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Ozet.— Dalga mekaniginde bir & hali muhtelif g, g' koordinat sistem-
lerinde ®,, ®,, gibi birbirinden farkh dalga fonksiyonlariyla gésterilir. ki
®, ¢ hali arasindaki atlama ihtimalinin (transition probability) degigmezligi
sebebiyle, ®,, niin zaten itibari olan fazi o gekilde segilebilir ki, biitiin Dy,
Dy, ler igin B, = D(N)®, cari olur; burada D(N) lineer ve iiniter bir ope-
ratér ve IV, g sistemini g’ sistemine gGtiiren . transformasyondur (g’ = Ny).
Rélativistik' olmiyan dalga mekaniginde genel Galile transformasyonlarma
karg1 defigmezlik diigiiniildiga i¢in, D(/V) operatérleri inhomogen Galile gru-
bunun bir ¢arpan farkiyla bir réprezantasyonunu meydana getirirler ; yani

"D(Ng) D(Np) = w(Ny, Ny) D(N\N5)

olur ki burada w(Ny, N,) niin mutlak degeri 1 dir. Wigner, Lorentz grubu
igin bu operatdrleri w = F 1 olacak gekilde normlamak miimkiin oldugunu
gostermigti. Bu yazida Wigner’in metodu bizi ilgilendiren Galile grubuna
tatbik edilmektedir. Normlama sonucunda bir sabit farkiyla belirli ozel bir
roprezantasyori elde edildifi ve bu r&prezantasyonun da esas itibariyle ro-
lativistik olmiyan Schrédinger denkleminin diizlem-dalga (plane-wave) ¢&-
ziimlerinin meydana getirdifi réprezantasyondan bagka Lir sey olmadif:
goriilecektir, ‘

*
* *

Introduction. The inhomogeneous proper Galilei group
contains, in addition to proper Galilei transformations (given
by X’ =X + vt), displacements of the origin both in space (gi-
ven by X’=x-a) and in time (t =t-+b). Consider all the
frames of reference that can be obtained from each other by
transformations of this group(ie By an inhomogeneous Galilei
transformation). In mon-relativistic quantum ‘mechanics, any
two such frames should be physically equivalent. Since the
transition probability between two states @ and W, defined
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as the square of the modulus of the unitary scalar product
(@, T') of the two normalized wave functions @, ¥ has an in-
variant physical meaning, it must have the same value in. both
frames. Thus if the states are described by @, W, in the g
frame and by ®,,,¥,, in the g’ frame, one must have

(1) ‘(q)g’ wg) l2 = ‘ (q)g/’ wgt) Iﬂ

By an appropriate choice of the physically meaningless
constants in @, one can derive from (1), [1], the existence
of a linear unitary operator D(NN) such that

®, = D(N)®,

for all functions ®, @, where N is the transformation that
carries g into' g = Ng. The operator D(N) is determined by
the physical content of the theory only up to a constant of
modulus unity which can depend on g and g’. Consequently
the D(N) form a representation up to a factor of the inhomo-
geneous Galilei group:

(2) D(N,) D(N;) = w(Ny, Np) DIN\N,)

where W is a number whose phase can depend on N, N, but
whose modulus is equal to unity. This whole argument is ta-
ken bodily from the discussion given by Wigner for relativis-
tic quantum mechanics in his paper on <Unitary representa-
tions of the inhomogeneous Lorentz group» [2], where he
shows that the operators which transform relativistic wave
functions in different Lorentz frames into each other form a.
representation up to a factor of the inhomogeneous Lorentz
group.

In the case of the Lorentz group, by making use of the
mathematical propertieé of the group, Wigner could further
show that it is possible to give a definite phase to each ope-
rator D(L) which leaves only the sign undetermined and thus
obtain for these normalized operators UL),

3 UL) UL,y) = F U(LLy).

In this note we want to applv his mathematical arguments to
the case of the Galilei group and see to what extent the ge-
neral representations up to a factor can be  simpilified by a
proper normalization. It will be seen that such a normaliza-
tion is still ' fruitful and leads essentially to the special rep-
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resentation up to a factor formed by the plane-wave solutions
of the non-relativistic Schrédinger equation. Prof. Bargmann
has independently obtained the same result by a more gene-
ral method [3].

After discussing briefly the Galilei group we shall carry
out the normalization step by step, following closely Wigner’s
method. In fact some of the arguments that he developed for
the Lorentz group are equally valil for the Galilei group; in
those cases we shall simply refer to his paper (Ref. 2).

Description of the inhomogeneous Galilei group. We
shall denote the general element of the proper inhomoge-
neous Galilei group by N=(a,b,v,R) where a represents the
space franslation x"=x-}a, b represents the time displa-
cement t =+t -+ b, v represents the uniform acceleration
x'=x 4 vt and R represents the rotation x’ = Rx. The order
of the transformations is from right to left. By direct substi-

tutions one easily obtains the following relations between the
elementary transformstions ¢

(4) (a))(ag) = (a)(a;) = (a; + ay)

(5) (bs)(b2) = (be)(by) = (b; ba)

(6) (v)(vy) = (vo)(vy) = (vi 4+ v2)

(7) (R)(Ry) = (R,R,)

(8) (a)(b) = (b)(a)

(9) (a)(v) = (v)(a)
(10) (R)(a) = (@')}(R) where a’ = Ra
(11) (R)(b) = (b)(R)
(12) (R){(v) = (v)(R) where v’ == Rv
(13) (v)(b) = (b)(a)(v) where a = bv.

