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Abstract: In this study, the modified finite element-transfer matrix method was adapted for nanobeam’s stability 

analysis. The nanobeam's stability equation was first established with the help of Euler beam theory. Using 

differential equation, the finite element matrix of the element was first deduced, followed by the Ricatti transfer 

matrix. The suitability of the present method was demonstrated using an example reported in the literature. In 

our reported method, the matrix dimensions are significantly reduced compared to the classical finite element 

method, and therefore the solution time is shortened. This method can be used mainly for the solution of multi-

span and variable cross-section nanobeams.  
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Nano Kirişlerin Değiştirilmiş Sonlu Elemanlar Taşıma Matrisi  

Yöntemi ile Stabilite Analizi  
 
Öz: Bu çalşmada değiştirilmiş Sonlu elemanlar–taşıma matrisi yöntemi nano kirişlerin stabilite analizi için 

uyarlanmıştır. Çalışmada önce nano kirişin stabilite denklemi yerel olmayan Euler kiriş teorisi yardımıyla 

oluşturulmuştur. Diferansiyel denklemin çözümü ile önce eleman sonlu elamanlar matrisi elde edilmiş daha 

sonra yapılan dönüşümle Ricatti taşıma matrisi elde edilmiştir. Çalışmanın sonunda sunulan yöntemin 

uygunluğunu literatürden alınan bir örnek üzerinde gösterilmiştir. Sunulan yöntem ile matris boyutları klasik 

sonlu elemanlar yöntemine göre kayda değer bir şekilde azalmakta ve dolayısıyla çözüm süresi de kısalmaktadır. 

Sunulan yöntem özellikle çok açıklıklı ve değişken kesitli nano kirişlerin çözümünde kullanılabilir. 

 

Anahtar Kelimeler: Nano kiriş, Sonlu Eleman, Taşıma Matrisi Yöntemi, Euler Kiriş 

 

1. Introduction 

 

New generation materials with enhanced properties and functionality are produced through 

nanotechnology. The beam is widely used in many applications and, therefore the mechanical 

properties of these nanostructures depicts an essential role in the design of nanostructures. 

Nanostructures have attracted the attention of many researchers because of their widespread use in 

engineering applications. 

Glabisz et al. [1] developed an algorithm to analyze the stability of Euler–Bernoulli nanobeams. 

Exact solutions were used for the analysis of the prismatic nanobeam. Shariati et al. [2] investigated 

the vibrations and stability of functionally graded nanobeams by numerical and analytical methods. 

http://www.teknolojikarastirmalar./
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The effect of nonlocal parameters and different boundary conditions of nanobeams were studied by 

Kumar et al. [3], Zhang et al. [4], Mohammadi et al. [5], and Wang et al. [6]. Eringen [7] introduced 

the nonlocal elasticity theory and developed the basic field equations of nonlocal continuum field 

theories [8, 9]. This theory was used in the analysis of many nanostructures [10-20]. Karličić and 

Cajić [21] used the incremental harmonic balance method to analyze the dynamic stability of a 

nanobeam system with the help of Eringen's nonlocal elasticity theory.  

Behdad et al. [22] employed the two-phase local/nonlocal elasticity to investigate the size-

dependent stability and vibration of viscoelastic functionally graded porous Timoshenko nanobeams 

for the first time. Sourani et al. [23] used nonlocal strain gradient theory to investigate the Euler–

Bernoulli nanobeam's dynamic stability under time-dependent axial loading. They assumed the 

cross-section of nanobeam as rectangular and boundary conditions as simply-supported. They 

derived strain–displacement relations using the Von Kármán equations.  

Hamed et al. [24] derived equations for beam (local and nonlocal) to study the influence of 

perforation parameters on buckling loads and static bending of nanobeams by considering all the 

boundary conditions. Their model is helpful in modeling nanoresonators and nano actuators used in 

nanotechnology. Arda and Aydogdu [25] studied the stability of a nanobeam under a time-varying 

axial loading. They investigated the effect of a small-scale parameter on the dynamic displacement 

and critical dynamic buckling load of nanobeams. Eltaher et al. [26] used higher-order shear 

deformation beam theories to investigate the influence of thermal load and shear force on the 

buckling of nanobeams.  

