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Abstract. Studies based on the non-linear physical problems have become very
important in recent years. These problems are solved by using different mathemat-
ical approaches. In particular, the soliton solutions, compacton solutions, peakon
solutions and other solutions have been found for such physical problems. Using
a powerful method that is proposed to obtain exact solutions of nonlinear partial
differential equations, we obtain some new solutions such as symmetric hyperbolic
Fibonacci sin, cosine and tangent functions. Also, some basic properties of sym-
metric Fibonacci and Lucas functions are given in this research.
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1. INTRODUCTION

In the past few decades, there has been ongoing researches in various nonlinear evolu-
tion equations. A lot of methods have been used to handle nonlinear equations with constant
coefficients and with time dependent coefficients. In this study, new exact solutions includ-
ing 1-soliton and singular solutions in terms of symmetric hyperbolic Fibonacci functions
are given using the modified Kudryashov method. The developed method is based on the
well known Riccati equation. The obtained solutions are expressed in physical comments.
We consider the Rosenau-Kawahara equation with power law nonlinearity [3,20]

(1.1) ut + aux + bumux + cuxxx + λuxxxt − νuxxxxx = 0,

which is a nonlinear PDE appears in the study of fluid dynamics and falls in the category of
NLEE. Here, in Eq. (1), a, b, c, λ, and ν are all constants and the parameter m dictates the
power law nonlinearity. The first term is the evolution term. The coefficients of a, c and λ are
dispersion terms while the coefficient of ν represents the viscous term [3,19]. Many authors
have studied this equation to find new types of solutions. There are many methods that are
used to obtain the integration of nonlinear partial differential equations. Some of them are
the exp-function method [2,11-13], the trial equation method [4,6,8,10,15,16], the (G′/G)-
expansion method [5], the Hirota’s method [7,17], the auxiliary equation method [19], and
many more. In this article, we modify Kudryashov’s method [9] to raise the effectiveness of
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this method. Our aim is to derive new solutions to Eq (1) using the improved Kudryashov
method [14]. Our key idea is that traditional base e of the exponential function is replaced
by an arbitrary base a , 1. So, new exact solutions of nonlinear differential equations may
be obtained by this simple modification.

2. The modified Kudryashov method

We consider the following nonlinear partial differential equation for a function q of two
real variables, space x and time t:

(2.1) P(t, x, q, qt, qx, qtt, qtx, qxx, ...) = 0.

It is useful to summarize the main steps of modified Kudryashov method as follows:
Step 1. We seek the travelling wave solution of Eq. (2.1) of the form

(2.2) q(x, t) = u(ξ), ξ = B(x − wt),

where B is a free constant. We reduce Eq. (2.1) to a nonlinear ordinary differential equation
of the form:

(2.3) N(t, x, u, u′, u′′, ...) = 0,

where the prime denotes differentiation with respect to ξ. Suppose that the highest order
nonlinear terms in Eq. (2.3) are ul(ξ)u(s)(ξ) and (u(p))k.

Step 2. We suppose that the exact solutions of Eq. (2.3) can be obtained in the following
form:

(2.4) u(ξ) = y(ξ) =
N∑

j=0

a jQ j,

where Q = 1
1±aξ . We note that the function Q is solution of equation

(2.5) Qξ = lna(Q2 − Q).

Step 3. According to the proposed method, we assume that the solution of Eq. (2.3) can
be expressed in the form

(2.6) u(ξ) = aN QN + . . .

Calculation of value N in formula (2.6) that is the pole order for the general solution of Eq.
(2.3). To determine the value of N we proceed analogously as in the classical Kudryashov
method on balancing the highest order nonlinear terms in Eq. (2.3). More precisely, by
straightforward calculations we have

(2.7) u′(ξ) = aN NQN+1 + . . . ,

(2.8) u′′(ξ) = aN N(N + 1)QN+2 + . . . ,

(2.9) u(s)(ξ) = aN N(N + 1) . . . (N + s − 1)QN+s + . . . ,

(2.10) ulu(s)(ξ) = aN N(N + 1) . . . (N + s − 1)Q(l+1)N+s + . . . ,

(2.11) (u(p))k(ξ) = (aN N(N + 1) . . . (N + s − 1))k Qk(N+p) + . . . ,
2
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where aN and aN are constant coefficients. Balancing the highest order nonlinear terms of
Eq. (2.10) and Eq. (2.11), we have

(2.12) (l + 1)N + s = k(N + p),

so

(2.13) N =
s − kp

k − l − 1
.

