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Ozet : y =0 sabit sinir yiizeyini gegen sikigtirilamaz bir akigkanin iki
boyutlu hareketini inceleyen Goldstein(*) malm sioir tabakasi (boundary la-
yer) denklemlerini bir ayrilma noktasi civarindaki kararlh (steady) harekete
tatbik ederek negatif neticeler elde etti ve buradan akigkanin gerek ayrilma
noktasindan evvelki ve gerek daha sonraki hareketinde bu denklemlerin mu-
teber olamiyaca@ kanaatine vardi.

Bu yazida Goldstein’in bagarisizliginin sebepleri incelenmig ve su netice-
lere variimigtir:

(i) Sioir tabakasina ait kararli hareket denklemlerini elde etmek igin
genel hareket denklemlerinin sadelegtirilmesinde yapilan kabuller bir ayrilma
noktasi civarinda dogru degildirler.

dp ‘
(ii) Sinir tabakasi denklemlerini elde ederken yapilan b—y—=0 kabulii sinir

iizerinde bir ayrilma noktasinin tegekkiiliinii imkansizlagtirir.

(iii) Sinir tabakasi denklemlerinin ¢Sziimiinde Blasius ve daha sonraki
yazarlarin kullandig: metot, sadelegtirilmis denklemlerin simir gartlarimi sag-
layan yaklagik bir ¢8ziimiiniin ayn1 zamanda esas denklemlerin simir gartla-
rin saglayan yaklagik bir ¢8ziimii olacagn kabuliine dayanir ki bu kabul de
dogru degildir.

Keza basansizliga bagka bir sebep olarak ¢oziimiin tamamiyle belirtil-
mesi igin gereken gartlarin yeter derecede incelenmemig olmasi gésterilebilir.

Daha sonraki paragraflarda akim fonksiyonunun, y nin yeter derecede
kiigiik olmasi halinde, y nin pozitif (tam olmasi gart degil) kuvvetlerine gore
bir seriye agilabilecegi kabul edilmig ve bu ¢éziim gekli, y = 0 simir1 iizerinde
verilmis gartlar1 saglayan ¢Gziimlerin gekli hakkinda miimkiin olan bilgiyi elde
etmek gayesiyle, hem liizucl ve hem de gayri liizuci akigkanin hareket denk-
lemlerine uygulanmigtir.

Akigkanin liizuel olmas: halinde iis’lerin pozitif tam sayilar olmasi gerek-
tigi ve

0
P = Z cany/n!
n—2

serisindeki ¢, ve €3 katsayilarimin x ve f nin verilmig fonksiyonlari olmast

*) ' S. Goldstein, ‘On laminar boundary flow near a position of separa-

tion’ Q. ] Pure and App. Math, 1. 1948.
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halinde ¢éziimiin tamamiyle belirli oldugu gésterilmigtir. Cesitli 5zel haller
meyaninda

(i) Vi‘P:f('\P) denklemini saglayan ¢oziimler;
(ii) akigkanin fazla lizuci olmasi hali;

(iii) enerji kaybinin ¢, katsayilarindaki T zaman garpanindan ileri gelmesi
hali (dn yalmiz x in bir fonksiyonu olmak iizere ¢, =d, T" veya cn=2dn T
gibi) de incelenmigtir.

Liizuci olmayan akigkan halinde iki cins ¢éziim elde edilmig olup bunlar-
dan birisinde tam kuvvetlere miinhasir kalinmamigtir Tam kuvvetlere tabi olan

o

Y = Z cnyt/n!
n=1

¢Sziimiinde ¢; in keyfi oldugu ve daha sonra gelen katsayilardan herbirinin
birinci mertebeden lineer bir kism? diferensiyel denklem ile tayin edildigi,
c1 50 ise bu diferensiyel denklemin ¢dziimiiniin genel olarak ¢(x,¢) gibi bir
keyft fonksiyon ihtiva edecegi, ¢ = sabit’in ¢ dt = dx denkleminin ¢Szlimii
oldugu, ¢; =0 ise keyfi fonksiyonun yalmiz x e tabi olacagi ve hareketin ka-
rarli olmas1 halinde ise onun keyfi bir sabite egit olacagi gésterilmigtir. Keza
¢1=0 olmas1 halinde ¢, katsayisinin f nin derecesi en fazla n—2 olabilen bir
polinom olacag: da gésterilmigtir.

Bir ayrilma noktasi civarinda yapilan basit yaklagikliklarla bdyle bir
nokta civarinda, ayrilma tabakasi igindeki gevrilerin karakteri de dahil, ha-
reketin yeter derecede sihhatle temsil edilebildigi gosterilmigtir.

Nihayet, ¢oziimiin sekli hakkinda yapilan ilk kabullere tabi olarak akim
cizgilerinin bir ayrilma noktasi civarindaki geklinin, hattd ayrilma noktas:
yiiksek mertebeden bir aykir1 nokta olsa bile, approximation metotlan ile ko-
layca incelenebilecegi fakat bu noktanin en fazla kollar1 reel olan ¢ok katli
bir diigiim veya kdge noktasi oldugu gosterilmigtir.

* *
*

Summary: In an investigation of the two dimensional flow of an in-
compressible fluid past the fixed boundary y =0 Goldstein obtained nega-
tive results by applying the usual boundary layer equations to steady flow
near a point of separation, and drew the conclusion that these equations
appear to be invalid both upstream and downstream of such a point.

