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Abstract
Consider a transformed linear mixed model (TLMM) obtained pre-multiplying a linear mixed model
(LMM) M : y = Zα + Rγ + e by a given matrix. This work concerns the problem of the equalities
of linear predictors under the considered two LMMs under general assumptions. We characterize the
equalities between the best linear unbiased predictors (BLUPs) under the LMM and its TLMM by using
various rank formulas of block matrices and elementary matrix operations.
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1. Introduction
Throughout this study, the symbol Rm×n denotes the set of all m× n real matrices. A′, A+, r(A) and C(A)

stand for the transpose, the Moore–Penrose generalized inverse, the rank, and the column space of A ∈ Rm×n,
respectively. Im refers the m×m identity matrix. Furthermore, EA = A⊥ = Im −AA+ represents the orthogonal
projector of A ∈ Rm×n.

A linear mixed model (LMM) containing both fixed and random effects is formulated by

M : y = Zα+ Rγ + e, (1.1)

where α is a fixed effect and γ is a random effect. In statistical inferences of analysis requirements, LMMs may need
to be transformed. Several transformation methods can be used such as linear transformation. By doing this, the
transformed linear mixed model (TLMM) ofM is expressed as

T : Ty = TZα+ TRγ + Te, (1.2)

which is obtained pre-multiplyingM by a matrix T. In two LMMsM and T , y ∈ Rn×1 is a vector of observable
response variables, Z ∈ Rn×k, R ∈ Rn×p, and T ∈ Rm×n are known matrices of arbitrary rank, α ∈ Rk×1 is a
vector of fixed but unknown parameters, γ ∈ Rp×1 is a vector of unobservable random effects, and e ∈ Rn×1 is
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an unobservable vector of random errors. We will make the following general assumptions on expectations and
dispersion matrices of random vectors in considered models

E

[
γ
e

]
= 0 and D

[
γ
e

]
= cov

{[
γ
e

]
,

[
γ
e

]}
=

[
Σ1 Σ2

Σ3 Σ4

]
:= Σ, (1.3)

where Σi are known and Σ ∈ R(n+p)×(n+p) is a positive semi-definite matrix of arbitrary rank, i = 1, . . . , 4. Let
A =

[
R, In

]
and then

E(y) = Zα, D(y) =
[
R, In

]
Σ
[
R, In

]′
= AΣA′. (1.4)

Further, assume thatM is consistent, i.e.,

y ∈ C
[
Z, AΣA′

]
holds with probability 1 (wp 1), (1.5)

see, e.g., [16]. The consistency assumption of the transformed model T is provided with Ty ∈ C
[
TZ, TAΣA′T′

]
wp 1. It is easy to see that TLMM is consistent under the assumption of consistency of LMM.

In this study, we investigate the relations between the modelsM and T . In order to characterize predictors
simultaneously under two LMMsM and T , the following vector can be considered

u = Jα+ Gγ + He = Jα+
[
G, H

] [γ
e

]
(1.6)

for given J ∈ Rs×k, G ∈ Rs×p, and H ∈ Rs×n. Let B =
[
G, H

]
, from (1.3) and (1.4), we obtain

E(u) = Jα, D(u) =
[
G, H

]
Σ
[
G, H

]′
= BΣB′, (1.7)

cov(u,y) =
[
G, H

]
Σ
[
R, In

]′
= BΣA′. (1.8)

The predictability requirement of vector u underM is described as holding the inclusion

C(J′) ⊆ C(Z′). (1.9)

Let u be predictable underM. If there exists Fy such that

D(Fy − u) = min subject to E(Fy − u) = 0 (1.10)

holds in the Löwner partial ordering, then the best linear unbiased predictor (BLUP) of u is defined as Fy and
is denoted by Fy = BLUPM(u) = BLUPM(Jα + Gγ + He), originated from [6]. If G = 0 and H = 0, Fy
corresponds the best linear unbiased estimator (BLUE) of Jα, denoted by BLUEM(Jα), underM.