By means of the relations (4-13), the product of two inho-
mogeneous Galilei transformations is easily calculated to be
another such transformation :

(as, by, Vis Rl)(az, by, v,, Rg) = (a;2, bya vis, Ry3)
where
ap=a -+ byv, 4-R,a,
b1z = by + by
14
(14) Vi2 = Vi + Ryv,
Rl2= lez.
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Operators. The operator D(N) for the general transfor
mation can be decomposed inte four elementary operators cor-
responding to the four elementary transformations :

(15) D(N) = T(a) 0 (b) G(v) O(R).

Then using the commutation relations (4-13), we obtain from
(2) the equivalent relations:

(16) T(a)) T(ay) = w(ay, a,) T(a; + a,)

(17) @(b]) @(bz) - W(bi,b B) @(bl -+ bg)

(18) G(Vl) G(vy) = w(vy, vy) Glv; + V)

(19) ORy) O(R,) = w(Ry, Ry) OR,R,)

A1) O(R) T(a) = w(R,a) T(Ra) O(R)

@ OR) G(v) = w(R, v) G(Rv) O(R)

(22) OR)8(b) = w(R, b) B(b) OR)

(23) T(a) B(b) = w(a, b) B(b) T(a)

(24) T(a) G(v) = w(a, v) G(v) T(a)

25) G(v) B(b) = w(v,b) BD) T(bv) G(v).

Normalization. The purpose of the normalization is to eli-
minate the arbitrariness in the @’s of (16-25) as much as pos-
sible. To this end we point out the following theorems.

I. Ali T@a) commute.
Proof: From (16) we have
T(ay) = T(aii T(a) T(a,)"! = w(ay, a,) Wwia, + a;, — a,) T(ay)

or
(26) w(a, + ay, —a;) = w(a,, a;)~!,
Hence
27) T(a;) T(a) T(a))™! =:,‘T((:;:% T(ay) = c(a,, ay) T(ay).
with
(28) c(ay, ay) = c(ay, a)~".
Transforming (27) with T(ay) we obtain

T(ay) T(ay) T(ay) T(a)™" T(ay)™ = ¢ (au a;) T(ay) T(a,) T(ay)™!
or
wlag,ay) T(az+a,) T(a)w (aza,)~! T(az+a;) " =c(a;,a,)c(ay,a,) T'(ay)

or
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(29) : c(ag 4 ay, a;) = c(a3, a,) ¢ (ay, ay).
1t follows from (29) that (Ref. 2. page 171)

5 ,
30) clag, ag) = exp {2ni D ayuf,(ay)
_ x=1
and using (28) we obtain
3
3D 2 [a1xfx(a2) + ag, fo{ap 1=n(a,,a;)
n=1

where n(aj,ay) is an integer. Setting for a; in (31) the three
unit vectors e, (A component of which is 1, the others being
zero) in turn and letting f,(e;)= — f,; yields

: 3
fi(a) = n(a;, &)) + Z ay S
. x=1
and putting this back into (31) we find
3 3
32) X (anaptapnay)fi.t+ Y [amn(az,e%)—l—agxn(al.e%)]=n(a1,a,).
%, A=1 %=1
Now, by assuming for the components of a, and a, such va-
lues that are transcendental both with respect to each other
and the f,; (which are fixed numbers) we see that (32) can

not hold except if the coefficient of every term vanishes; i.e.

(33) furn + fax=0 and nf(a,ey=0.
Thus (30) becomes
. .
34) clopa) =exponi X anenfa)
», A=1

»

We now transform the equation (27) by the operator OR)
and using also (20) we obtain,

OR) T(a,) T(a,) T(a)~! OR)~1=¢ (ay, ay) w(R, ay) T(Ra,),
on the other hand,
OR) T(@a,;) O(R~1 O(R) T(a,) OR) O(R) T(a)~' O(R)!
=w(R, a;) T(RaywR, a, T(R, a,) wR, a,)~!' T(Ra,)!
- W(R, az) C(Ral, Raz) T(Raz)
henge :

(35) _ c(ay, ap) = c(Ray, Ray)
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for any rotation R. Combined with (34) this gives,

3 3 .
2 (fu)\_al%agh — 2 fMVRM%RV%aIMaZK) ='n'(a1ia2)
%, A=1 w,v=1 :

where n(a,, 8, is an integer. Since this is true for every a;a,
we again obtain ' :

3
fﬁv: 2 fprmevk
w,v=1

or , :
f=RfR=R"1fR
for any rotation. As the only matrix which is invariant under
all rotations is the identity matrix, it follows from (33) that
f vanishes identically.

