. (Catalan type identity for Pell-Lucas bihypernomials) Let n ≥ 0,
r ≥ 0 be integers such that n ≥ r. Then

BhQn−r(x) ·BhQn+r(x)− (BhQn(x))
2

= (−1)n−r(αr(x)− βr(x))2 · α̂(x)β̂(x)

= (−1)n−r((x+
√
x2 + 1)r − (x−

√
x2 + 1)r)2

(
j1 · 4x+ j3

(
8x3 + 4x

))
.

Note that for r = 1 we get the Cassini type identities for Pell and Pell-Lucas
bihypernomials.



430 A. SZYNAL-LIANA, I. W LOCH, M. LIANA

Corollary 1. (Cassini type identity for Pell bihypernomials) Let n ≥ 1 be an
integer. Then

BhPn−1(x) ·BhPn+1(x)− (BhPn(x))
2

= (−1)n
(
j1 · 4x+ j3

(
8x3 + 4x

))
.

Corollary 2. (Cassini type identity for Pell-Lucas bihypernomials) Let n ≥ 1 be
an integer. Then

BhQn−1(x) ·BhQn+1(x)− (BhQn(x))
2

= (−1)n−1(4x2 + 4)
(
j1 · 4x+ j3

(
8x3 + 4x

))
.

Theorem 12. (d’Ocagne type identity for Pell bihypernomials) Let m ≥ 0, n ≥ 0
be integers such that m ≥ n. Then

BhPm(x) ·BhPn+1(x)−BhPm+1(x) ·BhPn(x)

=
(−1)n

(
αm−n(x)− βm−n(x)

)
α(x)− β(x)

α̂(x)β̂(x).

Proof. By formula (16) we have

BhPm(x) ·BhPn+1(x)−BhPm+1(x) ·BhPn(x)

=
αm+n+1(x)

(α(x)− β(x))
2 α̂

2(x)− αm(x)βn+1(x)

(α(x)− β(x))
2 α̂(x)β̂(x)

− αn+1(x)βm(x)

(α(x)− β(x))
2 β̂(x)α̂(x) +

βm+n+1(x)

(α(x)− β(x))
2 β̂

2
(x)

− αm+1+n(x)

(α(x)− β(x))
2 α̂

2(x) +
αm+1(x)βn(x)

(α(x)− β(x))
2 α̂(x)β̂(x)

+
αn(x)βm+1(x)

(α(x)− β(x))
2 β̂(x)α̂(x)−

βm+1+n(x)

(α(x)− β(x))
2 β̂

2
(x)

=

(
αm(x)βn(x)(α(x)− β(x))

(α(x)− β(x))
2 − αn(x)βm(x)(α(x)− β(x))

(α(x)− β(x))
2

)
α̂(x)β̂(x)

=
(α(x)β(x))

n

α(x)− β(x)

(
αm−n(x)− βm−n(x)

)
α̂(x)β̂(x)

=
(−1)n

(
αm−n(x)− βm−n(x)

)
α(x)− β(x)

α̂(x)β̂(x),

so the result follows. □
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Theorem 13. (d’Ocagne type identity for Pell-Lucas bihypernomials) Let m ≥ 0,
n ≥ 0 be integers such that m ≥ n. Then

BhQm(x) ·BhQn+1(x)−BhQm+1(x) ·BhQn(x)

= (−1)n+1(α(x)− β(x))
(
αm−n(x)− βm−n(x)

)
α̂(x)β̂(x).

Theorem 14. Let m ≥ 0, n ≥ 0 be integers. Then

BhPm(x) ·BhQn(x)−BhQm(x) ·BhPn(x)

=
2(−1)n(αm−n(x)− βm−n(x))

α(x)− β(x)
α̂(x)β̂(x).

Proof. By formulas (16) and (17) we have

BhPm(x) ·BhQn(x)−BhQm(x) ·BhPn(x)

=
αm(x)αn(x)

α(x)− β(x)
α̂2(x) +

αm(x)βn(x)

α(x)− β(x)
α̂(x)β̂(x)

− βm(x)αn(x)

α(x)− β(x)
β̂(x)α̂(x)− βm(x)βn(x)

α(x)− β(x)
β̂

2
(x)

− αm(x)αn(x)

α(x)− β(x)
α̂2(x) +

αm(x)βn(x)

α(x)− β(x)
α̂(x)β̂(x)

− βm(x)αn(x)

α(x)− β(x)
β̂(x)α̂(x) +

βn(x)βm(x)

α(x)− β(x)
β̂

2
(x)

=
2αm(x)βn(x)− 2βm(x)αn(x)

α(x)− β(x)
α̂(x)β̂(x)

=
2(−1)n(αm−n(x)− βm−n(x))

α(x)− β(x)
α̂(x)β̂(x),

so the result follows. □

Theorem 15. The generating function for the Pell bihypernomial sequence
{BhPn(x)} is

G(t) =
j1 + j2 · 2x+ j3 · (4x2 + 1) + (1 + j2 + j3 · 2x)t

1− 2xt− t2
.