Although predictors under LMMs and their TLMMs have different properties, observable random vectors
in TLMMs may contain enough information to predict unknown vectors under LMMs. Within this context,
establishing the results on the relations between these models can be considered as one of the important issues
among others in linear regression analysis; see, e.g., [4, 7, 22, 24]. We may also refer to the following works on
relations between predictors under different LMMs; [2, 8–10, 12, 25]. The problems of relations between original
LMMs and their TLMMs are also closely connected to the concept of linear sufficiency, which was first introduced
by [3, 5], see, also [11].

In this study, considering comparison problem of predictors under LMMs and their TLMMs, we derive the
results on the equality characterizations between the BLUPs underM and T . In order to characterize relations
between BLUPs, we establish the results for the equality of coefficient matrices in the expressions of BLUPs under
these models. For that purpose, we use the following expression on equality of random vectors.

F1b = F2b holds definitely if F1 = F2 for a random vector b. (1.11)

(1.11) means directly to solve the matrix equation F1 = F2. We note that there are several types of equalities
between two linear predictions F1b and F2b of a random vector b, for details see, e.g., [4]. These equalities are
defined according to different criteria for random vectors from the statistical point of view and (1.11) is one of
these equality criteria. If coefficient matrices F1 and F2 in (1.11) are not unique, then F1 = F2 can be divided into
following four possible situations

{F1} ∩ {F2} 6= ∅, {F1} ⊂ {F2}, {F1} ⊃ {F2}, {F1} = {F2}, (1.12)
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where {F1} and {F2} stand for the collections of all solutions of the equations. In accordance with (1.12), the
equality between F1b and F2b can be divided into similar situations to (1.12). Considering the situations in
(1.12), we give a comprehensive investigation in theoretical point of view to comparison of the BLUPs under the
modelM and its transformed model T by using various rank formulas of block matrices and elementary matrix
operations. Various rank formulas for partitioned matrices provide us effective tools for simplifying complicated
matrix expressions composed by matrices and their Moore-Penrose generalized inverses. The rank of matrices
are one of the basic concepts in linear algebra and matrix theory, and also plays an essential role in problems on
establishing equalities and inequalities occurred in statistical analysis; see, e.g., [4, 7, 17, 26].

2. Preliminary Results

This section briefly reviews the well-known results on linear matrix equations, some rank formulas of matrices,
and the fundamental results on BLUP equations of u and related properties under modelsM and T that we will
need for main results. The following lemma is given by [14].

Lemma 2.1. The linear matrix equation MZ = N is consistent⇔ r
[
M, N

]
= r(M), or equivalently, MM+N = N. In

this case, the general solution of MZ = N can be written as

Z = M+N + (I−M+M)U,

where U is an arbitrary matrix.

Let u in (1.6) be predictable underM, i.e., (1.9) holds. Note that (1.10) is in fact a quadratic matrix optimiza-
tion problem. The constrained covariance matrix minimization problem in (1.10) corresponds to a well-known
fundamental BLUP equation, i.e.,

E(Fy − u) = 0 and D(Fy − u) = min ⇔ F
[
Z, AΣA′Z⊥

]
=
[
J, BΣA′Z⊥

]
. (2.1)

According to Lemma 2.1, the general solution of (2.1) is written as

F =
[
J, BΣA′Z⊥

] [
Z, AΣA′Z⊥

]+
+ U

[
Z, AΣA′Z⊥

]⊥
, (2.2)

where U ∈ Rs×n is an arbitrary matrix, and the BLUP of u underM is written as BLUPM(u) = Fy from (1.10).
Further, we can add the following obvious results related to (2.1) and (2.2).

(a) The equation in (2.1) is always consistent.

(b) F in (2.2) is unique⇔ r
[
Z, AΣA′Z⊥

]
= n.

(c) BLUPM(u) is unique wp 1⇔M is consistent, i.e., (1.5) holds.

