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On Morgan-Voyce Polynomials Approximation For
Linear Differential Equations
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ABSTRACT. In this paper, a matrix method for approximately solving
certain linear differential equations is presented. This method is called
Morgan-Voyce matrix method and converts a linear differential equation
into a matrix equation. Then, the equation reduces to a matrix equa-
tion corresponding to a system of linear algebraic equations with unknown
Morgan-Voyce coefficients. The examples are included to demonstrate the
applicability of the technique.

2010 AMS Classification: 34A12, 45D05, 65D20, 65D10

Keywords: ~ Morgan-Voyce polynomials, linear differential equations, collocation
method

1. INTRODUCTION

In this study, we consider the high order linear differential equations with variable
coefficients in the form

(1.1) S fu@y® =g(z), a<z<b
k=0
under the conditions

m—1
(1.2) [ajry™ (@) + by P ()] = ;,  5=0,1,2,...,m— L.
k=0

Our aim is to find an approximate solution of (1.1) expressed in the truncated

Morgan-Voyce series form

(1.3) y(x) = Zaan(ac)
n=0

where a,, n =0,1,..., N are the unknown Morgan-Voyce coefficients and B, (z),
n=0,1,..., N are the Morgan-Voyce polynomials formed
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(1.4) By =3"("TFEL) nen

2. FUNDAMENTAL MATRIX RELATIONS

We first write (1.4)

(2.1) BT (z) = RX"(z) & B(z) = X(z)RT
where
B(z)=[ Bo(z) Bi(x) Ba(x) ... Bu(x)], X(@)=[a" ' a2
" ((1)) 0 o .. 0
(3 0 0
R=| (3 D) (D 0
TG G

Then, we write the solution expressed by (1.3)

[y(z)] =B(z)A, A=[as a1 ay ... an |”
or using (2.1) we can write

(2.2) y(z) = X(z)RTA

and the relation between the matrix X (z) and its derivative XV (z) is

(2.3) XY (z) = X(2)TT, XO(z) = X(x)
where
01 0 0
0 2 0
TT = :
0 0 O N
00 0 0
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So, using (2.3) the relation between the matrix X (z) and its derivatives is

XW(z) = X(2)T"
X3 (z) = XV (2)TT = X(2)TTTT = X(z)(TT)?

(2.4)

X®(z) = XED ()TT = X(2)(TT)F 11T = X(2)(TT)*
We have from (2.1) and (2.4)
(2.5) y®(2) = X(z)(TT)*RTA, k=0,1,2,..m

3. METHOD OF SOLUTION

To construct the fundamental matrix equation defined in (1.1), we substitute the
matrix formula (2.5) into (1.1). Thus, we obtain the matrix equation

(3.1) > H@XE)(T)T)'RTA = g(x)
k=0
We define the collocation points as
h—
(3.2) 2 =a+Tai, i=0,1,..,N.

Substituting (3.2) into (3.1) we get
m

(33) ka(xl)x(xl)(TT)kRTA = g(xi)7 1= Oa1a2a"'5N'
k=0

So we have the system of the matrix equations
m

(3.4) > MYF =
k=0

In this equations, we can write

fk(x()) 0 0
0 Jr(z1) 0
M, =
0 0
0 Jr(zn)
qen) X(z
X(z

0
0
y 9(xo)
vk — y* (1) _ (TT)*RTA), G = 9(z1)
X(zn)
3
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where

X(zx)

1

i) J)év
T 1‘{\’
N ... ,’E%

Therefore, the fundamental matrix relation corresponding to equation (1.1) can be
written in the matrix form

(3.5)
(3.5) can be wr

(3.6)

itten

WA =G or [W;G]

W = [w;;] =Y MX(TT)*R", 4,j=0,1,2,..,N

k=0

So, (3.4) corresponds to a linear system of (N + 1) algebric equation with (N + 1)
unknown Morgan-Voyce coefficients.

