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• This paper focuses on single solitary wave and wave generation solutions of the RLW equation.  

• An effective algorithm is proposed for numerical solution of the RLW equation.  

• High accurate solutions of the RLW equation were obtained.  
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Abstract 

In this paper, high accurate numerical solutions of the regularised long-wave (RLW) equation is 

going to be obtained by using effective algorithm including finite difference method, differential 

quadrature and Rubin-Graves type linearization technique. Solitary wave solutions and 

Maxwellian initial condition based wave generation solutions are obtained successfully. To 

observe the development of the present algorithm, the present numerical results are compared 

with many earlier works. The present results are seen as superior among the given ones. The rates 

of the convergence are also given. 
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1. INTRODUCTION 

 

Benjamin et al. [1] developed the mathematical theory of the RLW equation (or also BBM equation) as 

 

𝑈𝑡 + 𝑈𝑥 + 𝜀𝑈𝑈𝑥 − 𝜇𝑈𝑥𝑥𝑡 = 0 .                                                                      (1) 

 

The RLW equation is an important model for long waves. The RLW equation can not completely integrable. 

So, RLW equation doesn’t have N-soliton solutions but it has stable solitary wave solution [2]. The RLW 

equation was used to describe surface water waves, acoustic-gravity waves, acoustic waves in anharmonic 

crystals and hydromagnetic waves in cold plasma [2]. The RLW equation has been solved analytically [3–

8]. Numerical solutions of the RLW equation are obtained by many scientist using various methods. For 

instance, finite difference method, collocation method, Galerkin method, least squares method, Fourier 

pseudospectral method, variational iteration method and Adomian decomposition method have been used 

[9–35]. 

 

There are many numerical methods in the literature [36-38]. The main motivation of the present approach 

is to gather two effective numerical methods and obtain the powerful algorithm. One of the classical 

numerical method is finite difference method (FDM) and the other numerical method is differential 

quadrature method (DQM). Bellman et al. [39] suggested DQM for approximating of the differential 

equations. In the past decades, many different base functions have been used for numerical solutions of the 

differential equations [40–47].  
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2. METHODOLOGY 

 

DQM can be described as derivative value of any smooth function at grid points by linear combination of 

all functional values of grid points inside of the solution interval. The simple presentation of the DQM may 

be given as follows 

 

𝑑(𝑟)𝑓(𝑥𝑖)

𝑑𝑥(𝑟)
= ∑𝑚𝑖𝑗

(𝑟)
𝑓(𝑥𝑗)

𝑁

𝑗=1

 . 

 

By using quartic B-splines [48] for obtaining the first order weighting coefficients 

 

𝑑𝑄𝑘(𝑥𝑖)

𝑑𝑥
= ∑ 𝑚𝑖𝑗

(1)
𝑄𝑘(𝑥𝑗)

𝑘+2

𝑗=𝑘−1

,    𝑘 = −1, 0, … ,𝑁 + 1,   𝑖 = 1, 2, … ,𝑁                                                           (2) 

 

is obtained. After the quartic B-splines are used in Equation (2), an equation system including 3 more 

unknowns than equations is obtained. In order to create a solvable equation system, the derivative of 

Equation (2) for the three B-splines {𝑄−1, 𝑄𝑁 ,  𝑄𝑁+1} is obtained and used to get solvable equation system. 

Weighting coefficients of the first grid point 𝑥1 are determined by solution of equation system 

                                             

[𝐾][𝑌1
1] = [𝐶1

1] 
 

where 

 

𝐾 =

[
 
 
 
 
 
 
 
8 14 2
1 11 11 1
⋱ ⋱ ⋱ ⋱

1 11 11 1
2 14 8

30 42]
 
 
 
 
 
 
 

(𝑁+3)×(𝑁+3)

, 

 

[𝑌1
1] = [𝑚1,−1

(1)
,𝑚1,0

(1)
,𝑚1,1

(1)
,𝑚1,2

(1)
, … ,𝑚1,𝑁

(1)
,𝑚1,𝑁+1

(1)
  ]

(𝑁+3)×1

𝑇
    , 

 

and 

 

[𝐶1
1] = [−

7

ℎ
,− 

12

ℎ
,
12

ℎ
,
4

ℎ
, 0…0  0  ]

(𝑁+3)×1

𝑇

   . 