(d) r
[
Z, AΣA′Z⊥

]
= r

[
Z, AΣA′

]
= r

[
Z, AΣ

]
.

see, e.g., [15, 20, 21].
Let us consider TLMM T . The predictability requirement of u under T is expressed as

C(J′) ⊆ C(Z′T′). (2.3)

It is evident that the predictability of u under a TLMM shows predictability of u under an original LMM. Let u in
(1.6) be predictable under T . The expression in (1.10) and the equation in (2.1) can be adapted for model T and
thereby the fundamental BLUP equation under T is written as:

E(FtTy − u) = 0 and D(FtTy − u) = min ⇔ Ft

[
TZ, TAΣA′T′(TZ)⊥

]
=
[
J, BΣA′T′(TZ)⊥

]
. (2.4)

The matrix equation in (2.4) is always consistent. According to Lemma 2.1, the general solution of (2.4) is written as

Ft =
[
J, BΣA′T′(TZ)⊥

] [
TZ, TAΣA′T′(TZ)⊥

]+
+ Ut

[
TZ, TAΣA′T′(TZ)⊥

]⊥ (2.5)

where Ut ∈ Rs×m is an arbitrary matrix, and BLUPT (u) = FtTy. Further, the expressions in (b)-(d) above for
modelM can be similarly expressed for model T .
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The requirement in (1.9) corresponds to the estimability of vector Jα underM; see, e.g., [1], and, similarly, the
requirement in (2.3) corresponds to the estimability of vector Jα under T . We also note that the estimability of
vector Zα under both the modelsM and T is

r(Z) = r(TZ). (2.6)

Let Jα be estimable under T (also estimable underM). The BLUEs of Jα under modelsM and T are expressed as
BLUEM(Jα) = FJαy and BLUET (Jα) = FtJαTy, respectively, where

FJα =
[
J, 0

] [
Z, AΣA′Z⊥

]+
+ U

[
Z, AΣA′Z⊥

]⊥ (2.7)

and
FtJα =

[
J, 0

] [
TZ, TAΣA′T′(TZ)⊥

]+
+ Ut

[
TZ, TAΣA′T′(TZ)⊥

]⊥
. (2.8)

Let Zα be estimable under T (also estimable underM). The BLUEs of Zα under modelsM and T are expressed
as BLUEM(Zα) = FZαy and BLUET (Zα) = FtZαTy, respectively, where

FZα =
[
Z, 0

] [
Z, AΣA′Z⊥

]+
+ U

[
Z, AΣA′Z⊥

]⊥ (2.9)

and
FtZα =

[
Z, 0

] [
TZ, TAΣA′T′(TZ)⊥

]+
+ Ut

[
TZ, TAΣA′T′(TZ)⊥

]⊥
. (2.10)

The following lemma is related to the characterizations in (1.12) based on (1.11); see, [19].

Lemma 2.2. Let M ∈ Rm×n1 , N ∈ Rp×n1 , P ∈ Rm×n2 , and Q ∈ Rp×n2 be given. Then,

(a) Matrix equations ZM = N and ZP = Q have a common solution ⇔ C
[
N′

Q′

]
⊆ C

[
M′

P′

]
⇔ r

[
M P
N Q

]
=

r
[
M, P

]
.

(b) Any solution of the matrix equation ZP = Q is a solution of ZM = N⇔ r

[
M P
N Q

]
= r(P).

In matrix algebra, some formulas of ranks of matrices are very helpful for facilitating complicated matrix
equations. Within this framework, we use the following rank equalities for partitioned matrices; see [13].

Lemma 2.3. Let M ∈ Rm×n, N ∈ Rm×k, and P ∈ Rl×n. Then,

r
[
M, N

]
= r(M) + r(EMN) = r(N) + r(ENM), (2.11)

r

[
M
P

]
= r(M) + r(PEM′) = r(P) + r(MEP′). (2.12)

3. Equality Relations of BLUPs under LMM and its TLMM

In this section, the main results on the equalities between BLUPs, related to the characterizations in (1.12), under
modelsM and T are given .

Theorem 3.1. Let us considerM in (1.1) and T in (1.2). Assume that u in (1.6) is predictable under these models. Let the
coefficients F and Ft be as given in (2.2) and (2.5), respectively. Then

{F} ∩ {FtT} 6= ∅ ⇔ r


AΣA′ 0 Z 0 In

0 TAΣA′T′ 0 TZ T
Z′ 0 0 0 0
0 Z′T′ 0 0 0

−BΣA′ BΣA′T′ −J J 0

 = r


AΣA′ 0 Z 0 In

0 TAΣA′T′ 0 TZ T
Z′ 0 0 0 0
0 Z′T′ 0 0 0

 . (3.1)

