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Abstract.
In this article, with the help of generalized hyperbolic functions a new version of
the classic sech-function method is defined. The developed method is applied to
the nonlinear partial differential equations and a general form of solution function
called as ” 1-soliton ” is obtained. New exact solutions of generalized regularized
long wave equation (GRLW) and the (2+1) dimensional Boussinesq equation found.
Also, physical reviews of the solutions are added.
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1. INTRODUCTION

Many real-world events are represented by a mathematical model of non-linear dif-
ferential equations. This situation increases the importance of differential equations and
their solutions. The various mathematical methods have been developed with the aim to
achieve the solutions of nonlinear partial differential equations. When the applications of
these methods are made, the new solution functions and significant physical behavior is
determined. To construct exact solutions to nonlinear partial differential equations, some
important methods have been introduced such as Kudryashov’s method, tanh-coth method,
the exponential function method, Hirota method, (G′/G)-expansion method, the trial equa-
tion method, and so on [1-19]. Soliton solutions, compactons, singular solitons and other
solutions have been obtained by using these methods. These types of solutions are very
important and appear in various areas of applied mathematics.

In Section 2, we give the definition and properties of generalized hyperbolic functions.
In Section 3, as applications, we obtain exact solutions of the generalized regularized long
wave equation and the (2 + 1)-dimensional Boussinesq equation.



Pandir and Ulusoy /TJMCS (2013), Article ID 20130027, 9 pages

2. The basic concepts and definition of the generalized hyperbolic functions

In this section, we will define new functions which named the generalized hyperbolic
functions for constructing new exact solutions of NPDEs, and then study the properties of
these functions.

Definition 2.1 Suppose that ξ is an independent variable, p, q and k are all constants. The
generalized hyperbolic sine function is

(2.1) sinha(ξ) =
pakξ − qa−kξ

2
,

generalized hyperbolic cosine function is

(2.2) cosha(ξ) =
pakξ + qa−kξ

2
,

generalized hyperbolic tangent function is

(2.3) tanha(ξ) =
pakξ − qa−kξ

pakξ + qa−kξ ,

generalized hyperbolic cotangent function is

(2.4) cotha(ξ) =
pakξ + qa−kξ

pakξ − qa−kξ ,

generalized hyperbolic secant function is

(2.5) secha(ξ) =
2

pakξ + qa−kξ ,

generalized hyperbolic cosecant function is

(2.6) cosecha(ξ) =
2

pakξ − qa−kξ ,

the above six kinds of functions are said generalized new hyperbolic functions. Thus we can
prove the following theory of generalized hyperbolic functions on the basis of Definition
2.1.

Theorem 2.1. The generalized hyperbolic functions satisfy the following relations:

(2.7) cosh2
a(ξ) − sinh2

a(ξ) = pq,

(2.8) 1 − tanh2
a(ξ) = pqsech2

a(ξ),

(2.9) 1 − coth2
a(ξ) = −pqcosech2

a(ξ),

(2.10) secha(ξ) =
1

cosha(ξ)
,

(2.11) cosecha(ξ) =
1

sinha(ξ)
,

(2.12) tanha(ξ) =
sinha(ξ)
cosha(ξ)

,

(2.13) cotha(ξ) =
cosha(ξ)
sinha(ξ)

.
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The following just part of them are proved here for simplification.
Theorem 2.2. The derivative formulae of generalized hyperbolic functions as following

(2.14)
d(sinha(ξ))

dξ
= k ln a cosha(ξ),

(2.15)
d(cosha(ξ))

dξ
= k ln a sinha(ξ),

(2.16)
d(tanha(ξ))

dξ
= kpq ln a sech2

a(ξ),

(2.17)
d(cotha(ξ))

dξ
= −kpq ln a cosech2

a(ξ),

(2.18)
d(secha(ξ))

dξ
= −k ln a secha(ξ) tanha(ξ),

(2.19)
d(cosecha(ξ))

dξ
= −k ln a cosecha(ξ) cotha(ξ).

Proof of (2.16): According to (2.14) and (2.15), we can get

d(tanha(ξ))
dξ

=

(
sinha(ξ)
cosha(ξ)

)′
=

(sinha(ξ))′ cosha(ξ) − (cosha(ξ))′ sinha(ξ)
cosh2

a(ξ)

(2.20) =
k ln a cosh2

a(ξ) − k ln a sinh2
a(ξ)

cosh2
a(ξ)

= kpq ln asech2
a(ξ).