In the present paper the reasons for the failure are examined, and it is
shown

(i) that the assumptions made in simplifying the general equations of
motion to form the boundary layer equations of steady motion are invalid
near a point of separation ;

(ii) that the assumption dp/dy =0 used in forming the boundary layer
equations makes a separation point on the boundary impossible ;

(iii) that the method used ia the solution of the boundary layer equa-
tions by Blasius and subsequent writers rests on the assumption that an
approximate solution of the simplified equations satisfying the boundary con-
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ditions will also be an approximation to a similar solution of the exact equ-
ations ; and that this assumption is iavalid.

It is also suggested that an additional reason for the failure is that the
conditions necessary for the complete determination of the solution have
bzen inadequately studied.

In subsequent paragraphs it is assumed that the stream fuoction can be
expanded in positive (not cecessarily integral) powers of y when y is suffi-
ciently small, and this form of solution is applied to the general equations
of motion both for viscous and for nonviscous fluid, with the object of as-
certaining as musch as possible about the form of those solutions which
satisfy the given conditions on the boundary y=0.

It is shown that in the case of a viscous fluid the indices must be posi-
tive integers, aud that the solution is completely determined when the eoeffi-
cients cz2 and c3 in the series

0
<
= }_, ca y*/n!
n=1
are known functions of x and #. Various particular types are examined,
including :

(i) solutions for which \‘iw = f(V);
(ii) highly viscous fluid;

(iii) solutions in which the dissipation of energy is due to a time factor
T in the coefficient ¢, =d, T?, or cn=d, T, where d, depends only on x.

In the case of nonviscous fluid two types of solution are obtained, one
of which is not restricted to integral powers; it is shown that in the solu-
tion depending on integrpl powers,

©
Y= Z cny™/n!

n=1
the coefficient ¢, is arbitrary, but that each of the succeeding coefficients is
determined by a linear partial differential equation of the first order whose
solution when ¢y 520 will in general contain an arbitrary fanction of ¢(x,#),
where ? = ¢ constant is the solution of ¢y dt=dx; that if ¢y =0 the ar-
bitrary function depends only on x; and that if the motion is steady it is
an arbitrary constant. It is also shown that wher ¢1=0 coefficient ¢n is a
polynomial in # of degree n—2 at most.

By means of simple approximations near a point of separation itis shown

that the motion in the vicinity of such a point can be adequately represen-
ted, including the behaviour of vortices in the separation layer. ‘

Finally it is shown that subject to the initial assumptions regarding the
form of the solution, the form of the streem lines near a point of separa-
tion can be easily examined by methods of approximation even when the
point of separation is a singularity of higher order; and that it is at most
a multiple point with real nodal or cuspidal branches.

*
%
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1. The equations of two dimensional flow of a viscous incom-
pressible fluid are

du du du__ 1
bt+ub—x+vb-y_ pbx+vv 1u,
2 13
=+ +v§;: YRAAILE 11
u::b_q)) v:—-—M-
by Ox

External forces are presumed to be derivable from a poten-
tial function and included in p.

The usual procedure in dealing with a boundary layer is to
limit the discussion to steady flow and to omit certain terms
with a view to simplification of the solution. Thus Prandtl (1904)
and Blasius (1907) reduced the first two equations to

du du du
u {x + v D-Ty =v S?
by regarding derivations of p as negliable near the boundary
g =0, and du/dx as small compared with du/dy within the
boundary layer.

More recently S. Goldstein (‘On laminar boundary flow near
Q. J. Pure and App. Math. 1. 1948)
assumes that the equations 1.1 may be replaced by

a position of separation.’

du__ 1
Stvs= b”+
dy  pox
_D_“P, _Y
T dy dx’
1o . dU
ps?c—be ’

where U is the main stream velocity outside the boundary layer,
and seeks to investigate the existence or non-existence of a
singularity at a point of separation on the boundary y = 0. But
his conclusion (p. 51, end para. 1) is

“The work described may be summed up by saying that it
throws doubt on the validity of the boundary layer equations
at and near separation on the upstream side, and also down-
stream of separation; inferences from these equations in these



INCOMPRESSIBLE FLOW NEAR A SOLID BOUNDARY 55

regions, which are fairly common in the literature, are there-
fore also in doubt; ..... ”

In these circumstances it is evidently advisable either to
amend the approximate boundary layer equations or to discard
them altogether and return to the exact equations. The object
of this paper is to elicit information from the exact equations
on the problem of flow near a straight solid boundary, in par-
ticular near a point of separation.

2. The reasons for the failure of the approximate equations to
provide the required solution lie partly in the assumptions on
which the simplification of the equations of motion is based,
and partly in the usual method of solution

bub_u
b

It has been assumed that — is small in the boundary

Ox
layer.

This assumption is certainly questinable on the downstream
side of a separation point when a slow back flow occurs near
the boundary, for if separation occurs at S the conditions imply
the existence of a locus SB on which u = 0; and since u =1
both on SA and on SB, is small and negative in the included
region and may be assumed to have a continuous derivative, it
is evident that du/dy = 0 on some locus situated between SA
and SB and passing through S. It is curious that although the
condition du/dy = 0 has been recognised as a condition to be
satisfied at a point of separation, the existence of the locus
seems to have escaped notice, since it renders the assumption
invalid in the region ASB.

—_—
u=U

There are however at least two other features of the usual
method of attack which appear to have escaped notice, each of
which is in itself sufficient to account for the failure,
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One of these is the fact, which will be established in para.
6, that if dp/dy = 0 everywhere, as is assumed in the approxi-
mate equations, and if the solution sought is of the form

]

(‘I) :Z Cn!]"/”' ’

n—2
then there can be no point of separation. The condition dp/dy =10
excludes it. This is a consequence of the exact equations. So
the omission of dp/dy from the approximate equations destrorys
the basis of the problem.