For the condition (1.2), the condition matrix can be obtained

U; = (auX(a)+bpXO) TR = ((wjo ujn ujo

k=0

The matrix form of the condition is then,

or the augmented matrix for the conditions is

(3.7)

UjA = [)\j], j = 0,1,2,...,m— 1

U; =[U;;)], 7=0,1,2,....m—1.

ujn ), §=0,1,2,..,m—1.

Under the conditions (1.2) to obtain the solution of equation (1.1), we replace the
last m rows of the matrix (3.5) by the rows matrices (3.7) and we get the new aug-

mented matrix,

(3.8)

Woo

W(N-1-m)0
W(N-m)0
Uoo
u10

U(m—1)1

Wo1

W(N-1-m)1
W(N-m)1
Uo1
Uil

U(m—1)2

WoN

W(N-1-m)N
W(N-m)N
UoN
UiN

U(m—-1)N

k)

g(TN-1-m)
g(mN—m)
Ao
A1

)\m—l
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This augmented matrix system can be written

WA =G
If rankW = rank[W;G] = N + 1, we can write
A = (W)7'G Thereby, we uniquely determine the coefficients a,(n = 0,1,..., N)
by means of the equation (3.8) and the coefficients matrix A is

A:(a,o aq anN )T

So Eq. (1.1) with the conditions (1.2) has a unique solution and this solution is
given by Morgan-Voyce series solution

N
y(z) = Zaan(x)
n=0

4. NUMERICAL EXAMPLES

In this section, we give several numerical examples to show the applicability of
the method. We performed all calculations on a Intel PC using MATLAB.
Example 1: Let us consider nonhomogeneous fourth order linear differential equa-
tion given by

(41) 29D (z) — (22 + 1)y (2) + 12y(z) = 302® — 122 + 54z + 168, 0 <z <2
under the conditions
(4.2) y(0) =10, y (1) = 26.

The exact solution is Yezqet () = 2% + 523 + 72 + 10. The approximate solution y(z)
by the truncated Morgan-Vyce series is

N
y(l‘) = Z aan(x)'
n=0

We will consider for N =4 and N = 6.
For N = 4 the Morgan-Voyce collocation points are

1 3
{1'0:0,:171 = 551‘2 = 1,"133 = iax2:2}

The functions for this example are

fo(z) =12, fi(z) =0, folx) = —(22+1), f3(x) =0, fi(z) =2, g(x) = 302°—122%+542+168

The matrix form of the differential equation is

(4.3) > MX(TT)FRTA
k=0
5
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Since the equation (4.1) is a 4th order, the formula (4.3) turns out to be

{MoX + M XTT + MuX(TT)? + M X(TT)? + My X(TT)YJRTA = G

where

2 0 0 0 0 0000 0
0 12 0 0 0 00000
My=| 0 0 12 0 0 |[,M;=Mz=|0 0 0 0 0
0 0 0 12 0 00000
0 0 0 0 12 00000
-1 0 0 0 0 2.0 0 0 0
0o -2 0 0 0 020 00
My=| 0 0 -2 0 0 [,My=]0020 0],
o 0 o0 - 0 00020
0 0 0 0 -5 000 0 2
1 0 0 00 010 0 0 168
2 1 0 00 00200 83
RT=]|3 4 1 00|, TT=[0 0 0 3 0 |,Gc=] 240
410 6 1 0 0000 4 1293
5 20 21 8 1 00000 468
Substituting these matrix into (3.6) we have
12 24 34 36 18 ; 168
12 3o 4 & s um
[W;G]=| 12 36 92 216 456 ; 240
12 49 257 1449 1827 . 1293

2 4 2 4
12 48 170 552 1578 ; 468

From section 3, the condition matrix is

U();>\0712345;10
U, : /) L0 16 25 90 ; 26

So, with the conditions, the new augmented matrix can be written

12 24 34 36 18 ; 168
12 30 120 45 o mm
(4.4) (W;G] =] 12 36 92 216 456 ; 240
1 2 3 4 5 ; 10
0 1 6 25 90 ; 26