Proof. Suppose that the generating function of the Pell bihypernomials sequence

{BhPn(x)} has the form G(t) =
∞∑

n=0
BhPn(x)t

n. Then

G(t) = BhP0(x) +BhP1(x)t+BhP2(x)t
2 + · · ·

Multiply the above equality on both sides by −2xt and then by −t2 we obtain

−G(t) · (2x)t = −BhP0(x) · (2x)t−BhP1(x) · (2x)t2 −BhP2(x) · (2x)t3 − · · ·

−G(t)t2 = −BhP0(x)t
2 −BhP1(x)t

3 −BhP2(x)t
4 − · · ·



432 A. SZYNAL-LIANA, I. W LOCH, M. LIANA

By adding these three equalities above, we will get

G(t)(1− 2xt− t2) = BhP0(x) + (BhP1(x)−BhP0(x) · (2x))t
since BhPn(x) = 2x ·BhPn−1(x) +BhPn−2(x) (see (13)) and the coefficient of tn,
for n ≥ 2, are equal to zero. Moreover, BhP0(x) = j1 + j2 · 2x + j3 · (4x2 + 1),
BhP1(x)−BhP0(x) · (2x) = 1 + j2 + j3 · 2x. □

Using the same method we give the generating function g(t) for Pell-Lucas bi-
hypernomials.

Theorem 16. The generating function for the Pell-Lucas bihypernomials sequence
{BhQn(x)} is

g(t) =
2 + j1 · 2x+ j2 · (4x2 + 2) + j3 · (8x3 + 6x)

1− 2xt− t2

+
(−2x+ 2j1 + j2 · 2x+ j3 · (4x2 + 2))t

1− 2xt− t2
.

At the end we will give the matrix generator of Pell and Pell-Lucas bihypernomi-
als.

Theorem 17. Let n ≥ 0 be an integer. Then[
BhPn+2(x) BhPn+1(x)
BhPn+1(x) BhPn(x)

]
=

[
BhP2(x) BhP1(x)
BhP1(x) BhP0(x)

]
·
[

2x 1
1 0

]n
.

Proof. (by induction on n)
If n = 0 then assuming that the matrix to the power 0 is the identity matrix the
result is obvious. Now suppose that for any n ≥ 0 holds[

BhPn+2(x) BhPn+1(x)
BhPn+1(x) BhPn(x)

]
=

[
BhP2(x) BhP1(x)
BhP1(x) BhP0(x)

]
·
[

2x 1
1 0

]n
.

We shall show that[
BhPn+3(x) BhPn+2(x)
BhPn+2(x) BhPn+1(x)

]
=

[
BhP2(x) BhP1(x)
BhP1(x) BhP0(x)

]
·
[

2x 1
1 0

]n+1

.

Using induction’s hypothesis we have[
BhP2(x) BhP1(x)
BhP1(x) BhP0(x)

]
·
[

2x 1
1 0

]n
·
[

2x 1
1 0

]
=

[
BhPn+2(x) BhPn+1(x)
BhPn+1(x) BhPn(x)

]
·
[

2x 1
1 0

]
=

[
2x ·BhPn+2(x) +BhPn+1(x) BhPn+2(x)
2x ·BhPn+1(x) +BhPn(x) BhPn+1(x)

]
=

[
BhPn+3(x) BhPn+2(x)
BhPn+2(x) BhPn+1(x)

]
,

which ends the proof. □
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Theorem 18. Let n ≥ 0 be an integer. Then[
BhQn+2(x) BhQn+1(x)
BhQn+1(x) BhQn(x)

]
=

[
BhQ2(x) BhQ1(x)
BhQ1(x) BhQ0(x)

]
·
[

2x 1
1 0

]n
.

Using algebraic operations and matrix algebra, properties of these bihypernomi-
als can be found.
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