 

Weighting coefficients for 𝑚𝑝𝑗
(1)

, 𝑗 = −1, 0, … ,𝑁 + 1 at mesh points 𝑥𝑝, 2 ≤ 𝑝 ≤ 𝑁 − 1 are obtained by 

solution of the equation system: 

 

[𝐾][𝑌𝑝
1] = [𝐶𝑝

1] 

 

where 

 

[𝑌𝑝
1] = [𝑚𝑝,−1

(1)
, … ,𝑚𝑝,𝑝−3

(1)
,𝑚𝑝,𝑝−2

(1)
,𝑚𝑝,𝑝−1

(1)
,𝑚𝑝,𝑝

(1)
,𝑚𝑝,𝑝+1

(1)
,𝑚𝑝,𝑝+2

(1)
, … , 𝑚𝑝,𝑁+1

(1)
  ]

(𝑁+3)×1

𝑇
    , 

 

and 
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[𝐶𝑝
1] = [0,… ,0, − 

4

ℎ
,−

12

ℎ
,
12

ℎ
,
4

ℎ
, 0…0   ]

(𝑁+3)×1

𝑇

   . 

 

For the last mesh point 𝑥𝑁 weighting coefficients 𝑚𝑁𝑗
(1)

, 𝑗 = −1, 0, … ,𝑁 + 1 are obtained by the solution 

of the equation system: 

 

[𝐾][𝑌𝑁
1] = [𝐶𝑁

1] 
 

where 

 

[𝑌𝑁
1] = [𝑚𝑁,−1

(1)
,𝑚𝑁,0

(1)
… ,𝑚𝑁,𝑁−3

(1)
,𝑚𝑁,𝑁−2

(1)
,𝑚𝑁,𝑁−1

(1)
, 𝑚𝑁,𝑁

(1)
,𝑚𝑁,𝑁+1

(1)
  ]

(𝑁+3)×1

𝑇
    , 

 

and 

 

[𝐶𝑁
1] = [0,0,… ,0, − 

4

ℎ
,−

12

ℎ
,
9

ℎ
,
53

ℎ
   ]

(𝑁+3)×1

𝑇

   . 

 

The same methodology is used to obtain the second order weighting coefficients. 

 

3. APPLICATION OF METHOD 

 

One of the significant type of the FDM namely the Crank-Nicolson approximation [49] is applied to the 

Equation (1) 

 

𝑈𝑛+1 − 𝑈𝑛

Δ𝑡
+

𝑈𝑥
𝑛+1 + 𝑈𝑥

𝑛

2
+ 𝜀

(𝑈𝑈𝑥)
𝑛+1 + (𝑈𝑈𝑥)

𝑛

2
− 𝜇

𝑈𝑥𝑥
𝑛+1 − 𝑈𝑥𝑥

𝑛+1

Δ𝑡
= 0,                                               (3) 

 

obtained and Equation (3) is arranged as follow, 

 

2𝑈𝑛+1 + Δ𝑡[𝑈𝑥
𝑛+1 + 𝜀(𝑈𝑈𝑥)

𝑛+1] − 2𝜇𝑈𝑥𝑥
𝑛+1 = 2𝑈𝑛 − Δ𝑡[𝑈𝑥

𝑛 + 𝜀(𝑈𝑈𝑥)
𝑛] − 2𝜇𝑈𝑥𝑥

𝑛  .                            (4) 

 

Rubin and Graves type linearization process [50] is applied to Equation (4) to deal with the nonlinear terms. 

 

(𝑉𝑉𝑥)
𝑛+1 = 𝑉𝑛+1𝑉𝑥

𝑛 + 𝑉𝑛𝑉𝑥
𝑛+1 − 𝑉𝑛𝑉𝑥

𝑛, 
 

(𝑉𝑉𝑥)
𝑛 = 𝑉𝑛𝑉𝑥

𝑛. 
 