The second point is that the method of Blasius, which appe-
ars to have been generally followed, depends on the tacit
assumption that an approximate solution of the approximate
equations, if it satisfies the given boundary conditions, will also
be an approximation to a similar solution of the exact equations
of motion. The assumption is unjustified.

If with Blasius we write

= 1) Py | b= (a0 fly),

where f(n) depends only on %, and insert in the exact equations
1.1 for the case of steady motion, the resulting equation to
determine f can be satisfied only if f satisfies simultaneously
the three equations

"+ + =0,
Nf" 4+ 1 f" + 450" + 15qf — 15f =0,
and 20+ 100/ 4 6f — Hutff + Suff’ + miff — 2 f"
— 20f - 3nf 4 3ff =0,
where primes denote differentiation with respect to 7.
The first of these corresponds to the equation

fl" + ff// — Q
which is solved by Blasius in a infinite series of positive inte-
gral powers on 7, beginning with n% His series is obviously
not a solution of the second equation, whose general solution is

fO) =cm e ! 4 e+ 5,
where the coefficients are arbitrary. The first equation requires
either

f=ecm or f=3n7",
and each of these satisfies the third equation.
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There are therefore just two exact solutions common to all
three equaticns, giving respectively

$ == cuy/2 and ¢ ==6vxy~!,

neither of which is relevant to the flow of a viscous fluid along
the boundary y = 0. The form of solution employed by Blasius
is therefore in no sense an approximation to an exact solution
of similar type, and it is not surprising that difficullty was ex-
perienced near the point of separation, or for that matter
elsewhere.

It is probable also that some of the complexity encountered
is due to the fact that the information required to define the
solution has not been sufficiently studied.

The following paragraphs are concerned chiefly with formal
expression which satisfy the exact equations of motion. The
question of convergence for instance requires further investiga-
tion and offers considerable difficulty. But various types of so-
lution are examined both for viscous and nonviscous motion in
presence of the boundary y =0, and it is shown that appro-
ximate solutions can be obtained which suggest adequately the
nature of the flow near a point of separation, and the existence
and behaviour of vortices near the boundary. The solutions are
obtained directly from the general equations.

3. The general equation.

The equation to determine ¢ obtained by eliminating u,v,p
from 1.1 is

(% g—v vi)c + e 3.1

where the vorticity { = V,¢; it is assumed that when y is suffi-
ciently small ¢ is expressible as a convergent series of positive
powers of y (not necessarily integral) whose coefficients are
functions of x and #, and in steady motion depend only on x.
It the fluid is viscous it is assumed that when y =0, ¢ = ¢,
= ¢, = 0. If it is nonviscous the last condition is omitted,
but may nevertheless be satisfied.
We assume therefore

]

= Z c.ymr 3.2

r=1
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where if v=20, l==m<<my<<..... , and if v=£0, 1<m,
<my<<..... , since u = ¢, must be finite when y = 0.

When v =k 0 there will occur on substitution in the equa-
tion 3.1 terms of the form

- er(mr - 1) (m2 - 2) (mr - 3) Crym’_4 ’

and the lowest power of y occurring is y~—*. It occurs only
once, so we must have

my(m; — 1) (m; — 2)(m, — 3) ¢, = 0.

Since ¢; == 0 and m; > 1, we must have either my =2 or
my =3. By choosing m; =2 and my, =3 we can dispose of
the corresponding terms without imposing conditions on the
coefficients ¢, and c,. But the term of index my — 4 cannot be
eliminated in this way It must be combined with the term con-
taining y°, so that m, must be 4, and similarly for succeeding
indices It follows that when v =k 0 the only possible form of the
expansion is

$ o= 5] c.y"n! 33
n—2

where the coefficients ¢, are functions of x and t, and all in-
dices are positive integers.
The series 3.3 is convergent if

Cny

ncn—l

<1,

lim
n—>w

Ie, if

7 <lim ~nc,,_1/c,,
n=>w

This defines the region of convergence at any time #, and
its character, as will be seen in para. 4, depends only on the
values of ¢, and c¢;; but the dependence is not simple. -

When v =0 the circumstances are different. The lowest
occurring indices after substitution are my — 2 and 2m; — 3,

where m; &£ 1.
If m; > 1 the former is the lower; since

2my —3—(m—2)=m —1>0,

so the coefficient of y™ ™2 must vanish, i. e. mymy; — 1)¢; =0,
contradiction since ¢; =% 0. Hence m; == 1, and
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4) =y + Zcrymr .
r—g

We now find on substitution that there are two alternatives.
The first leads to a solution in which m, = r, that is we ob-
tain the form

$ = 2, cay’n! 3.4
n=}]

where the indices are the positive integers. But the equation
of motion is also satisfied if

1

" ’
¢y ==0; and ¢/, =0
1 ’ r > mr_z

1 dc, . .
;r—%—t‘—cl, (f'>1)’
so that if we take

C1=x—;"+g‘ cr:drfm"_Z’ (r>1)

where f and g are arbitrary functions of ¢, and d, is a constant,
there results the solution

b= GfIf + gy + £ B duf 3.5

where the indices m, are still arbitrary.

The series 3.5 is convergent if

i 1/m
|9/ 1 < lim (%)

Vo r

, where m=m,—m,_, ,

so that on the boundary of the region of convergence y is in-
dependent of x, but depends in general on ¢
The solution just obtained is evidently a particular case of

b= (xf[f 4 gy + f?h(2), 3.6

where z = yf(f), f and g are arbitrary functions of #, and A(2)
an arbitrary function of z subject to the conditions A(0) == A'(0)
==0; and it may be immediately verified that this expression
satisfies the equation 3.1 when v =20.