Step 4. Substituting Eq. (2.4) into Eq. (2.3) yields a polynomial R(Q) of Q. Setting the
coefficients of R(Q) to zero, we get a system of algebraic equations. Solving this system, we
shall determine w(t) and the variable coefficients of a0(t), a1(t), ..., aN(t). Thus, we obtain
the exact solutions to Eq. (2.1).

3. Application of the method to the Rosenau-Kawahara equation

We first assume that Eq (1) has solutions of the form

(3.1) u(x, t) = v(ξ), ξ = B(x − wt)

and substituting it into Eq.(1), we can reduce to the ordinary differential equation which can
be written as

(3.2) − Bwv′(ξ) + aBv′(ξ) + bBvmv′(ξ) + cB3v′′′(ξ) − λB5v′′′′(ξ) + νB5v′′′′′(ξ) = 0.

Upon integration, Eq (3.2) is converted to

(3.3) − Bwv(ξ) + aBv(ξ) + bB
vm+1

m + 1
+ cB3v′′(ξ) − λB5v′′′(ξ) + νB5v′′′′(ξ) = 0,

where C is the integration constant. For simplicity we take C = 0. We use the transformation

(3.4) v(ξ) = V
2
m (ξ)

which will convert to Eq (3.3) into

(w − a)Bm4(m + 1)V4 − bBm4V6 − cB3m2(m + 1)V2(V ′)2 − 2cB3m3(m + 1)V3V ′′

+ B5(λw + ν)(m + 1)(4 − 2m)(2 − 2m)(2 − 3m)(m + 1)(V ′)4 + 2B5(λw + ν)m3(m + 1)V3V ′′′′

+B5(λw+ν)m(m+1)(24m2−72m+48)V(V ′)2V ′′+B5(λw+ν)m2(m+1)(16−8m)V2V ′V ′′′

(3.5) − B5(λw + ν)(6m4 − 6m3 − 12m2)V2(V ′′)2 = 0

We take

(3.6) V(ξ) = y(ξ) =
N∑

n=0

anQN

where Q = 1
1±aξ . We note that the function Q is solution of equation

(3.7) Qξ = lna(Q2 − Q)

Considering the homogeneous balance with V3(V ′)2 and V6 in Eq (3.5) gives

(3.8) 6N = 5N + 2,

(3.9) N = 2.
3
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Therefore we have

(3.10) V(ξ) = y(ξ) =
2∑

N=0

aN QN = a0 + a1Q + a2Q2,

and we substitute derivatives of the function y(ξ) with respect to ξ. The required derivatives
in Eq (3.5) are obtained

(3.11) yξ = ln a
(
−a1Q + a1Q2 − 2a2Q2 + 2a2Q3

)
,

(3.12) yξξ = ln2 a
(
a1Q − 3a1Q2 + 2a1Q3 + 4a2Q2 − 10a2Q3 + 6a2Q4

)
,

(3.13)
yξξξ = ln3 a

(
−a1Q + 7a1Q2 − 12a1Q3 + 6a1Q4 − 8a2Q2 + 38a2Q3 − 54a2Q4 + 24a2Q5

)
,

yξξξ = ln4 a
{

a1Q − 15a1Q2 + 50a1Q3 − 60a1Q4 + 24a1Q5 + 16a2Q2 − 130a2Q3

(3.14) + 330a2Q4 − 336a2Q5 + 120a2Q6
}
.