Several numerical methods are used in structural analysis, and the finite element method is the 

powerful and the most common numerical method [27-30]. The transfer matrix method is an 

effective method used in mechanics developed by Holzer [31] for torsion vibrations of rods. 

Dokanish [32] combined FEM and TMM to analyze the vibration of structures. Rong et al. [33, 34] 

used the finite element transfer matrix method for eigenvalue problems of structures. Ozturk et al. 

[35] implemented a modified finite element transfer matrix method for the structure static analysis. 

Bozdogan and Khosravi Maleki [36] applied a modified finite element transfer matrix method to the 

heat transfer problem. 

This study has adopted the Modified Finite Element-Transfer Matrix (MFETM) method for the 

stability analysis of nanobeams. Nonlocal Euler beam theory is used for nanobeams in the study. 
In the classical finite element method, matrix system size increases with increase in the number of 

elements. In the MFETM method, the size of the system matrix is independent of the number of 

elements. 

In the study, it has been accepted that the material has linear elastic behavior. 

2. Material and Method 
 

According to the nonlocal elasticity theory, the differential equation expressing the Euler beam's 

stability state is written as follows [37,38]. 

4 4 2
2

04 4 2
( ) 0P

d v d v d v
EI e a P

dz dz dz
  

                                             (1) 

Where υ is the deflection function, z is the beam axis, EI is the bending stiffness, e0a is the scale 

coefficient that incorporates the small scale effect. P is the axial force. 

The differential equation (3) is obtained by substituting the transformation in equation (2) to make 

the 4
th

 order homogeneous ordinary differential equation to dimensionless. 
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z

L
 

                                                                      (2) 
4 2

2 2

0 4 2
[ ( ) ] 0

d v d v
EI e a P PL

d d 
  

                                          (3) 

By using equation (4), short version of equation (3) can be  written as equation (5).. 

± 2

0[ ( ) ]EI EI e a P                                                             (4)    

±
4 2

2

4 2
0

d v d v
EI PL

d d 
                                                          (5)    

The differential equation (6) can be written by modifying equation (5), 

4 2
2

4 2
0

d v d v

d d


 
 

                                                           (6)  

The λ in the differential equation (6) is defined as follows, 

±

2PL

EI
                                                                     (7) 

The solution of the dimensionless differential equation (6) is, 

1 2 3 4( ) cos( ) sin( )v c c c c      
                                       (8) 

If the derivative of the differential equation (8) is taken, the rotation function is found as follows. 

2 3 4( ) sin( ) cos( )v c c c       
                                         (9)          

The deflection and rotation values at the ends of the beam are obtained using functions (8) and (9).    

1 3(0)v c c 
                                                              (10) 

2 4(0)v c c   
                                                            (11)

1 2 3 4(1) cos( ) sin( )v c c c c                                                (12)

2 3 4(1) sin( ) cos( )v c c c                                                    (13) 

The equations (10), (11), (12), and (13) can be expressed in matrix form as follows. 

1

2

3

4

1 0 1 0 (0)

0 1 0 (0)

1 1 cos( ) sin( ) (1)

0 1 sin( ) cos( ) (1)

c v

c v

c v

c v



 

   

    
         

    
         

                                   (14) 

The matrix equation (14) can be expressed in abbreviated form as follows. 
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1

2

3

4

(0)

(0)

(1)

(1)

cv

cv
A

cv

cv

  
  
   
  
  

                                                                (15) 

Shear force and bending moment expressions at beam ends are written as below in dimensionless 

form. 

± 3

3 3

EI d v P dv
V

L d L d 
                                                         (16)   

± 2

2 2

EI d v
M

L d
                                                               (17) 

By substituting the deflection equation (8) in the equations (16) and (17) and performing the 

necessary calculations, the equations (18) and (19) can be written as. 