It furnishes

u=q’y:{"§’+g+f—lhl(z)’ ’U:_‘-I)x:_‘zf“’ C="h(z),

f ’
and
2f(py — P)e == ff' * + 2f* — ff)9* + 2f(fg) x ,
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where p, is the pressure at the origin. The pressure does not
depend on A.

There is a point of separation at x = — fg/f’ which is fixed
at the origin if g = 0. Whether there is or is not a singularity
at the point of separation depends entirely on the character of
the arbitrary function 4(z). No vortex can occur in the flow
since ¢,, = 0, while at a vortex the condition

A= ‘-’)iy_“l’qu)yy<0

must be satisfied. If f' = O there is no point of separation.

Since { == A’(z) the flow is irrotational if A" =0, otherwise
rotational.

If 27=ff, f=lat+ b,
the equipressure lines are straight lines parallel to the y axis,
otherwise they are concentric and coaxial conics with axes pa-
rallel to the axes of coordinates, the common centre being at
[—(fe)[f', 0]. They are circles if f2==ff".

From the point of view of vortices another solution of some
interest which still contains an arbitrary function is

b =yglalx =) + blx— ) + f + ]+ dy* —ay’(3, 3.7
where f is an arbitrary function of ¢, and a, b,¢c,d are con-
stans.

This solution is of course included id 3.4, but is of interest
as a polynomial in y obtained directly from the general form.
Since

u=dy;=alx —f + b(x — )+ f + c + 2dy — ay?,
v=—d¢, = —y[2ax — f) + b],
C=2d, and A =4a¥*x — f)? — day(d — ay);
it is clear that there can be no vortex if ad < 0. At a vortex
Y =¢, =0, hence either y=0, which makes A0, or

x — f = — b[2a. Substituting this in ¢, = 0 we find
4a*(y — dja)® = 4af — b® + 4d®
and A = 4af’.

If therefore b — 4d? << 4af << 0
there will be two real vortices, otherwise not.
There are two points of separation, given by y=0 and
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alx —f) +bx —f) + f +c=0,
which are real if b — 4ac — 4af > 0.
The two conditions may be written in the form
dac — b? << — 4af’ << 4d* - b2,
in which the middle term must be positive Both conditions, or

one, or neither may be satisfied. If 4ac is sufficiently large and

positive the points of separation are not real and if 4d* < b?
the vortices are not real.

4. The recurrence relations. Viscous flow.

On substituting in 3.1 the formal solution 3.3 it is found
that in viscous motion

B WP
Y Cq
_l 303 , »
€5 7(bt+22) 2,

the general recurrence relation after the first two terms being
b L4 nn n 7
D (0! Capa) = ¥ (€] 267, F Csal - [Gner €] (1) eac]

F()enaley + €)F o )ealen T+ eny)]
—-—[ch3 + 1) n—1 cz + 04)+ e n—2) 2(01’:--1+ c"’*")] =0; 4.1

where primes denote differentiation with respect to x, and <:>
is a binomial coefficient.

The solution is determinate when c¢; and c¢3; are known, since
the recurrence relations then determine the remaining coeffici-
ents uniquely; that is, the completion of the solution requires
knowledge of the values of du/dy and d%ufdy? when y =0 for
all x and ¢, or the equivalent of this information.
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5. Nonviscous flow.

It is evident that after obtaining a solution in the above form
we cannot deduce from it a solution for a nonviscous fluid by
making v assume the value zero, or by making it approach zero
as a limiting value. The two types of flow are essentially dis-
tinct. When the fluid is nonviscous the equations to be satis-
fied are quite different in character.

Inserting 3.4 in 3.1 with v=0 we find that they are

DC2
2t

ﬁ (c/+eg) + ey(el+c))+ e, —c(c) 4 cg) =0

+c C=0,

b 1] "
32(es e et ¢) + 2l o)) + o]

— 2 cl(c'; ) — c; (¢! + c)=0,

bt (C: + cn+2 _l_ [Ci(c:’:‘i‘ C,,+2) _I" .o+ (,,"_Z)Cn—x(c;' + C;)

+ (n—l)c (cm + Cs)‘l‘ Cny1C ] [ cl(c,, -+ cn+z)
T A (W )en (65t €a) +ci(c] + ¢)] = 0. 5.1

The coetficient ¢, is arbitrary, but each of the succeeding
coefficients is now determined by means of a linear partial
differential equation of the first order whose general form, if
we write z ==c,,, +c , is

z
dt + ;2 —nciz=flcry .+\ yCas1) ,

where f is a determinate function of the preceding coefficients
and their derivatives. Every coefficient from ¢, onwards there-
fore involves an arbitrary function except in the case of steady
motion, when only an arbitrary constant is involved. If ¢,=0,
in which case u = 0 when y = 0, the arbitrary functions depend
only on x and are addivite, and c; does not depend on t.
Solutions of this kind, in which a nonviscous fluid has no
tangential velocity at the boundary, are quite distinct from simi-
lar solutions for a viscous fluid, and their form is of conside-
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rable interest. Since ¢, = 0 the recurrence relations are now

bCz__

ot =0,

b—(1‘3'—--—00'

dt 72 ? 5.2
h) » ’

ﬂ(cz—l_ c) = — 2,

---------------

so that c, is independent of ¢, and apart from particular cases
arising when ¢ =0, etc., c; is a linear function of ¢, ¢, a
" quadratic function and so on. The general recurrence relation
shows that if all coefficients up to ¢, _, are of this form so is
c,. Hence ¢, is in general a polynomial in t of degree n —2
at most, and the term which is independent of ¢ is an arbitrary
function of x. These arbitrary functions are determined by the
initial value of ¢, i.e. they are the initial values of ¥ u/oy
(r=1,2,...) on the boundary y = 0. When these are known

the solution can be completed by means of the recurrence rela-
tions.

