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 Geometrical imperfection, which is generally a result of manufacturing process and service 

conditions, plays a crucial role in load-bearing capacity of shell structures. This study presents a 

numerical study on knockdown factors of cylindrical shells as a result of torsional Mode-I type of 

geometric imperfections under compressive loads. The deformation patterns obtained from liner 

bifurcation analysis (LBA) for torsional Mode-I shape are used as a source of geometric 

imperfection. Then, geometrically nonlinear buckling analysis with imperfect model (GNIA) is 

incorporated with LBA in ANSYS Workbench to obtain limit loads of imperfect structures. A 

parametric study is thus performed to investigate the influence of imperfection depth on the load-

bearing capacity considering a wide range of cylindrical shell configurations. Local and global 

buckling characteristics of the imperfect shells are examined and knockdown factors are 

characterized by three distinct regions as a basis of normalized imperfection depth. For a large 

number of shell configurations, a scattering of knockdown factors against normalized imperfection 

depth is given with mathematical expressions evolving lower and upper bounds. These expressions 

provide the minimum and maximum values of knockdown factors for a given imperfection depth, 

which can be treated as a design tool to ensure safety of the shell structure.     
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1. Introduction 

Cylindrical shells are major structural elements that are 

widely used in most industries such as, storage tanks, silos, 

launch-vehicle systems, pressure hulls and other 

engineering applications. This kind of structures is mostly 

subjected to compressive loadings due to weight of the 

structural components in which they are connected. 

Cylindrical shell structures especially undergo local or 

global buckling failure as a result of axial compression. 

For this reason, prediction of buckling load plays an 

important role in the design stage of cylindrical shells. If it 

occurs, this type of failure mode tends to rapid and 

complete destruction of the shell structure. For a perfect 

cylindrical shell structure (without any imperfection), the 

critical buckling stress is expressed by Equation1 [1]. 
 

𝜎𝑐𝑟 =
𝐸

√3(1 − 𝜇2)

𝑡

𝑅
 (1) 

where E is Young’s modulus, μ is Poisson’s ratio, t is wall 

thickness and R is cylinder radius. Load-bearing capacity 

of a shell structures is quite sensitive to geometric 

imperfections even though they are very small. A 

geometric imperfection can be described as the deviations 

of geometric features from the ideal cylindrical shape. 

Generally, the pattern of a geometric imperfection in the 

shell is a result of utilized manufacturing process and 

interactions of the components in the construction [2]. 

These imperfections cause drastic variation of the actual 

buckling load in comparison with that of the perfect (ideal) 

shell structure [3]. Donnell [4] and Flügge [5] are the first 

studies to develop non-linear formulations taking into 

account large-scale initial geometric imperfections to 

evaluate actual buckling loads of imperfect structures. 

Later, Koiter [6] proposed an analytical method to obtain 

scatterings of the experimental geometric imperfection 

trends. However, the buckling loads are very sensitive to 

the form and type of geometric imperfections. There are 

various forms of geometric imperfections of shell 

structures, for example, out of roundness, local dimple, 

eccentricity, sinusoidal wave-type deviations, etc. Each 

has a characteristic influence on the buckling load of 
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cylindrical shell structures. Many forms of geometric 

imperfections on the shell buckling have been studied in 

references [7-9].  

The knockdown factor referred to as KDF, the ratio of 

the buckling load of an imperfect cylindrical shell to the 

predicted buckling load of an ideal cylinder obtained from 

Equation 1 (Fcr=2πRtσcr) is commonly used to characterize 

influence of the geometric imperfections on the load-

bearing capacity of the shell structure.   According to a 

series of test results, an empirical design guideline was 

proposed by NASA [10] which provides lower-bound 

KDFs for the design of cylindrical shells as shown in 

Equation 2. This guideline is very conservative and 

resulting cylindrical shells would be so redundant and 

inefficient, thereby affecting the payloads for these 

structures [10].  

𝐾𝐷𝐹 = 1 − 0.92 (1 − 𝑒
−√𝑅/𝑡

16 ) (2) 

For axially compressed cylindrical shell with initial 

geometric imperfection, Evkin and Lykhachova [11] 

implemented an energy barrier method to estimate 

buckling load and knockdown factors considering elasto-

plastic buckling case. They conducted a parametric 

analysis of the structure and derived a formula for design 

buckling load which splits up the zone of the high 

sensitivity of the shell to imperfections [11]. Initial 

geometric imperfections caused by different mode shapes 

under axial compression is studied by Kim [12] to develop 

practical design equations and charts predicting buckling 

strength of cylindrical shells and tanks. Among the shell 

structures, cylindrical shells are a standard structure 

(membrane stress dominant by nature of the structure 

form) which are quite sensitive to imperfections. For this 

reason, more robust KDF’s for the design of shells are a 

primary factor for efficient construction. Several important 

studies in the literature, concerning the initial geometric 

imperfection for axially compressed cylindrical shells, are: 

(i) robust KDF’s for the design of cylindrical shells [13], 

(ii) experimental and numerical campaign on low KDF’s 

[14], (iii) improved KDF’s for composite cylindrical shells 

with geometric imperfections [15], and (iv) buckling of 

quasi-perfect cylindrical shell under axial compression 

[16].  