Accordingly, nonlinear terms are dealt with and 

 

2𝑈𝑛+1 + Δ𝑡[𝑈𝑥
𝑛+1 + 𝜀(𝑈𝑛𝑈𝑥

𝑛+1 + 𝑈𝑛+1𝑈𝑥
𝑛)] − 2𝜇𝑈𝑥𝑥

𝑛+1 = 2𝑈𝑛 − Δ𝑡𝑈𝑥
𝑛 − 2𝜇𝑈𝑥𝑥

𝑛  ,                                (5) 

 

obtained. Some notations are used to simplify Equation (5) as follows 

 

𝐴𝑖
𝑛 = ∑𝑚𝑖𝑗

(1)
𝑈𝑗

𝑛 = 𝑈𝑥𝑖
𝑛 ,

𝑁

𝑗=1

          𝐵𝑖
𝑛 = ∑𝑚𝑖𝑗

(2)
𝑈𝑗

𝑛 = 𝑈𝑥𝑥𝑖
𝑛 ,

𝑁

𝑗=1

                                                                                  (6) 

 

where 𝐴𝑖
𝑛 is the first-order derivative approach of 𝑈 function related to the 𝑛 -th time level on grid points 

𝑥𝑖 and 𝐵𝑖
𝑛 is the second-order derivative approach of 𝑈 function at the 𝑛 -th time level on grid points 𝑥𝑖. 

We have used those notations (6) in Equation (5) and found out that 
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2𝑈𝑖
𝑛+1 + Δ𝑡 [∑𝑚𝑖𝑗

(1)
𝑈𝑗

𝑛+1 + 𝜀 (𝑈𝑖
𝑛 ∑𝑚𝑖𝑗

(1)
𝑈𝑗

𝑛+1

𝑁

𝑗=1

+ 𝐴𝑖
𝑛𝑈𝑖

𝑛+1)

𝑁

𝑗=1

] − 2𝜇 ∑𝑚𝑖𝑗
(2)

𝑈𝑗
𝑛+1 = 𝑆𝑖

𝑛 ,                 (7)

𝑁

𝑗=1

 

 

where 

 

𝑆𝑖
𝑛 = 2𝑈𝑖

𝑛 − Δ𝑡𝐴𝑖
𝑛 − 2𝜇𝐵𝑖

𝑛   for   𝑖 = 1, 2, … ,𝑁. 
 

Then Equation (7) is classified as below 

 

[2 + Δ𝑡 (𝑚𝑖𝑖
(1)

+ 𝜀 (𝑈𝑖
𝑛𝑚𝑖𝑖

(1)
+ 𝐴𝑖

𝑛)) − 2𝑚𝑖𝑖
(2)

]𝑈𝑖
𝑛+1 

+[ ∑ [Δ𝑡 (𝑚𝑖𝑗
(1)

+ 𝜀𝑈𝑖
𝑛𝑚𝑖𝑗

(1)
) − 2𝜇𝑚𝑖𝑗

(2)
]𝑈𝑗

𝑛+1

𝑁

𝑗=1,𝑖≠𝑗

] = 𝑆𝑖
𝑛  .                                                                              (8) 

 

The matrix form of the Equation System (8) has been given as below 

 

[
 
 
 
 

𝐾1,1 𝐾1,2 … 𝐾1,𝑁

𝐾2,1 𝐾2,2 … 𝐾2,𝑁

⋮ ⋮ ⋱ ⋮
𝐾𝑁−1,1 𝐾𝑁−1,2 … 𝐾𝑁−1,𝑁

𝐾𝑁,1 𝐾𝑁,2 … 𝐾𝑁,𝑁 ]
 
 
 
 

[
 
 
 
 
 
𝑈1

𝑛+1

𝑈2
𝑛+1

⋮
𝑈𝑁−1

𝑛+1

𝑈𝑁
𝑛+1]

 
 
 
 
 

=

[
 
 
 
 

𝑆1
𝑛

𝑆2
𝑛

⋮
𝑆𝑁−1

𝑛

𝑆𝑁
𝑛 ]

 
 
 
 

 .                                                                                             (9) 

 

Lastly, the system of Equations (9) is arranged by using the boundary conditions. To get the square solvable 

matrix, the first and last equations are eliminated. So, 

 

[
 
 
 
 

𝐾2,2 𝐾2,3 … 𝐾2,𝑁−1

𝐾3,2 𝐾3,3 … 𝐾3,𝑁−1

⋮ ⋮ ⋱ ⋮

𝐾𝑁−1,2 𝐾𝑁−1,3 … 𝐾𝑁−1,𝑁−1]
 