As result of this we have the system of algebraic equations can be solved with Mathemat-
ica. Solving the system of algebraic equations, we obtain the coefficients a0, a1 and a2 as
follows:

a0 = 0, a1 = −

√
− (m + 1)(m + 4)(3m + 4)

(
(aλ + ν)(m2 + 4m + 8) + φ

)
bλ(m + 2)(m2 + 4m + 8)

,

a2 =

√
− (m + 1)(m + 4)(3m + 4)

(
(aλ + ν)(m2 + 4m + 8) + φ

)
bλ(m + 2)(m2 + 4m + 8)

,

B = − m
2 ln a(m + 2)

√
(aλ + ν)(m2 + 4m + 8) + φ

2cλ
,

(3.15) w = − (ν − aλ)(m2 + 4m + 8) + φ
2λ(m2 + 4m + 8)

,

where a, b, c, λ, ν are arbitrary constants and φ =
√

16λc2(m + 2)2 + (aλ + ν)2(m2 + 4m + 8)2.
Substituting Eq (3.15) into (3.10) and we have
(3.16)

V(ξ) = −

√
− (m + 1)(m + 4)(3m + 4)

(
(aλ + ν)(m2 + 4m + 8) + φ

)
bλ(m + 2)(m2 + 4m + 8)

 1
1 ± aξ

− 1(
1 ± aξ

)2


where ξ = − m
2 ln a(m+2)

√
(aλ+ν)(m2+4m+8)+φ

2cλ

(
x + (ν−aλ)(m2+4m+8)+φ

2λ(m2+4m+8) t
)
. Substituting Eq. (3.16) into

(3.4) and applying several simple transformations to these solutions, we obtain new exact
solutions to Eq (1)

(3.17) u1(x, t) =
A1

cFs
4
m [B(x − wt)]

,
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Figure 1. Solution of u1(x, t) is shown at a = 1
8 , b = − 25

296 , c =
5

14 , λ = 16, ν = −2, m = 4
5 and the second graph represents the

exact approximate solution of Eq. (31) for t = 1.

Figure 2. Solution of u2(x, t) is shown at a = 1
8 , b = − 25

296 , c =
5

14 , λ = 16, ν = −2, m = 4
5 and the second graph represents the

exact approximate solution of Eq. (32) for t = 1.

(3.18) u2(x, t) =
A2

sFs
4
m [B(x − wt)]

,

where

Aϵ =

(−1)ϵ
√
− (m + 1)(m + 4)(3m + 4)

(
(aλ + ν)(m2 + 4m + 8) + φ

)
bλ(m + 2)(m2 + 4m + 8)


2
m

, (ϵ = 1, 2.),

B = − m
2 ln a(m + 2)

√
(aλ + ν)(m2 + 4m + 8) + φ

2cλ
,

and

w = − (ν − aλ)(m2 + 4m + 8) + φ
2λ(m2 + 4m + 8)

.

Here, A1, A2 represent the amplitude of the solitons, while B is the inverse width of the
solitons and w represents the velocity of the solitons. Also, Eq. (3.18) is a singular soliton
solution for Eq. (1).
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4. Remarks and Conclusion

Our aim in this section is to show that general Expa-function with Kudryashov method
could be used to one solutions in the form of symmetrical hyperbolic Fibonacci and Lucas
functions. We highlight briefly the definitions of symmetrical hyperbolic Fibonacci and Lu-
cas functions. Also Stakhov and Rozin [1,18] defined all details of symmetrical hyperbolic
Fibonacci and Lucas functions. We only give formulas here. Symmetrical Fibonacci sin,
cosine and tangent are respectively defined as

(4.1) sFs(x) =
ax − a−x

√
5
, cFs(x) =

ax + a−x

√
5
, tFs(x) =

ax − a−x

ax + a−x .

Analogously, symmetrical Lucas sin and cosine are respectively defined as

(4.2) sLs(x) = ax − a−x, cLs(x) = ax + a−x,

where a = 1+
√

5
2 , which is known in the literature as Golden Mean [18]. So we can find more

general (or more larger classes of) solutions in applying the general Expa-function method
with Symmetrical Fibonacci functions. If we take a = e then we can find other solutions
also.
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