2( )
P

V c
L

 
                                                                (18)

±
2 2

3 42
( ) [ cos( ) sin( )]

EI
M c c

L
                                             (19) 

By the sign convention in the one-dimensional finite element method, the force expressions at the 

ends of beams can be expressed by the following equations, 

1 2(0)
P

F V c
L

 
                                                           (20) 

±
2

2 32
(0)

EI
F M c

L
                                                          (21) 

3 2(1)
P

F V c
L

                                                             (22)

±
2 2

4 3 42
(1) [ cos( ) sin( )]

EI
F M c c

L
                                           (23) 

The equations (20), (21), (22), and (23) can be written in matrix form as follows. 

±

± ±

1 12

2
2 2

3 3

4 4

2 2

2 2

0 0 0

0 0 0

0 0 0

0 0 cos( ) sin( )

P

L
c FEI

c FL

c FP

L c F

EI EI

L L



   

 
 
 

    
           

            
 
  
  

                            (24) 
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The abbreviated representation of the matrix equation (24) can be written as follows. 

1 1

2 2

3 3

4 4

F c

F c
B

F c

F c

   
   
   
   
   
                                                                  (25) 

The matrix equation (26) is written by combining the matrix relations (15) and (25).  

1

2 1

3

4

(0)

(0)

(1)

(1)

F v

F v
BA

F v

F v



   
   
   
   
   

                                                            (26) 

The matrix equation (26) is abbreviated as follows. 

1

2

3

4

(0)

(0)

(1)

(1)

F v

F v
K

F v

F v

   
   
   
   
   

                                                              (27) 

where K is the stability stiffness matrix of the Euler beam according to the nonlocal elasticity 

theory. The stiffness matrix (27) can be written as equation (28) in the form of sub-matrices. 

1 2

3 4

k k
K

k k

 
  
                                                                (28) 

where k1, k2, k3, and k4 are the K matrix sub-matrices, and their dimensions are 2×2. 

The matrix equation (27) can be expressed as follows, considering the definition (28). 

1 2 1 1

3 4

i i

i i

k k d Q

k k d Q

     
    

     
                                                    (29) 

di-1, di, Qi-1 and Qi are defined below respectively. 

                                                                 
1

(0)

(0)
i

v
d

v


 
  

 
                                                               (30) 

                                                         
1

(1)

(1)

v
d

v

 
  

 
                                                               (31)                                                                

1

1

2

i

F
Q

F


 
  

 
                                                               (32) 
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3

4

i

F
Q

F

 
  
 

                                                              (33)                                                                                                       

The equation (29) can be written as equations (34) and (35). 

1 1 2 1i i ik d k d Q                                                            (34) 

3 1 4i i ik d k d Q                                                              (35)   

The matrix equations (38) and (39) are written by applying the Ricatti transfer defined in equations 

(36) and (37) [33].  

1 1 1i i iQ T d                                                                 (36)  

i i iQ Td                                                                   (37)          

1 1 2 1 1i i i ik d k d T d    
                                                     (38) 

3 1 4i i i ik d k d Td  
                                                         (39)    

di-1 is calculated by using the matrix equation (38).  

1

1 1 1 2[ ]i i id T k k d

   
                                                     (40) 

By substituting equation (40) into equation (39), the matrix equation (41) is obtained. 

1

3 1 1 2 4[ ]i i i i ik T k k d k d Td

                                            (41)       

From the matrix equation (41), Ti is obtained as follows,                    

1

3 1 1 2 4[ ]i iT k T k k k

   
                                              (42) 

Table 1. T1 and frequency equation for different boundary conditions 

 

Support conditions   T1 Stability equation 

Cantilever rod   

 

k4 0nT   

Pinned -Clamped  

rod   

 

1 1 1 1
1 1

1 1

1 1 1 1
1 1

1 1

(3,2) * (2,3) (2,4) * (3,2)
(3,3) (3,4)

(2,2) (2,2)

(4,2) * (2,3) (4,2) * (2,4)
(4,3) (4,4)

(2,2) (2,2)

K K K K
K K

K K

K K K K
K K

K K

 
    
 
 
    
 

 
1 0nT    

Pinned ended  rod  

 

 

1 1 1 1
1 1

1 1

1 1 1 1
1 1

1 1

(3,2) * (2,3) (2,4) * (3,2)
(3,3) (3,4)