 
 
 

[
 
 
 
 
𝑈2

𝑛+1

𝑈3
𝑛+1

⋮

𝑈𝑁−1
𝑛+1]

 
 
 
 

=

[
 
 
 
 
 

𝑆2
𝑛 − 𝐾2,1𝑈1

𝑛+1 − 𝐾2,𝑁𝑈𝑁
𝑛+1

𝑆3
𝑛 − 𝐾3,1𝑈1

𝑛+1 − 𝐾3,𝑁𝑈𝑁
𝑛+1

⋮

𝑆𝑁−1
𝑛 − 𝐾𝑁−1,1𝑈1

𝑛+1 − 𝐾𝑁−1,𝑁𝑈𝑁
𝑛+1]

 
 
 
 
 

 ,     

 

solvable matrix system is obtained. 

 

3.1. Local Truncation Error (LTE) 

 

A new notation is used to display Equation (1) as follows [51] 

 

𝜕

𝜕𝑡
(
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
−

1

𝜇
𝑢(𝑥, 𝑡)) =

1

𝜇
(
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
+ 𝜀𝑢(𝑥, 𝑡)

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
) 

 

and Crank-Nicolson scheme is used to derive 

 

(
𝜕2𝑢(𝑥𝑖, 𝑡𝑗+1)

𝜕𝑥2
−

1

𝜇
𝑢(𝑥𝑖, 𝑡𝑗+1)) − (

𝜕2𝑢(𝑥𝑖 , 𝑡𝑗)

𝜕𝑥2
−

1

𝜇
𝑢(𝑥𝑖, 𝑡𝑗)) =

𝑘

4𝜇ℎ
(1 + 𝜀𝑢(𝑥𝑖, 𝑡𝑗+1)) 

 

× (𝑢(𝑥𝑖+1, 𝑡𝑗+1) − 𝑢(𝑥𝑖−1, 𝑡𝑗+1)) +
𝑘

4𝜇ℎ
(1 + 𝜀𝑢(𝑥𝑖, 𝑡𝑗)) (𝑢(𝑥𝑖+1, 𝑡𝑗) − 𝑢(𝑥𝑖−1, 𝑡𝑗)) + 𝑂(𝑘3 + 𝑘ℎ2). 
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4. RESULTS AND DISCUSSIONS 

 

The error norms 𝐿2 and 𝐿∞ are calculated to observe the accuracy of the present method, respectively: 

 

𝐿2 = √ℎ∑ |𝑈𝑗 − 𝑢𝑗|
2𝑁

𝑗=1  ,      𝐿∞ = max
1≤𝑗≤𝑁

|𝑈𝑗 − 𝑢𝑗|  . 

 

Another measurement of the accuracy of the numerical methods are invariants. The three invariants 

formulae are given by Olver [52] and calculated for RLW equation in the present paper 

 

𝐼1 = ∫ 𝑈𝑑𝑥
𝑏

𝑎
 ,   𝐼2 = ∫ [𝑈2 + 𝜇(𝑈𝑥)

2]𝑑𝑥
𝑏

𝑎
  ,   𝐼3 = ∫ [𝑈3 + 3𝑈2]𝑑𝑥

𝑏

𝑎
. 

 

To control the effectiveness of the suggested method numerical values are compared with analytic values 

that given by Zaki [29] 

 

𝐼1 =
6𝐶

𝑘
 ,   𝐼2 =

12𝐶2

𝑘
+

48𝑘𝜇𝐶2

5
  ,   𝐼3 =

36𝐶2(4𝐶+5)

5𝑘
. 

 

To be able to calculate the rate of convergence, following formulae is used 

 

𝑅𝑂𝐶 =
ln(𝑒𝑟𝑟𝑜𝑟(𝑁2)/𝑒𝑟𝑟𝑜𝑟(𝑁1))

ln((𝑁1)/(𝑁2))
  . 