In this case, {BLUPM(u)} ∩ {BLUPT (u)} 6= ∅ holds definitely.
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Proof. From (2.2) and (2.5), F− FtT is written as[
J, BΣA′Z⊥

]
W+ −

[
J, BΣA′T′(TZ)⊥

]
W+

t T + UW⊥ −UtW
⊥
t T, (3.2)

where W =
[
Z, AΣA′Z⊥

]
and Wt =

[
TZ, TAΣA′T′(TZ)⊥

]
. Then applying the formula min

U
r(C + UD) =

r

[
C
D

]
− r(D), given in [18] and [23], to (3.2) and simplifying the block matrices by Lemma 2.3, we obtain

= min
U,Ut

r

([
J, BΣA′Z⊥

]
W+ −

[
J, BΣA′T′(TZ)⊥

]
W+

t T +
[
U, −Ut

] [ W⊥

W⊥
t T

])

= r

[J, BΣA′Z⊥
]
W+ −

[
J, BΣA′T′(TZ)⊥

]
W+

t T
W⊥

W⊥
t T

− r [ W⊥

W⊥
t T

]

= r

[J, BΣA′Z⊥
]
W+ −

[
J, BΣA′T′(TZ)⊥

]
W+

t T 0 0
In W 0
T 0 Wt

− r [In W 0
T 0 Wt

]

= r

 0 −
[
J, BΣA′Z⊥

] [
J, BΣA′T′(TZ)⊥

]
In W 0
T 0 Wt

− r [In W 0
T 0 Wt

]

= r


0 −J −BΣA′ J BΣA′T′

In Z AΣA′ 0 0
T 0 0 TZ TAΣA′T′

0 0 Z′ 0 0
0 0 0 0 Z′T′

− r


In Z AΣA′ 0 0
T 0 0 TZ TAΣA′T′

0 0 Z′ 0 0
0 0 0 0 Z′T′



= r


AΣA′ 0 Z 0 In

0 TAΣA′T′ 0 TZ T
Z′ 0 0 0 0
0 Z′T′ 0 0 0

−BΣA′ BΣA′T′ −J J 0

− r


AΣA′ 0 Z 0 In
0 TAΣA′T′ 0 TZ T
Z′ 0 0 0 0
0 Z′T′ 0 0 0

 . (3.3)

The required result is seen from (3.3).

Corollary 3.1. Let us considerM in (1.1) and T in (1.2).

(a) Let Jα be estimable under T (also estimable underM). Let the coefficients FJα and FtJα be as given in (2.7) and (2.8),
respectively. Then the following holds.

{FJα} ∩ {FtJαT} 6= ∅

⇔ r


AΣA′ 0 Z 0 In

0 TAΣA′T′ 0 TZ T
Z′ 0 0 0 0
0 Z′T′ 0 0 0
0 0 −J J 0

 = r


AΣA′ 0 Z 0 In

0 TAΣA′T′ 0 TZ T
Z′ 0 0 0 0
0 Z′T′ 0 0 0

 .
(3.4)

In this case, {BLUEM(Jα)} ∩ {BLUPT (Jα)} 6= ∅ holds definitely.

(b) If Zα is estimable under the modelsM and T then (2.6) holds. Let the coefficients FZα and FtZα be as given in (2.9)
and (2.10), respectively. Then the following holds.

{FZα} ∩ {FtZαT} 6= ∅ ⇔ r


AΣA′ 0 In

0 TAΣA′T′ T
Z′ 0 0
0 Z′T′ 0

 = r

[
AΣA′ Z In

0 0 T

]
+ r(Z). (3.5)

In this case, {BLUEM(Zα)} ∩ {BLUET (Zα)} 6= ∅.
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Theorem 3.2. Let us considerM in (1.1) and T in (1.2). Assume that u in (1.6) is predictable under these models. Let the
coefficients F and Ft be as given in (2.2) and (2.5), respectively. Then

{F} ⊂ {FtT} ⇔ r


AΣA′ AΣA′T′ Z

Z′ 0 0
0 Z′T′ 0

BΣA′ BΣA′T′ J

 = r

[
AΣA′ Z

Z′ 0

]
+ r(Z). (3.6)

In this case, {BLUPM(u)} ⊂ {BLUPT (u)} holds.