(2,2) (2,2)

(4,2) * (2,3) (4,2) * (2,4)
(4,3) (4,4)

(2,2) (2,2)

K K K K
K K

K K

K K K K
K K

K K

 
    
 
 
    
 

 

(2,2) 0nT   

 

Matrix equation (42) is 2×2 in size, and according to the nonlocal elasticity theory, the Euler beam's 

stability is the Ricatti transfer matrix.  
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For the n
th

 element:  

n n nT d Q                                                                 (43) 

The buckling load is found by applying the boundary condition at the end of the beam using 

equation (43). Depending on the boundary conditions, T1 and (43) stability equations are given in 

Table 1. 

 

2. Results and Discussion 

 

To investigate the suitability of the method, an example taken from the literature [37] was solved 

with the MFETM method. The results were compared with the literature for three different 

boundary conditions in Table 2, Table 3, and Table 4. 

In the example, the modulus of elasticity was taken as 1 TPa, and the diameter value was taken as 1 

nm. 
 

Table 2. Comparison of critical buckling loads (nN) for cantilever rod 
 

Cantilever rod 

         (e0a) 0 1.0 2.0 

L/d This study Wang et al. 

[37] 

This 

study 

Wang et 

al. [37] 

This study Wang et 

al. [37] 

10 1.2112 1.2112 1.1818 1.18202 1.1022 1.1024 

16 0.4731 0.4731 0.4685 0.4686  0.4555 0.4555 

20 0.3028 0.3028 0.3009 0.3009 0.2955 0.2955 

 

Table 3. Comparison of critical buckling loads (nN) for pinned ended rod 

 

Pinned ended rod 

         (e0a) 0 1.0 2.0 

L/d This study Wang et al. 

[37] 

This 

study 

Wang et 

al. [37] 

This study Wang et 

al. [37] 

10 4.8440 4.8447 4.4089 4.4095 3.4729 3.4735 

16 1.8922 1.8925 1.8219 1.8222  1.6394 1.6396 

20 1.2110 1.2112 1.1818 1.1820 1.1022 1.1024 

 

Table 4. Comparison of critical buckling loads (nN) for clamped –pinned rod 

 

Clamped -Pinned  

         (e0a) 0 1.0 2.0 

L/d This study Wang et al. 

[34]  

This 

study 

Wang et 

al. [34] 

This study Wang et 

al. [34] 

10 9.9096 9.9155 8.2449 8.2461 5.4821 5.4830 

16 3.8709 3.8715 3.5880 3.5885 2.9426 2.9431 

20 2.4774 2.4789 2.3584 2.3957 2.0612 2.0615 

 

The variation of the critical buckling loads obtained by the MFETM according to L/d and eoa for 

three different boundary conditions is given in Figure 1, Figure 2, and Figure 3. 



ECJSE 2021 (2) 931-941 Stability Analysis of Nanobeams by Modified Finite Element… 
 

938 

 

 
 

Figure 1. Critical buckling load vs. L/D for cantilever rod 
 

 
 

Figure 2. Critical buckling load vs. L/D for pinned ended rod. 
 

 
 

Figure 3. Critical buckling load vs. L/D for clamped-pinned rod. 
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As shown in Figure 1, Figure 2, and Figure 3, the critical buckling load decreases as the L/d ratio 

increases and the critical buckling load decreases as the eoa increases. 
 

4. Conclusions 

In this study, the MFETM method has been adapted for the stability analysis of nanobeams. In the 

study, the nanobeams' stability equation is written according to the nonlocal Euler beam theory. At 

the end of the study, the suitability of the presented method is shown from an example taken from 

the literature. In the finite element method, as the number of elements increases, the size of the 

system matrix increases, while in the MFETM method, the size of the system matrix remains 

constant regardless of the number of elements. The size of the system matrix to be solved in the 

MFETM method is 2×2 regardless of the element size. 

 

 In the presented method, the solution time is significantly reduced due to the small matrix 

dimensions. As a result, the MFETM method can be an excellent alternative to the transfer matrix 

method in beam’s and nanotube’s solutions. 
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