 

4.1. Different Applications of the Single Solitary Wave 

 

The single solitary wave for the RLW equation has analytical solution as below 

 

𝑈(𝑥, 𝑡) = 3𝐶𝑠𝑒𝑐ℎ2(𝑘𝑥 − 𝑘𝑣𝑡 − 𝑘𝑥0) ,                                                                                                    (10) 

 

where 

 

𝑣 = 1 + 𝜀𝐶   ,     

 

 𝑘 = √
𝜀𝐶

4𝜇𝑣
    

 

The velocity of the single solitary wave is represented by 𝑣, amplitude of the wave is represented by 3𝐶 

and the width of the wave is represented by 𝑘. The position of the wave is initially is 𝑥0 and by the 

simulation is run, wave moves to the right direction. The initial condition is obtained from analytical 

solution (10) by using initial time 𝑡 = 0 

 

𝑈(𝑥, 0) = 3𝐶𝑠𝑒𝑐ℎ2(𝑘𝑥 − 𝑘𝑥0) .                                                                                                     

 

The boundary conditions of Equation (1) are the 𝑈(±∞, 𝑡) = 0. The present method is checked and 

compared with earlier works and analytical results by solving the RLW equation for various amplitude 

values and solution domain values. 

 

1.A. Firstly, the constant parameters 𝜀 = 𝜇 = 1, 𝐶 = 0.1 and 𝑥0 = 0 are chosen over the solution domain 

−40 ≤ 𝑥 ≤ 60 to be able to compare with earlier works. A simulation of the single solitary wave has been 

run until 𝑡 = 20. The solitary wave preserved its amplitude, velocity and shape during movement towards 

right. The peak location and the amplitude of the wave is given in Table 1. The numerical illustration of the 

single solitary wave is given in Figure 1 with Δ𝑡 = 0.1 and N = 91. As it seen from Table 1 and Figure 1 

that the shape of the wave is preserved and the amplitude of the wave changed for miserable values. Error 

values for the end of the simulation 𝑡 = 20 are given in Figure 1. The error norms and the three invariants 
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are calculated and they are compared with those of 34 various applications [9, 11–27, 29–31] in Table 2. 

By using the same time increment Δ𝑡 = 0.1, the present algorithm has the smallest error norms 𝐿2 and 𝐿∞ 

as 1.3030 × 10−4 and 4.730 × 10−5, respectively at time 𝑡 = 20. The three invariants are calculated 

analytically [29] as 𝐼1 = 3.9799497484265, 𝐼2 = 0.810462494225, 𝐼3 = 2.5790074369804, 

respectively. The present numerical invariants are in good agreement with those of analytic values. The 

development of the three invariants during the simulation is plotted in Figure 2. Table 3 shows the 

calculated values of the rate of convergence and the error norms. 

 

Table 1. 1.A. The peak locations and the amplitude values for Δ𝑡 = 0.1 on −40 ≤ 𝑥 ≤ 60 

 𝐶 = 0.1 𝐶 = 0.03 

t Peak Position(x) Amplitude (U) Peak Position(x) Amplitude (U) 

0 0.00000 0.30000 0.00000 0.09000 

5 5.55556 0.29999 5.00000 0.08998 

10 11.11111 0.29993 10.00000 0.08994 

15 16.66667 0.29983 15.62500 0.08998 

20 22.22222 0.29968 20.62500 0.09000 

 

 

 

Figure 1. 1.A. Single solitary wave movement and maximum error for 𝐶 = 0.1  at time 𝑡 = 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 1.A. Behaviour of the three invariants 𝐶 = 0.1 
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Table 2. 1.A. The error norms and the three invariants: 𝐶 = 0.1, Δ𝑡 = 0.1 on −40 ≤ 𝑥 ≤ 60 
Method N t 𝐿2 × 103  𝐿∞ × 103 𝐼1 𝐼2 𝐼3 