Type of loading is a factor that affects the geometric 

imperfection of the shell structure as well as the 

geometrical characteristics of imperfections. Combined 

loadings lead to more complex buckling responses in terms 

of geometrically imperfect structures. To increase the 

load-bearing capacity and avoid the stress-failure before 

reaching the critical load, Mahdy et al. [17] investigated 

buckling and stress-competitive failure analysis of 

composite cylindrical shells under axial compression and 

torsion. Similarly, the buckling behaviour of imperfect 

cylindrical shells subjected to torsion examined by Zhang 

and Han [18] using a singular perturbation technique. 

However, most of the studies in the available literature 

focus on a limited range of geometric imperfection 

patterns. The influence of the geometric imperfections 

caused by the torsional interactions on the buckling load 

of cylindrical shells under axial compression remains still 

unclear.  

This study presents lower and upper bound of 

knockdown factors for the geometrically imperfect 

cylindrical shells under axial compression. Torsional 

Mode-I type deformation patterns are considered as a 

geometric imperfection. The influence of deformation 

patterns and imperfection depths is examined at various 

cylindrical shell configurations. In the available literature, 

no study concerning torsional Mode-I type of geometric 

imperfections has been found for axially compressed 

cylindrical shells. In this way, this study is expected to be 

have a contribution to fill this gap in the literature.     
 

2. Material and Method  

2.1 Shell Geometry 

The geometry of a cylindrical shell structure is 

schematically illustrated in Figure 1. There are three 

independent geometric parameters in the construction of a 

cylindrical shell which are denoted as shell length L, wall 

thickness t and cylinder radius R. A reference cylindrical 

coordinate system is presented in Figure 1 at which r, θ and 

z denote radial, circumferential and vertical directions, 

respectively. Schematic illustration of a torsional Mode-I 

type of geometric imperfection is shown in Figure 1b, where 

Δw denotes the level of imperfection depth. Since the 

maximum value of the imperfection depth is critical in 

buckling behaviour, Δw is selected as an imperfection 

parameter.    

For general knockdown factor (KDF) evaluations, it is 

useful to consider normalized shell parameters. Therefore, 

dimensionless parameters, such as radius-to-thickness ratio 

R/t, ratio of the imperfection depth to the wall thickness Δw/t, 

and length-to-radius ratio L/R are used for KDF evaluation. 

To reveal influence of each normalized parameter on 

knockdown factors (KDF’s), a parametric study is performed 

in two stages as can be seen in Table 1.   

Table 1. Shell configurations for the parametric study. 

Stage I 
  

Stage II 

R/t Δw/t L/R R/t Δw/t L/R 

100 0.1 2   100 0.1 2 

200 0.2     0.2 3 

400 ⁞     ⁞ 4 

800 1     1 5 

1600 1.2     1.2 6 

 1.5     1.5  

 2     2  

 3     3  

*Factorial design methodology is considered and total number of 

tested configurations is 5x14x1+1x14x5=140.     
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Figure 1. Cylindrical shell geometry with boundary conditions and dimensions a) perfect shell structure under the action of a torsional 

moment Mz, b) axially compressed imperfect structure with the torsional Mode-I type of geometric imperfection.

In Stage I, the influence of R/t and Δw/t on KDF is 

systematically investigated at L/R=2 taking R=100 mm. In the 

second stage, a similar procedure is applied at a constant 

R/t=100 to understand the influence of L/R on the 

imperfection sensitivity.     
 