Because detW # 0 we have A = (W)~!G.
So, we can obtain the coefficient matrix A as

A=(-32 20 -3 -3 1)"
6
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Results for N=4, N=6 and exact solution
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FiGURE 1. Comparing the exact solution and the approximate solutions

Therefore, for N = 4 the approximate solution y(x) by the truncated Morgan-Voyce
series is

y(z) = 10 + Tz + 52° + 2*.
For N = 6 the similar calculations show that A is

A:( -32 29 -3 -3 1 —-34e—-014 5e—015 )T
and hence the approximate solution y(z) is

y(x) = 10—72+6.017915496.100 13 224523+ 2% +2.307511219.100 14 15 1-4.772254196.10( 1) 2.6
In figure 1, we compare the exact solution and the approximate solutions.
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Example 2: Let us now consider a second order differential equation,

(4.5)

under the conditions

(4.6)

y (z) +y(z) = cos®(z), 0<a<1

y(0) =1, y'(0)=-1.

The exact solution is Yepact(z) = sin?(z) — sin(x) + 1. The approximate solution
y(z) by the truncated Morgan-Voyce series is

N
y(z) = Z an By (x).
n=0

We will solve this problem with Morgan-Voyce collocation method for N =3, N =
5, N = 8. As in the previous example, by the Morgan-Voyce polynomials, we obtain
the approximate solutions of the problem for N =3, N =5, N = 8, respectively,

(4.7) ys(x) =1 — x + 2% — 0.048573926162>
(4.8) ys(x) =1 —z + 22 +0.17602029292> — 0.377080708z* + 0.06587478908z°
(4.9)

ys(r) =1 — x + 2 + 0.166652792> — 0.33319966092* — 0.008906179133x° + 0.0457548307°

—0.00140585885627 — 0.002295849228:°

In figure 2, we compare the exact solution and the approximate solutions.In Table
4.1, we illustrate the exact solutions of the differential equation (4.5) and its numeri-
cal results of the approximate solutions for N = 3,5 and 8 using the present method.

Table 4. 1: Numerical solutions of Example 2

Exact Solution

Present Method

t;

Yezact (Iz)

N=3
ys(ti)

N=3
Es(t:)

N=5
ys(t:)

N=5
Es(t;)

N =28
ys(t:)

N =28
Eg(t:)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1
0.910133294
0.840800172
0.791811986
0.762228303
0.750423308
0.754178649
0.770798741
0.797243670
0.830274138
0.866602433

1
0.90995142
0.83961141
0.78868850
0.75689127
0.74392826
0.74950803
0.77333914
0.81513015
0.87458961
0.95142607

0
0.000181869
0.001188764
0.003123482
0.005337034
0.006495049
0.004670617
0.002540402
0.017886480
0.044315470
0.084823640

1
0.91013897
0.84082591
0.79185827
0.76228659
0.75049358
0.75427315
0.77090946
0.79725599
0.82981455
0.86481438

0
5.676537e-006
2.574094e-005
4.628403e-005
5.828744e-005
7.027106e-005
9.449774e-005
1.107170e-004
1.231260e-005
4.595925e-004
1.788059e-003

1
0.910133289
0.840800157
0.791811963
0.762228272
0.750423270
0.754178603
0.770798687
0.797243615
0.830273864
0.866600073

0
5.079156e-009
1.488156e-008
2.264282e-008
3.123148e-008
3.881956e-008
4.638895e-008
5.403538e-008
5.487016e-008
27.38042e-008
236.0883e-008
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(1]

(2]
(3]
[4]

(5]

(6]

(7]

Results for N=3, N=5, N=8 and exact solution
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Fi1GURE 2. Comparing the exact solution and the approximate solutions
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