When ¢, = fi(x, ) == 0 is a known function of x and ¢ the
first equation of 5.1, namely

DCQ DCg___
3t T oax O
has for its solution ¢; = fo(?), where ¢(x,#) = k is an integral
of the subsidiary equation
de _dx
1 - Cq

and fy(®) is an arbitrary function of ¢.
Let z =1c¢; c';. The second equation of 5.1 is

0z vz ; s
m_l_clb_,‘t:clz—clcz'

whose subsidiary equations are
dt_dx_ _ds

1 ¢, ¢z —ce
i 1 2%,

the second of which may be written

(¢1-dz  clz-dx)/cl=—c 2y -dx
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since ¢; ==0. If the right hand side contains ¢ it may be elimi-
nated by using the relation ¢(x, )=k obtained from the first
subsidiary equation. Integrating with respect to x we find

zle,=f, ———/ ¢ 2cyc; - dx
where f; is a constant of integration. After integratinn k is

replaced by %(x, f), and the constant f; by an arbitrary func-
tion f3(¢). The coefficient c; is then given by

c3=—¢, + e1fs(¢) — 01/0:2 cac, - dx.

Succeeding coefficients may be evaluated in the same man-
ner. The arbitrary functions in the solution are therefore arbit-
rary functions of ¢(x, ), which is determined by c¢;. How these
arbitrary elements are to be determined in any particular prob-
lem is not obvious. It is clear that the motion described cannot
in general be steady, since ¢ must depend on t even if c¢; does
not; but of course in steady motion the time derivatives are
absent from the recurrence relations, and no difficulty arises.
The great variety of possible motions is sufficiently obvious
from the infinite set of arbitrary functions available for deter-
mination.

If ¢; is a constant and the motion is steady, the first equ-
ation of 5.1 shows that ¢ =0, and the succeeding equations
that ¢/ =0, so that ¢ is a function of y only.

If ¢, is a function of x only and the motion is steady the
first equation requires c;:O. The second and subsequent
equations determine cg etc. as functions of x with in each case
a constant of integration which multiplies a power of ¢;.

6. Pressure distribution,

In some boundary layer discussions the attempt is made to
render the solution more precise by imposing conditions on the
pressure distribution, for instance by assuming that p=—a- bx.

If we express the pressure derivatives in terms of the coef-
ficients ¢, in the nonviscous case the result is

19 dc , dc P
‘?s';"c:(s?’*‘C‘“l)“L(SfJf“l%)y e

12 ¢! ,

PBZ (btlJrclcl—cz)er ’
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which is better suited to the determination of the pressure when
the coefficients are known than to the converse process, except
perhaps when the motion is steady, or when ¢; = 0.

In viscous motion

1 bp bC2 ” .

T “"3*[5* ’(62*04’]“-

ibp bC, " ’ ’2.

Yy = vc, + vey [Dt v(c, —}—04)]_11/2!—{—...,

so that the values of the pressure derivatives on the boundary
are sufficient to determine ¢, and c;. In particular if on the

boundary dp[ox is a function of ¢ only and dp/dy = O neither
¢, nor ¢3 can depend on x, and there can be no point of sepa-
ration on the boundary. If the pressure derivatives are functi-
ons of # only on the boundary, c¢; depends only on ¢ and c; is
at most linear in x. There is in general one (mobile) point of
separation OX, but ¢., = 0, and there can be no vortex.

Finally, if dp[oy = 0. or is assumed to be zero, everywhere
it follows that ¢, = ¢, = 0, and no point of separation on the
boundary can exist. This establishes the statement made in the
second paragraph regarding the omission of dp/dy from the
approximate equations of motion.

There is in this case a simple expression for the stream func-
tion which is of interest in itself, and which is also reached
from several different points of view. The equation 3.1 admits
of solutions in which the quadratic terms as a group vanish
separately, in which case the same must be true of the quad-
ratic terms in each equation of 4.1. Using this fact and the

linear terms we obtain c; = c; =20,
P _1_DC2 c _.l_ ng
LR Y 2 A I Y2

. =, l 3 n—1 2 y2n+1

where ¢, and c; depend only on ¢.

Another instance of the occurrence of this type of “solution
is met if we inquire whether there exist, in viscous motion, so-
lutions in which the dissipation of energy is associated with the
presence of exponential or other factors involving only the time
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and the viscosity; and in either viscous or nonviscous motion
whether the convergence of the solution may not depend on
such factors The result of the inquiry is of considerable in-
terest. ‘

Assume v =k0, ¢, = d,T", where d, depends only on x and
T only on ¢

Substituting in 41, and determining T so that the flrst equ-
ation is independent of t, we find that if d, <=0 we must have
d’ = 0 and T'/T® constant, so that we may take T = (at-+b)12

The second equation requires d, =0 and d; =0, and the
third d, = 0. But the conditions d =d. =0 show that ¢ is

mdependent of x, so that the solutlon is a particular case of
6.1 . The general recurrence relation furnishes

dy=—(n—27,dus,

and hence
dyy = (= 1" (n—1)!(av)" ds,
dyps; = (—1)" (20— 1)(2n—3) ... 53 (a/2v)""'d;.