2.2 Numerical Analysis 

Details of the finite element model, boundary conditions 

and numerical analysis are presented in this section. A 

numerical model is constructed in ANSYS Workbench 

package program. Figure 1 displays the boundary conditions 

employed in the numerical model. Bottom end of the shell 

model is clamped and the top of the shell is free to move in 

u and v direction, and displacement u is applied progressively 

until the buckling occurrence as shown in Figure 1. The 

numerical analysis takes nonlinear geometry and 

imperfection referred to GNIA (geometrically nonlinear 

elastic analysis with imperfection included) into account in 

this study. An elastic material model is considered (E= 

200GPa and μ= 0.3 where E and μ are Young’s modulus and 

Poisson’s ratio, respectively) since the elastic buckling 

behaviour of the shells is investigated. Shell181, four-node 

quadrilateral shell element with large displacement 

capability, is selected for the numerical analysis. For the 

analysis of shell structures, the ideal element size is 

suggested to be 0.5√Rt [13] for the numerical analysis. For 

this reason, a variable element size according to the above 

formula is considered for each shell configuration. 

 

 

Figure 2. Torsional Mode-I deformation patterns as a source of geometric imperfection for the cylindrical shells at different geometry 

configurations. 
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2.3 Characteristics of geometric imperfection 

There are different types of initial geometric imperfections 

as a result of service conditions and manufacturing processes 

of the cylindrical shells. One of them is the localized 

geometric imperfection with a certain orientation which is 

circumferentially distributed over the cylindrical shell 

surface, as shown in Figure 1 as a result of torsional pre-

loadings. If a cylindrical shell is subjected to a torsional 

moment of Mz due to service conditions, a typical Mode-I 

deformation pattern forms. This fairly produces a geometric 

imperfection in the shell structure. It may cause a loss in the 

load-bearing capacity of the cylindrical shell under axial 

compression in service conditions. To investigate this 

phenomena, deformation patterns of the shells should be 

retrieved after applying a torsional moment of Mz to create 

an imperfect structure to be tested for axial compression. The 

deformation pattern of a particular mode shape is obtained 

by performing a linear elastic bifurcation analysis, LBA, 

(eigenvalue analysis). This kind of analysis is carried out on 

a perfect model without taking into account the 

imperfections. To extract and use the torsional Mode-I 

deformation pattern of each cylinder configuration as a 

geometric imperfection, linear buckling analysis is 

conducted and obtained results are presented in Figure 2. As 

can be seen, the mode shapes vary depending on the shell 

parameters R/t and L/R. In the linear buckling analysis, the 

maximum depth of imperfection Δw is adjusted to 1 mm. 

Therefore, a scaling factor on the deformed shell is used to 

obtained desired Δw/t values. After this step, the deformed 

cylindrical shells (imperfect shells) are subjected to axial 

compression until the buckling occurrence. A flowchart for 

determining the buckling load of an imperfect shell 

configuration is described in Figure 3. KDF of each 

configuration is calculated considering the ratio of the 

buckling load of imperfect cylindrical shells to the perfect 

(ideal) case (Fcr=2πRtσcr). 
 

3. Results and Discussion 

The results of the numerical analysis of the cylindrical shell 

configurations are presented to investigate knockdown 

factors (KDF’s) of geometrically imperfect structures. 

Equilibrium path (load-axial displacement curve) is an 

important tool to indicate the general buckling behaviour of 

an imperfect shell structure. For this reason, the load-axial 

deformation curve of a selected configuration, where 

R/t=100, L/R=2 and Δw/t=0.9, is plotted in Figure 4 for the 

assessment of general buckling behaviour. As can be seen, 

there are several critical points (A, B, C, D and E) on the 

equilibrium curve which represents local buckling, non-

linear collapse and post-buckling stages of the imperfect 

cylindrical shell. Additionally, formation of buckles and 

corresponded deformation patterns at each critical points are 

shown in Figure 4.  The results show that local buckling 

occurs as a first failure mode (Point A) and shortly 

afterwards second local buckling mode observed (Point B), 

then it results in a non-linear collapse (Point C) with a 

buckling load equals to about 310 kN. At the first local 

buckling instant, torsional deformation strips are still visible 

and shortly afterwards the mode shape turns into a different 

shape, which has circumferentially localized dimples over 

the shell surface, as seen in Figure 4 (picture for point B). 

After this point, the mode shape does not radically change 

during the non-linear collapse and post-buckling stages (see 

points D and E). However, the depth of the dimples increases 

and the number of dimples is prone to decrease during the 

loading history. It is noteworthy that the initial torsional 

deformation pattern disappears in axial compression, which 

is replaced by localized dimples.  
 

 
Figure 3. Flowchart of the non-linear buckling analysis of an imperfect cylindrical shell structure under axial compression. At the 

first step, LBA is applied to obtain torsional Mode-I type geometric imperfection. Secondly, the imperfect structure (deformed shape) 

exported to GNIA buckling analysis using a scale factor for the arrangement of imperfection depth Δw. At the last step, axial 

compression is applied to the imperfect shells until the global buckling occurrence. 
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A B C D E 

Figure 4. Load-displacement diagram of the imperfect shell with the critical buckling stages. 