Present 91 0 - - 3.97993 0.81046 2.57901 

  5 0.04569 0.01839 3.97993 0.81046 2.57901 

  10 0.07981 0.02967 3.97992 0.81046 2.57901 

  15 0.10623 0.03852 3.97992 0.81046 2.57901 

  20 0.13030 0.04730 3.97987 0.81046 2.57901 

FDM[9] 1001 20 0.55 0.21 3.97997 0.81045 2.57901 

Coll.[12] 1001 20 - 0.308 3.97988 0.81046 2.57900 

Coll.[13] 801 20 0.301 0.114 3.97996 0.81027 2.57839 

Coll. [14]MQ 801 20 0.20691 0.07802 3.97988 0.81046 2.57900 

Coll. [14]IMQ 801 20 0.20691 0.07802 3.97987 0.81046 2.57900 

Coll. [14]IQ 801 20 0.20691 0.07802 3.97988 0.81046 2.57900 

Coll. [14]GA 801 20 0.20691 0.07802 3.97988 0.81046 2.57900 

Coll. [14]TPS 801 20 0.20714 0.07815 3.97988 0.81046 2.57900 

Coll. [15]QBCM1 801 20 0.21519 0.08295 3.97987 0.81046 2.57900 

Coll. [15]QBCM2 801 20 0.35667 0.12968 3.97988 0.81046 2.57900 

Coll. [15]QBCM3 801 20 0.21519 0.08295 3.97987 0.81046 2.57900 

Coll. [16] 129 20 0.17974 0.06799 3.97991 0.81046 2.57900 

Coll. [17] 1001 20 0.53223 0.22722 3.97803 0.80972 2.57657 

Coll. [18] 801 20 0.30 0.116 3.97988 0.81027 2.57839 

Coll. [19]QBCM1 801 20 0.215 0.083 3.97995 0.81046 2.57901 

Coll. [19]QBCM2 801 20 0.357 0.129 3.97995 0.81046 2.57901 

Coll. [19]QBCM1 1001 20 0.215 0.083 3.97996 0.81046 2.57901 

Coll. [19]QBCM2 1001 20 0.357 0.129 3.97996 0.81046 2.57901 

Galerkin [20] 801 20 0.219 0.086 3.97988 0.81046 2.57901 

Galerkin [21] 501 20 1.7569 0.68432 3.9800 0.8104 2.5792 

Galerkin [22] 801 20 0.26685 0.09146 3.97972 0.81026 2.57873 

Galerkin [23] 1001 20 0.217 0.084 3.97989 0.81046 2.57901 

Galerkin [24]QBGM1  801 20 0.192 0.073 3.97988 0.81046 2.57900 

Galerkin [24]QBGM2 801 20 0.355 0.128 3.97988 0.81046 2.57900 

Galerkin [24]QBGM1 1001 20 0.192 0.073 3.97988 0.81046 2.57900 

Galerkin [24]QBGM2 1001 20 0.355 0.129 3.97988 0.81046 2.57900 

Galerkin [25] 801 20 0.192 0.073 3.97989 0.81046 2.57901 

Galerkin [25] 1001 20 0.192 0.074 3.97989 0.81047 2.57901 

Galerkin [26] 801 20 0.511 0.198 3.98206 0.81116 2.58133 

Galerkin [27] 1001 20 0.220 0.086 3.97989 0.81046 2.57902 

FDM [11, 27]  1001 20 196.1 67.35 4.41219 0.89734 2.85361 

Bub-Gal. [29] 801 20 0.71913 0.25398 3.97989 0.80925 2.57501 

L-S [30] 801 20 4.688 1.755 3.98203 0.80865 2.57302 

L-S [31] 801 20 2.157 - 3.99046 0.82345 2.67399 

 

Table 3. 1.A. The error norms and the rate of convergence at 𝑡 = 20: 𝐶 = 0.1, Δ𝑡 = 0.1 on 

 −40 ≤ 𝑥 ≤ 60 

N 𝐿2 × 103 ROC 𝐿∞ × 103 ROC 

21 101.28714 - 26.72919 - 

31 30.02020 3.12246 8.58606 2.91583 

51 1.85904 5.58777 0.72326 4.96973 

71 0.31324 5.38256 0.09773 6.04967 

91 0.13030 3.53425 0.04730 2.92408 
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1.B. Secondly, the same parameters with in Application 1.A. are chosen except for C = 0.03. The numerical 

solutions for this situation are obtained by using Δ𝑡 = 0.1 and N = 161. The numerical movement of the 

solitary wave which has smaller amplitude is given in Figure 3. The solitary wave preserved its amplitude, 

velocity and shape during movement towards right. The error values for the time 𝑡 = 20 are given in Figure 