If we modify dy and d; slightly and write 2% == y?/v(at + b)
we can without loss take @ =1, and the solution may be written

= d, 2( l)n—1( —nl 220 _I__ d3i(_ 1)1: 1(24"__777 3. 122"+1
nz=l (2 )I =l

(2n+1)1 27

If & is positive the series converge for all positive values of
y and ¢, and the motion dies away as ¢ approaches infinity. v

If b is negative the solution ceases to be valid when ¢t =—5,
but is valid both before and after that instant.

Reference to preceding expressions or to equations of mo-
tion shows that Op/dy = 0 everywhere, while p and dp/0x be-
come infinite when #==—b at all points of the fluid. 7/e con-
ditions suggest an instantaneous state of shock, forming the
transition from an unstable to a stable condition.

It v=£0 and we assume ¢, =d, T a similar process leads to
the solution

= exp (vk?t) [dy(cosh ky — 1) + ds:k™ ' (sinh ky — ky)], 6.3
where d,, d; and k are constants, and k may be imaginary.

When v=0 it may be shown without difficulty that com-
parable solutions exist. For instance

6.2
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9)) if ¢q=wx, c,= 2" "xexp[—(n—1)t] (n>1)

the recurrence relations are satisfied, and

¢ =4xet [exp(s ye™) — 1 —1yge ] 6.4
(2) ife;, =0, e, =(—Dxt"2 (n>1)
we obtain b = xt~*[exp(—yt) — 1 + yt}; 6.5

both of which are easily verified by direct substitution.

But the presence of arbitrary functions {in the coefficients
makes it extremely diffucult to define the character of the so-
lution adequately by such a restriction as c, = d,T". The pos-
sibilites are somewhat too extensive for simple general conclu-
sions of this kind.

7. Steady nonviscous motion.

If v=0 and the quadratic terms are separately equated to
zero the solution consists of those motions for which

S=0 and {=Vi$=fW)

where f(J) may be any function of ¢. The first equation requ-
df ¥ _

ires YT 0, so that either f is constant or the motion is

steady, if we assume that f does not contain ¢ explicity.
When f is constant we can solve the equation

= V] ¢ =a constant 7.1
generally. Its solution is

¢ =F(x + iy) 4 G(x —iy) + 3 Cy*

in which F and G are arbitrary functions of the arguments.
The conditions ¢ = ¢, = 0 when y =0 are satisfied if

b= ——[f(x iy) — flx —ig)l + 2 C g% 7-2

where the function f is arbitrary, and the multiplier /2 is in-
serted to keep ¢ real.

Assume that f(x + iy) is expansible by Taylor’s theorem in
powers of y when y is small, and let f, denote the n'* deriva-
tive of f(x) with respect to x. Then
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b=yfi +3Cy° —I-Z:l(— Vg™t 2n+ 1)1 7.3

=} {y* + sin(yD) f(x, ¢), ' 7.4

where f(x,¢) is an arbitrary function of x and ¢, and D = d/dx.

This generalises 3.7. It is a polynomial "in y if f is a poly-

nomial in x, and can be conveniently used to furnish motions
in which points of separation and vortices occur.

Consider as an example f= — ax + x*/2nl. The stream
lines are
. on 9 ! . 2 xZn—zyIi
b=y(—ax + x/2n)!)+ 1 Cy ~ @n=2)131
S A Gl Vi
Yen=951 " T otenr)!

From the second component of the stream line ¢ = 0, the
first being y = 0, it appears that there are just two separation
points on the boundary, namely at the origin and at

x =[(2n)la]* D,

The approximate form of the second component near the
origin is given by

y = 2ax[C — x**|(2n)!,

if a/C is small, so that the curve lies below its tangent, which
if @ and T are positive makes a small positive angle with OX.

From 7.2
A=9%, — bueyy = f(x + iy) f(x — iy)
— 5 Lf (e + ig) — Fx—ig)],
and using polar coordinates this becomes
A=[2n—2) ]2 r2" 2 [;2"-24 (2n — 2){ sin (2n — 2) 0].

At a vortex A << 0, so sin(2n—2)6 must be negative, and
if vortices exist they must lie inside the circle
r=1[(2n —2) 152,
When n =1

¢ =gy(—ax+x%2) 4 § {y? — y¥l6.
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The second component of the stream line ¢ O is the
hyperbola
y? — 3x% 4 6ax — 3y = 0.

The points of separation are the origin and (22, 0), and
between the hyperbola and the sector of OX terminated by the
points of separation there is a closed region entirely bounded
by the stream line ¢ = 0. This closed région contains a vortex,
the only vortex in the flow.

A singular point on the stream lines must satisfy the equa-
tions ¢, =¢, =0, ie '

yx —a)=0,
—ax + x*}2 4+ Ly—y?2=0.

Of the four points determined by these equations two are

the points of separation on the boundary; the other two are

x=a, g=§t(@—a)t

If we take the upper sign A > 0, and the point is a stag-
nation point at which the corresponding stream line has a dou-
ble point with real tangents. But if we take the lower sign we
find that A << 0, so that the singularity is an isolated singular
point, i.e. a vortex, and it is easily shown to be situated in
the closed region mentioned above.

Although T does not depend on ¢ we may of course regard
a as an arbitrary function of ¢ If a increases with ¢ the sepa-
ration point at the origin remains fixed, while the vortex and
the other separation point move away from it until a =¢.