Change of KDF concerning Δw/t is plotted in Figure 5 to 

evaluate the role of Δw/t on the load-bearing capacity of 

geometrically imperfect cylindrical shells. To perform this 

task, a shell configuration for which R/t and L/R equal to 100 

and 4 is selected, respectively. It is more convenient to divide 

KDF curve into three distinct regions (Region I, II and III). 

In Region I, it is seen that even very small Δw/t values cause 

a reduction of about 40% in load-bearing capacity (KDF≈0.6) 

of the cylinder. This is because cylindrical shells are a 

standard structure (membrane stress dominant) and are quite 

sensitive to imperfections. However, no additional change in 

KDF is observed until the next region since the imperfection 

depth does not reach a threshold value to induce extra 

bending stress in the shell structure.  
 

 
Figure 5. KDF vs Δw/t diagram 

On the other hand, KDF drops drastically up to Region III 

due to additional bending effects of the Δw/t values. For this 

reason, Region II at which Δw/t varies between 0.6 and 2 may 

be called a critical interval in terms of torsional Mode-I type 

imperfection sensitivity (see Figure 5). Beyond this region, 

KDF reaches a stability region in which no further changes 

are observed.   

Knockdown factor is a multivariate function of whole set 

of shell parameters such as, R/t, L/R and Δw/t. However, it is 

a quite challenging task to produce exact solutions of KDF 

as a function of the aforementioned shell parameters due to 

stochastic nature of geometric imperfections. For this reason, 

it is more practical to demonstrate a scattering of the KDF 

values for the whole set of shell families, as depicted in 

Figure 6. In this way, the variation of KDF at a certain shell 

configuration can be represented depending on the Δw/t 

values. In terms of design perspective, it is more useful to 

give lower and upper bound equations to evaluate the 

maximum and minimum KDF values at a particular Δw/t. 

Furthermore, it provides an interval for the KDF values to 

make sure that the shell structure with torsional Mode-I type 

of geometric imperfection is safe under the action of axial 

compression. The lower bound may be expressed with a 

preliminary exponential function, which is found using a trial 

error approach considering various form of mathematical 

functions, as the following: 
 

    (𝐾𝐷𝐹)𝐿𝐵 = 𝐴𝑒
−𝐵√∆𝑤/𝑡 (3) 

 

Similarly, the upper bound may be expressed with a 

preliminary power function:
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Figure 6. Scattering of  the KDF values  for the whole set of shell configurations 
 

                         (𝐾𝐷𝐹)𝑈𝐵 = 𝐶 − 𝐷(∆𝑤/𝑡)
𝑛 (4) 

where A, B, C, D and n are positive real numbers. In this 

case, proposed expressions give more accurate trend of 

lower and upper bounds than polynomial or linear 

functions. Eqs. 3 and 4 predict the limit values of KDF’s 

at a random cylindrical shell configuration regardless of 

R/t and L/R. The coefficients A, B, C, D and n are 

estimated using Least Square Method as 0.7, 0.65, 0.62, 

0.02 and 2.5, respectively. 

4. Conclusions 

The current study investigates the influence of torsional 

Mode-I type of geometric imperfections on the load-bearing 

capacity of cylindrical shells under axial compression. A 

parametric study is performed covering a wide range of 

cylindrical shell configurations. Knockdown factors (KDF’s) 

caused by the geometric imperfections are examined and 

relevant deformation patterns are illustrated. The results 

obtained from the current study are highlighted as the 

followings: 

• It is concluded that even an inconsiderable amount of 

geometric imperfection depth may cause nearly 40% 

reduction in the load-bearing capacity of the 

cylindrical shells having a torsional Mode-I type of 

geometric imperfection.  

• It is seen that KDF slightly increases with the 

increasing values of R/t and L/R. This is an indication 

of lower imperfection sensitivity to higher values of 

both R/t and L/R. 

• The influence of Δw/t on the knockdown factor (KDF) 

can be characterized by three distinct regions: The 

first region is accepted to be a plateau indicating the 

threshold value of Δw/t for additional decrement of 

KDF. The second region is the critical range of the 

Δw/t values. No considerable change in KDF is 

achieved in the last region. 

• The KDF values emerge a stochastic distribution (no 

visible correlation with the shell parameters) and it is 

difficult to establish an efficient relationship. 

However, Eqs. 3 and 4 are proposed to estimate a 

local minima and maxima of KDF’s stochastic 

distribution as a function of Δw/t.        
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