Similarly, we can prove other differential coefficient formulae in Theorem 2.2.
Remark 2.1. We see that when p = 1, q = 1, k = 1 and a = e in (2.1)-(2.6), new gen-

eralized hyperbolic function sinha(ξ), cosha(ξ), tanha(ξ), cotha(ξ), secha(ξ) and cosecha(ξ),
degenerate as hyperbolic function sinh(ξ), cosh(ξ), tanh(ξ), coth(ξ), sech(ξ) and cosech(ξ),
respectively. In addition, when p = 0 or q = 0 in (2.1)-(2.6), sinha(ξ), cosha(ξ), tanha(ξ),
cotha(ξ), secha(ξ) and cosecha(ξ), degenerate as exponential function 1

2 pak(ξ), ± 1
2 qa−k(ξ),

2pa−k(ξ), ±2qak(ξ) and ±1, respectively.

3. Applications

Example 1. Application to the generalized regularized long wave equation
The generalized regularized long wave equation that will be studied in this paper are

given by [20,21]

(3.1) ut + ux + δumux − γuxxt = 0,

where m is a positive integer and δ and γ are positive constants that describe the behavior of
the undular bore. This equation is very important in physics since it describes phenomena
with weak nonlinearity and dispersion waves including nonlinear transverse waves in shal-
low water, ion acoustic and magnetohydrodynamic waves in plasma, and phonon packets in
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nonlinear crystals. Their solutions are kinds of solitary waves named solitons whose shapes
are not affected by collision. The hypothesis for solving this equation is

(3.2) u(x, t) =
A

coshs
a(η)
,

where

(3.3) η = Bx − vt.

Here, in (3.2) and (3.3), A represents the amplitude of the soliton while B is the inverse
width of the soliton and v is the velocity of the soliton. The exponent s is unknown at this
point and will be evaluated during the course of the derivation of the solutions to (3.1). From
(3.2), it is possible to obtain

(3.4) ut =
Aksv ln a tanha(η)

coshs
a(η)

,

(3.5) ux =
−AksB ln a tanha(η)

coshs
a(η)

,

(3.6) uqux =
−Am+1ksB ln a tanha(η)

coshs(m+1)
a (η)

,

(3.7)

uxxt =
As3k3B2v(ln a)3 tanha(η)

coshs
a(η)

−

(
As(s + 2)k3B2(ln a)2 pqv + As2(s + 2)k3B2(ln a)3 pqv

)
tanha(η)

coshs+2
a (η)

.

These results will now be substituted in Eq. (3.1) to obtain the 1-soliton solution of the
generalized regularized long wave equation. Eq. (3.1) by virtue of (3.4)-(3.7) reduces to

Aksv ln a tanha(η)
coshs

a(η)
− AksB ln a tanha(η)

coshs
a(η)

− δA
m+1ksB ln a tanha(η)

coshs(m+1)
a (η)

(3.8)

+

(
γAs(s + 2)k3B2(ln a)2 pqv + γAs2(s + 2)k3B2(ln a)3 pqv

)
tanha(η)

coshs+2
a (η)

−γAs3k3B2v(ln a)3 tanha(η)
coshs

a(η)
= 0.

From (3.8), equating the exponents s + 2 and s(q + 1) gives

(3.9) s + 2 = s(m + 1),

that leads to

(3.10) s =
2
m
.

Now from (3.8), the two linearly independent functions are 1/ coshs+ j for j = 0, 2. Thus
setting their coefficients to zero gives

(3.11) v = ±
A

m
2 m

√
δ (2δAm ln a + pq(m + 1)(2 ln a + m))

kpq(m + 1)(2 ln a + m)
√

2γ ln a
,

and

(3.12) B = ± A
m
2 m
√
δ

k
√

2γ ln a (2δAm ln a + pq(m + 1)(2 ln a + m))
.
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Figure 1. Solution of u(x, t) is shown at A = 2, δ = 5, γ = 2, k = 2,
p = 2, q = 4, m = 4.

Figure 2. The graphs represent the exact approximate solution of Eq.
(3.13) for t = 1.

Thus the 1-soliton solution of the generalized regularized long wave equation with general-
ized evolution is given by

(3.13) u(x, t) =
A

cosh
2
m
a [Bx − vt]

.