When df/d) 550 the motion must be steady, but its form
will of course depand on the particular form of f(¢). One simple
solution is obtained if we put

C3n =0, €341 =(1—DY"¢,,
where ¢, is an arbitrary function of x only; so
y=eg+(1—D 31 ++ -+ (1=DY ey Hn+ Dt 7.5

if convergent furnishes a group of steady motions which can be
adjusted by suitable choice of ¢; to give points of separation
and vortices, and evidently includes polynomial solutions in g.
For the members of this group

C=Vig=14.
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Solutions can be constructed for other forms of f(¢), but are
of less interest.

8. Highly viscous fluid.

A particular case of some interest occurs when the kinema-
tic viscosity is relatively large, since the equation of motion
becomes linear if regard v as infinite, namely

Vit=V.Vig=0 8.1
If as usual we assume the solution to be of the form
b = chny"/n!
we find on substitution

(20’2[ + ¢l + (QC; + 05)_11 + 2=2(c:l.” + 2c:+2 + c,,+4) ylnl=0.

Equating the coefficients to zero and solving we find
Con = (- l)n—ln Dz"—Zcz ’
Const — (_ 1)"—1n D2n-—2cs ’

where D = d|/dx as usual, and
b=(y?/2!—2y*D?/4l4-3y°D4/6! . . ), +(y3/3l— 24°D?/5! . ..)c; 8.2

in which ¢q and ¢; are arbitrary functions of x and ¢&. The so-
lutions are polynomials in y if ¢, and ¢, are polynomials in x.

A finite symbolic form can be given to the result by wri-
ting c¢; = Da, ¢; == Db, when it may be written

v
$ =y sin(yD)a + :}f ysin(yD)b.dy 8.3
0
This of course assumes that the expansion is in integral as-
cending powers of y, and it is possible to solve without this
assumption by starting from the general solution of 8.1, namely
b = filx + iy) + xfo(x + iy) + gilx —iy) + xgo(x —iy),
where f,, f2, g1, g» are arbitrary functions of the arguments.
If primes denote differentiation with respect to the argument

b= fr + fo + xf, + g, + xg,,
b, =i [f, + xfs — g, — xg,]>
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and the boundary conditions ¢ = ¢, = ¢, == 0 require
: it +x(fat+ g)d=0,
fitathi+tat+df+e)=0,
fi—g +xlfy—g) =0,
where the argument is now x in every case. All three equations
are satisfied if

g1 =2x(fi + xf)— fi »
82— — 2(]‘; +xf) — fa.
The required solution is therefore
b= filx +ig) — filx —iy) + x[folx + iy) — falx —iy)]
— 2iy[f, (x — iy) + (x —iy) f, (x — )] 8.4
This includes 8.2 if we take
= —4D(f, +xf) ,
cs = 4iD%(f, + xf,) .
The singularities of the solution are determined by those of

the functions f, and f,, which in general depend on ¢. The
real and imaginary parts of 8.4 furnish separate solutions.

9. Some approximations.

In the equations 5.2 for nonviscous motion with ¢; = 0 the
first three equations are satisfied by

6= —ax, ¢ =1+ bx—a¥xt, ¢c,=(2abt — ®) x, ...,

where we assume a to be very small and positive, and & rela-
tively large and positive; and we omit higher powers of y as
negligible when y is small. Then

$=—axyg?/2! + (14 bx — a®xt)y®3! + (2abt — a®*)xy‘[4! ...
The stream line ¢ =0 consists of two components
y2=0 and — ax/2 + (14bx—a?xt)y/3! + (2abt—a’t®)xy?[4!:=0

The second approximation to the shape of the latter compo-
nent near the origin is

y = 3ax — 3a(b—a?t)x?® ...,

which shows that if ¢ < bja?, a considerable time, the curve
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lies below its tangent, which makes a small positive angle with
OX The velocity components are

u=—axy+ (1 4+ bx —a®xt)y*2 ...,

v =ay?2] 4+ (a®% — b)y*/3! ...,
so that near the boundary when y is positive u is opposite in
sign to x, while v is always positive. There is a locus passing
through the origin on which u == 0, namely

0= —ax+ (14 bx—a¥xt)y/2 ...,

above which both u and du/dy are positive, so that while £<Cb/a?
the approximation gives a clear idea of the conditions near a
point of separation at the origin. As the terms comprising c; may
be regarded as merely the first terms in the expansion of c;
when x and ¢ are sufficiently small, the illustration is less par-
ticular than it looks at first sight.

If we retain only the first two terms in the second compo-
nent of ¢ = 0 the shape of the curve for large values of x is
easily obtained, for the component is a hyperbola whose asymp-
tote parallel to OX is

gy = 3a/(b — a%),
so that when ¢ is small the breadth of the separated layer is
approXimately 3a/, a small length; but it increases indefinitely
as ¢ approaches b/a2.

Now let us modify slightly by adding a term to the arbitrary
function contained in ¢3, and taking

¢, =0, ¢a=—ax, c3=14bx + cx? —a’xt,
¢, = (2abx + dacx?) t — a3xt?;
and for simplicity let 5=2, ¢=1  Then
u=—axy + [(1 + x)? —a?xt]y?2! + [4a(x +x?) — a®x£*]y%/3 | ,
v =ay?2l — (2 + 2x —a’)y®/3| — [4a(l + 2x)¢t — a*t*]y*/4!.

An isolated singular point not lying on y=0 must satisfy "
the equations

[4a{x + x*)t — a*xt2]y® + 3[(1 4 x)* — a’xt]y -— 6ax = O,

[4a(1 + 2x)t— a®¢*)y® + 4[2(1 + x} — a*t]y — 12a = 0.