Proof. From Lemma 2.2 (b), all solutions of the equation in (2.1) are the solutions of the equation in (2.4)⇔

r

[
Z AΣA′Z⊥ Z AΣA′T′(TZ)⊥

J BΣA′Z⊥ J BΣA′T′(TZ)⊥

]
= r

[
Z, AΣA′Z⊥

]
. (3.7)

(3.7) equivalently written as

r


Z AΣA′ Z AΣA′T′

J BΣA′ J BΣA′T′

0 Z′ 0 0
0 0 0 Z′T′

− r(Z)− r(TZ) = r

[
Z AΣA′

0 Z′

]
− r(Z), (3.8)

which is equivalent to (3.6).

Corollary 3.2. Let us considerM in (1.1) and T in (1.2).

(a) Let Jα be estimable under T (also estimable underM). Let the coefficients FJα and FtJα be as given in (2.7) and (2.8),
respectively. Then the following holds.

{FJα} ⊂ {FtJαT} ⇔ r


AΣA′ AΣA′T′ Z

Z′ 0 0
0 Z′T′ 0
0 0 J

 = r

[
AΣA′ Z

Z′ 0

]
+ r(Z). (3.9)

In this case, {BLUEM(Jα)} ⊂ {BLUET (Jα)} holds.

(b) If Zα is estimable under the modelsM and T then (2.6) holds. Let the coefficients FZα and FtZα be as given in (2.9)
and (2.10), respectively. Then the following holds.

{FZα} ⊂ {FtZαT} ⇔ r

AΣA′ AΣA′T′

Z′ 0
0 Z′T′

 = r

[
AΣA′ Z

Z′ 0

]
. (3.10)

In this case, {BLUEM(Zα)} ⊂ {BLUET (Zα)} holds.

Theorem 3.3. Let us considerM in (1.1) and T in (1.2). Assume that u in (1.6) is predictable under these models. Let the
coefficients F and Ft be as given in (2.2) and (2.5), respectively. Then

F ∈ {FtT} ⇔ r


AΣA′ AΣA′T′ Z

Z′ 0 0
0 Z′T′ 0

BΣA′ BΣA′T′ J

 = r

AΣA′ AΣA′T′ Z
Z′ 0 0
0 Z′T′ 0

 . (3.11)

Then, BLUPM(u) ∈ {BLUPT (u)} holds.

Proof. From Lemma 2.2 (a), the equations in (2.1) and (2.4) have a common solution⇔

r

[
Z AΣA′Z⊥ Z AΣA′T′(TZ)⊥

J BΣA′Z⊥ J BΣA′T′(TZ)⊥

]
= r

[
Z AΣA′Z⊥ Z AΣA′T′(TZ)⊥

]
. (3.12)
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(3.12) equivalently written as

r


Z AΣA′ Z AΣA′T′

J BΣA′ J BΣA′T′

0 Z′ 0 0
0 0 0 Z′T′

− r(Z)− r(TZ) = r

Z AΣA′ Z AΣA′T′

0 Z′ 0 0
0 0 0 Z′T′

− r(Z)− r(TZ), (3.13)

which is equivalent to (3.11).

Corollary 3.3. Let us considerM in (1.1) and T in (1.2).

(a) Let Jα be estimable under T (also estimable underM). Let the coefficients FJα and FtJα be as given in (2.7) and (2.8),
respectively. Then the following holds.

FJα ∈ {FtJαT} ⇔ r


AΣA′ AΣA′T′ Z

Z′ 0 0
0 Z′T′ 0
0 0 J

 = r

AΣA′ AΣA′T′ Z
Z′ 0 0
0 Z′T′ 0

 . (3.14)

In this case, BLUEM(Jα) ∈ {BLUET (Jα)} holds.

(b) If Zα is estimable under the modelsM and T then (2.6) holds. Let the coefficients FZα and FtZα be as given in (2.9)
and (2.10), respectively. Then the following holds.

FZα ∈ {FtZαT} ⇔ C

AΣA′ AΣA′T′

Z′ 0
0 Z′T′

 ∩ C(Z) = {0}. (3.15)

In this case, BLUPM(Zα) ∈ {BLUPT (Zα)} holds.
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