3. The error norms 𝐿2 and 𝐿∞ are computed at time 𝑡 = 20 as 5.8878 × 10−4  and 2.1794 × 10−4, 

respectively. The peak position and the amplitude of the wave are given in Table 1. The amplitudes are 

seen almost constant. Table 4 shows a detailed report about the error norms. Some of the earlier results are 

added to the Table 4 for clear comparison. Undoubtedly it is seen that the present algorithm produced better 

results than those of the given works. Besides those, the three invariants are calculated. The analytic values 

of the three invariants are calculated with formulae given by Zaki [29] as 𝐼1 = 2.1094074997496, 𝐼2 =
0.1273017186257, 𝐼3 = 0.3888059903539, respectively. The present numerical invariants are in good 

agreement with those of analytical values. The development of the three invariants during the simulation 

are plotted in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 1.B. Single solitary wave movement and maximum error for 𝐶 = 0.03  at time 𝑡 = 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 1.B. Behaviour of the three invariants 𝐶 = 0.03 

 

Table 4. 1.B. The error norms and the three invariants: 𝐶 = 0.03, Δ𝑡 = 0.1 on −40 ≤ 𝑥 ≤ 60 
Method N t 𝐿2 × 103  𝐿∞ × 103 𝐼1 𝐼2 𝐼3 

Present 161 0 - - 2.10716 0.12734 0.38880 

  5 0.50178 0.25334 2.10694 0.12730 0.38880 

  10 0.58002 0.23788 2.10655 0.12730 0.38880 

  15 0.58626 0.22906 2.10594 0.12730 0.38880 

  20 0.58878 0.21794 2.10436 0.12730 0.38880 

FDM[9] 1001 20 0.638 0.233 2.109 0.12730 0.38880 

FDM[10] Δ𝑡 = 0.2 1001 20 0.642 0.233 2.10949 0.12730 0.38880 

Galerkin [28] 801 20 - 0.4315 2.10458 0.12730 0.38880 

FDM [11, 27] 1001 20 14.45 3.996 2.333 0.14081 0.43005 

Bub-Gal. [29] 2000 20 0.70663 0.70663 2.10238 0.12691 0.38759 
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Cos-DQM [32] 34 20 0.662 0.221 2.10352 0.12730 0.38880 

 

1.C. For the third application, the same parameters with in Application 1.B. are chosen except for the 

solution domain −80 ≤ 𝑥 ≤ 120. The numerical solutions are obtained by using Δ𝑡 = 0.1 and N = 141. 

Figure 5 shows the movement of the single solitary wave and error value at time 𝑡 = 20. The error norms 

𝐿2 and 𝐿∞ are computed at time 𝑡 = 20 as 9.04 × 10−6 and 2.65 × 10−6, respectively. Table 5 displays a 

detailed information about the error norms and the three invariants. Some of the earlier works are given 

with the present results in Table 5. Undoubtedly it is seen that the present algorithm produced better results 

than the given works. The analytic values of the three invariants are calculated with formulae given by Zaki 

[29] as 𝐼1 = 2.1094074997496, 𝐼2 = 0.1273017186257, 𝐼3 = 0.3888059903539, respectively.  The 

present numerical invariants are in good agreement with those of analytic values. The development of the 

three invariants during the simulation is plotted in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 1.C. Single solitary wave movement and maximum error for 𝐶 = 0.03  at time 𝑡 = 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 1.C. Behaviour of the three invariants 𝐶 = 0.03 
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Table 5. 1.C. The error norms and the three invariants: 𝐶 = 0.03, Δ𝑡 = 0.1 on −80 ≤ 𝑥 ≤ 120 
Method N t 𝐿2 × 103  𝐿∞ × 103 𝐼1 𝐼2 𝐼3 

Present 141 0 - - 2.10941 0.12730 0.38881 

  5 0.00239 0.00071 2.10941 0.12730 0.38881 

  10 0.00465 0.00138 2.10941 0.12730 0.38881 

  15 0.00688 0.00206 2.10940 0.12730 0.38881 

  20 0.00904 0.00265 2.10940 0.12730 0.38881 

FDM[9] 801 20 0.05460 0.01647 - - - 

Coll. [16] 129 20 0.01367 0.00372 2.10940 0.12730 0.38880 

Galerkin [26] 801 20 0.106 0.041 - - - 

Bub-Gal. [29] 800 20 0.03097 0.00936 2.10972 0.12723 0.28887 

Bub-Gal. [29] 1000 20 0.05222 0.01326 2.10970 0.12734 0.38892 

Bub-Gal. [29] 2000 20 0.02746 0.01193 2.10938 0.12730 0.38879 

Bub-Gal. [29] 4000 20 0.56067 0.13688 2.10600 0.12690 0.38750 

L-S [30] 801 20 0.255 0.095 - - - 

Cos-DQM [32] 34 20 0.662 0.221 2.10941 0.12730 0.38881 

 

4.2. Wave Generation 

 

The second test problem is wave generation which is based on Maxwellian initial condition problem of the 

RLW equation which has initial condition as below, 

 

𝑈(𝑥, 0) = 𝑒(−(𝑥−7)2) . 