Each of these equations to determine y has when #=0 one

infinite root with which we are not concerned Equating the
finite roots we find
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y = 2ax[(1 4+ x)* = 3a/2(1 + x),
and discarding x = — 1, which is before separation and makes

y infinite,
x=13, y=23aq/8.

The second approximation when ¢ is small is
x =3 + 33a%/16, y = 3a/8 + 3a’/64,

which represent a point below the second component of ¢$=0
and to the right of the separation point, i.e. in the separated
area,

Since

A = — 9a* (1 — 87a%#/4)/512
when # is negligible, the singularity is an isolated singular point,
i.e. a vortex, provided that ¢ << 4/87a%; it moves slowly away
form the point of separation with component velocities

u=233a%16 and v=23a%64.

It requires no great stretch of the imagination to see that
similar phenomena are likely to be encountered whenever c,, cg,
etc are analytic functions of x and ¢ in the neighbourhood of
x =0, t = 0, provided that the values of the coefficients are
suitably adjusted. Viscous flow can be dealt with similarly.

Now when v=£0 the method applied to show that if ¢ can
be expanded in positive powers of y the powers must be posi-
tive integers will apply also to an expansion in powers of x, or
to an expansion in powers of ¢ Either therefore ¢ is wnot ex-
pansible in positive powers of the variables, or it is expansible
only in positive integral powers, i.e. it is an analytic function
of x,y and ¢ within its domain of convergence, say D It follows
at once that all the coefficients are analytic in D.

In nonviscous motion the conditions are less simple. The
outsanding factor is that even when an expansion exists in po-
sitive integral powers of y, whereas in viscous motion the for-
mation of the coefficients involves successive differentiations, in
the nonviscous case it involves a succession of integrations, in
each of which an arbitrary element, a constant, a function of x,
‘or a function of x and f{ may be introduced. It is no longer
true to say that the solution is ‘determined’ when ¢, is known,



74 - . . J. A. STRANG

for the complete solution requires the determination of the ar-
bitrary functions which appear during the integration, and there
is no guarantee that these are analytic, unless the boundary and
other conditions supply such a guarantee. The boundary condi-
tions hitherto considered certainly do not, by themselves, nor
does the equation of motion, for these only imply the existence
of certain derivatives and a relation connecting them. Nothing
whatever is necessarily implied regarding higher derivatives, for
example, and in fact the form of some of the solutions obtained
in the preceding paragraphs makes it clear that the arbitrary
functions involved can be so chosen that all derivatives of ¢
with respect to y will become infinite when y=0, when the
order of the derivative exceeds a specified finite number. This
is true for instance of the solution 3.6 if we take

h(z) = zmsinz™?,

and 7.2 and 8.4 offer similar possibilities. These are for nonvis-
cous or highly viscous motion. But it would be very rash to
assume that similar possibilities are excluded in the general case,

if the initial restriction on the form of the solution is with-
drawn.

10. The stream lines at a point of separation.

In view of the negative result of Goldstein’s paper. referred
to in paragraph 1 it is perhaps worth while to inquire briefly
into the character of the stream lines at a point of separation,
assuming the solution to be of the form

2 c.ytnl, |

where 01¢0 occurs only in nonviscous motion, while ¢;=0
may occur in either viscous or nonviscous motion.

In the former case let ¢ =yy) , where

' X =c; -+ cy/2! + ¢c3y?3! ...,

¥ = 0 being the second component of ¢ == 0 at the point of
separation x =g =0.

If in addition to the simple node due to the - intersection

of y =0 and y =0 there is a singularity at the origin it must
be a singularity of X = 0. Hence ‘ : '
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X =Xx =%y =0 when x’=y7=0’»»
i.e. ¢ =c{ =c;==0 when x=0.
We cannot have c!=k 0 when x == 0, for in that case ¢, and

therefore u would not change sign with x when y is small.
Hence for some positive integer » we must have

¢ =c, =c’{—----—c\(2"')—-0 (2'H)=;é=0 vhen x =10
if there is a point of separation at the orlgm Now
A= Xxy Lx ny (ti c;2 C 03) +
= ;c.? when x =g =0 since c’{—O

=0.

Hence if ¢; =0 when x==0 the point of separation will be
a real nodal point on y = 0. It cannot be an isolated singula-

rity. It will be cuspidal if ¢; =0, in general or else a triple or
multiple point of higher order

Approximations to the shapes of the branches of the curve
are easily obtained. Let

cp=ax?™* 4 ..., e=20byx +--:), cz=6d+ -,
so that the equation of the second component is
(@@ 4+ )+ (byx + - )y + dy? + -
There are two approximations near the origin, namely
by +ax*=0 and dy+bx=0,
so that if b; =0 the origin is a nodal point as stated above.
(c:5+0.)

If c;=0 when x=0 we may assume c;==2(byx* + ---),
where s> 1. We have then '
(@™ 4 o)k (box + -+ )y -+ dg? 4 -+ =0.

If r> s this furnishes two approximations at the origin,
by + ax¥*'-*=0 and dy + bx* =20,
and if r <s dy? + ax* ' =0.
This completes the discussion so long as d==0.
When ¢, =0 we take ¢ =gy?, where
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X =cy/2! + c3y/3! + cp?/4! + - - -
As before, when x =y =0 we must have
X=X=%Xs=0,
i. e cec=c¢,=c3=0 when x=0;
and since u must change sign with x when y is small,
Cg=ci == =0, ¢ k0 when x=0;

and the remaining steps are exactly as before, except that ¢,/1!,
92! and c;/3! are replaced by cy/2!, ¢4/3!, and c,/4! respec-
tively.

(Manuscript received on March 5, 1954)
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