Thus Figure 1. shows the 1-soliton solution of the generalized regularized long wave
equation with generalized evolution is given by the free parameters and a takes respectively,
Golden Mean, e and 10.
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Example 2. Application to the (2 + 1) dimensional Boussinesq equation
We consider the (2 + 1) dimensional Boussinesq equation, in the normalized form [22]

(3.14) utt − uxx − uyy − (u2)xx − uxxxx = 0.

The hypothesis for solving these equations is

(3.15) u(x, t) =
A

coshs
a(η)
,

where

(3.16) η = B1x + B2y − vt.

Here in (3.15) A is the amplitude of the 1-soliton while v is the velocity of the soliton and B1
and B2 are the inverse widths of the solitons. The exponent s is unknown at this point and
the value will fall out in the process of deriving the solution of this equation. From (3.15),
it is possible to obtain

(3.17) utt =
k2s2v2A(ln a)2

coshs
a(η)

− k2sv2Apq(s + 1)(ln a)2

coshs+2
a (η)

,

(3.18) uxx =
k2s2B2

1A(ln a)2

coshs
a(η)

−
k2sB2

1Apq(s + 1)(ln a)2

coshs+2
a (η)

,

(3.19) uyy =
k2s2B2

2A(ln a)2

coshs
a(η)

−
k2sB2

2Apq(s + 1)(ln a)2

coshs+2
a (η)

, ,

(3.20) (u2)xx =
4k2s2B2

1A2(ln a)2

cosh2s
a (η)

−
2k2sB2

1A2 pq(2s + 1)(ln a)2

cosh2s+2
a (η)

,

(3.21)

uxxxx =
k4s4AB4

1(ln a)4

coshs
a(η)

−
k4sAB4

1(ln a)4 pq(s + 1)(s + 2)2 + k4s3AB4
1(ln a)4 pq(s + 1)

coshs+2
a (η)

.

Substituting these into (3.14) yields

k2s2B2
1A(ln a)2

coshs
a(η)

−
k2sB2

1Apq(s + 1)(ln a)2

coshs+2
a (η)

−
k2s2B2

1A(ln a)2

coshs
a(η)

+
k2sB2

1Apq(s + 1)(ln a)2

coshs+2
a (η)

−
k2s2B2

2A(ln a)2

coshs
a(η)

+
k2sB2

2Apq(s + 1)(ln a)2

coshs+2
a (η)

−
4k2s2B2

1A2(ln a)2

cosh2s
a (η)

+
2k2sB2

1A2 pq(2s + 1)(ln a)2

cosh2s+2
a (η)

(3.22) −
k4s4AB4

1(ln a)4

coshs
a(η)

+
k4sAB4

1(ln a)4 pq(s + 1)(s + 2)2 + k4s3AB4
1(ln a)4 pq(s + 1)

coshs+2
a (η)

= 0.

Now from (3.22), equating the exponents 2s + 2 and s + 4 and also 2s and s + 2 gives
respectively

(3.23) 2s + 2 = s + 4, 2s = s + 2,

that leads to

(3.24) s = 2.
6
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Figure 3. Solution of u(x, t) is shown at B1 = 2, B2 = 4, k = 1
2 ,

p = 2, q = 1
2 .

So from (3.22) the four linearly independent functions are 1/ coshs+ j and 1/ cosh2s+i for
i = 0, 2 and j = 0, 2, 4. Therefore, setting their respective coefficients to zero we obtain A,
B1, B2 and v as follows:

(3.25) A = 6k2(ln a)2 pqB2
1,

and

(3.26) v = ±
√

B2
1 + 4k2(ln a)2B4

1 + B2
2.

Thus the 1-soliton solution of the generalized regularized long wave equation with general-
ized evolution is given by

(3.27) u(x, t) =
A

cosh2
a[B1x + B2y − vt]

.

Thus Figure 3. shows the 1-soliton solution of the (2 + 1) dimensional Boussinesq equa-
tion is given by the free parameters and a takes respectively, Golden Mean, e and 10.

4. Conclusions and Remarks

In this article, a new version of the classical sech-function method is defined with the
help of the generalized hyperbolic functions. The developed method is applied to the GRLW
equation and the (2+1)-dimensional Boussinesq equation and more general form of solution,
also known 1-soliton solution, is obtained. We devise new generalized hyperbolic functions
to construct new exact solutions of nonlinear partial differential equations. The number and
shape of the solitons in these solutions are related to the values of three parameters k, p, q
and size of the regions of the independent variables. Our method can be also applied to
other nonlinear partial differential equations.
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Figure 4. The graphs represent the exact approximate solution of Eq.
(3.27) for t = 1.
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