 

To be able to generate the waves with Maxwellian initial condition fixed value of the 𝜀 = 1 and different 

values of the parameter μ is chosen. All of the applications are studied over the fixed domain 0 ≤ 𝑥 ≤ 50. 

 

2.A. For the first application of the wave generation for value of 𝜇 = 0.04 is chosen. The numerical 

solutions are obtained by using Δ𝑡 = 0.05 and 𝑁 = 321 up to time 𝑡 = 25. The three invariants are given 

in Table 6. They are observed almost constant. The development of the three invariants during the 

simulation are plotted in Figure 7. The generation of the wave for 𝜇 = 0.04  is illustrated in Figure 8. At 

the final of the run, at time 𝑡 = 25 behind the leading wave, a tail is seen. 

 

Table 6. 2. The three invariants of the wave generation for various values of 𝜇 
𝜇 Δ𝑡 N t 𝐼1 𝐼2 𝐼3 

0.04 0.05 321 0 1.77245 1.30345 4.78327 

   5 1.77245 1.30402 4.78612 

   10 1.77245 1.30403 4.78617 

   15 1.77245 1.30402 4.78616 

   20 1.77245 1.30402 4.78616 

   25 1.77245 1.30402 4.78616 

0.01 0.05 321 0 1.77245 1.26585 4.78327 

   5 1.77249 1.27674 4.82553 

   10 1.77214 1.27492 4.81834 

   15 1.77252 1.27190 4.80890 

   20 1.77240 1.26889 4.79943 

   25 1.77199 1.26609 4.79002 

0.001 0.01 1201 0 1.77245 1.25457 4.78327 

   5 1.77245 1.25971 4.80468 

   10 1.77236 1.25827 4.79955 

   15 1.77240 1.25649 4.79347 

   20 1.77236 1.25482 4.78736 

   25 1.77227 1.25331 4.78122 
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Figure 7. 2.A, 2.B, 2.C. The invariants of the wave generation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. 2.A. The generation of the waves:𝜇 = 0.04 

 

2.B. For the second application of the wave generation for value of 𝜇 = 0.01  is chosen. The numerical 

solutions are obtained by using Δ𝑡 = 0.05 and 𝑁 = 321 up to time 𝑡 = 25. The three invariants are given 

in Table 6. They are observed almost constant. The development of the three invariants during the 

simulation are plotted in Figure 7. The generation of the wave for 𝜇 = 0.01  is illustrated in Figure 9. At 

the final of the run, at time 𝑡 = 25 three waves are generated. 
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Figure 9. 2.B. The generation of the waves:𝜇 = 0.01 

 

2.C. For the second application of the wave generation for value of 𝜇 = 0.001  is chosen. The numerical 

solutions are obtained by using Δ𝑡 = 0.01 and 𝑁 = 1201 up to time 𝑡 = 25. The three invariants are given 

in Table 6. They are observed almost constant. The development of the three invariants during the 

simulation is given in Figure 7. The generation of the wave for 𝜇 = 0.001  is illustrated in Figure 10. At 

the final of the run, at time 𝑡 = 25 nine waves are generated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. 2.C. The generation of the waves:𝜇 = 0.001 
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5. CONCLUSION 

 

In this work, an effective algorithm is used to obtain numerical solutions of the RLW equation. Three 

fundamental components of the algorithm are differential quadrature method, finite difference method and 

Rubin-Graves type linearizing technique. Solitary wave solution and wave generation solutions are 

obtained successfully. Two error norms and the three invariants are calculated and compared with other 

numerical results and analytical results. The rates of the convergence are calculated and reported. The 

present algorithm considerably improved the numerical solution of the RLW equation and may be useful 

for future investigations. 
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