Hence
clap ay) = 1
and '
(36) . . T(a)) T(ay) = T(az) T(a1)- ‘

1L All G(v) commaute. Proof is identical with that for I

© III. All ©(b) commute, Proof is very similar- Instead of
(30), 31) we obtain in the same way,

37) c(bys bp) = exp {2mi by f(og)}

where f is a scalar and

(38) bef(be) + baf(by) = n(by, ba)

where n(by, by) is ah integer ; this gives for by =bs=Db

n(b, b)

fo)= %

and putting it back into (38) we have

D1 gy ) - 2 nby, by) = 2n(by, b
be b, i

By choosing a transcendental value for % » we see that this
2 .

equation can only be satisfied if
“ n(b,b) =0, n(by,by=0.
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Consequently ‘
fB)=10, c(by,by =1
and
8(by) B(bz) = B(by) B(by)-

IV. Normalization of @(b). Prof. Bargmann has shown very
simply how every O(b) can be multiplied with a definite phase

tactor ¢ M%) g5 g5 to get w(by, by) =1 for the new operators
Vib) = e~ B)yp).

We shallreproduce here his proof for the sake of completeness.

By multiplying with the phase factors we obtain from (17)
(40) V(b1) V(bz) = w,(bp bq) V(bl’ + bz)
where e
(41)  w'(bybg) = w(by, by) exp {— i [M(by) + (b — N(by+Dby)]}
with |
(42) w(by, by) = w(by, by) ;
or letting

w(by,by) = exp {i&(by, ba)}
we have
E'(by, ba) == E(bys by) — by — "I(bz) + by + by

The function &(by, b,y) satisfies two relations :
(43) E(b1, ba) = E(bs, by)
which follows from (42); and
- (44) §(bs, ba) + E(by + bay bs) = E(by, b2 + bs) + E(bgs ba)

which follows from the associativity of 6(b).
We now claim that for any given continuous &(by, bs) that
satisties (43-44), one can find a function M( (b) such that

(45) E(by, b)) =0 or E(by, be) = "(by) + N(b2) — "N(by + by).
To prove this assertion, we remark first that if 7,(b) satis-

ties (43), so does M(b) = My(b) + Cb where-C is any constant.

In particular for C = — (1) we have

(46) n1) = 0.

We shall suppose that (46) is satisfied. Integrating (45) with
respect to b; and interchanging b and by we obtain
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f g(bp bz) dbs -—b"](bl) +f 'ﬂ(bg)dbz _f 'n(bl + b2)db2

f £(b, ba)dbs = byn(b) + f 1(b) dby— f <b+b2)db2

and after subtracting the first equation from the second and
setting by =1,

) n(b) = [ " E(o, ba)dby— / £(L,bs) dbs.

It remains to show that (47) indeed satisfies (45). We have

o+ o) — o 0= f [E(o1 )+ E(barb) ~ECbs + bar )] b

—~ f i, b)db—f §(1, b)db + / "£(1,b) db

" or by using (44),
= E(by, bz) + F(b1s bs)

where

F (bnbz)— f E(by,b)db— f E(bl,b)db—l—

pbyt
f (1,b)db— / E(1,b)db;
by v
but since :
| F(b;, 0) =10
and again by (44)
bF(b11b2) —
dbg

we must have

— E{by.be+1)+E(by,be)+ & (1,b; + b2)—E(1,by)=0

F(bh bp) =0

which proves the theorem. Consequently we shall put iniwhat
follows

(48) w(bh b2) =1,
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V. Normalization of T(a). Consider the unit vectors e,
€, € in the ¥,y, z directions. The arguments of the previous
section show that one can normalize T(aje;), T(aze;), T(aszes)
in such a way that

(49) T(ase) T(be;) = T[(a,- + b,-)e,-] , i=1, 2, 3.
One can also fixvthe equality
(50) T(a)=T(ase;+ase,+aze)="T(a;&;) T(ase;) T(azes)

as this essentially defines the operation 7T(a). Then we shall
have using (49), (50) and (36),

T(a)T(b)=T(a;e:) T(ase;) T(a3e3) T(bse) T(bze,) T(bsey)
—T](ar-+br)es | T[ (ag+bo)es | T as+bo)es | =T(a-+b);
hence
(51) w(a,b) = 1.
The equation 7(a)7(b)=T(a+b) remains valid if one rep-
laces T(a) by e?™2-CT(a), where c is an arbitrary constant

vector- Following Wigner we shall make use of this remai-
ning freedom to eliminate w(R, a). From (20) we have

(52) O(R)T(a)O(R)~ = w(R, a) T(Ra)

and transformmg it with O(S),

' O(S)O(R)T(a)O(R)~1O(Sy~' =w(R,a)O(S)T(Ra) O(S)~!

which gives, using (19),
Rw(S,R)O(SR)T(a)w(S, R)~' O(SR)~1=w(R,a)w(S,Ra)T(SRa)

or | |

(53) ‘ w(SRa)=w(R,a) w(S, Ra)

On the other hand, applying O(R) to T (a,)T(az) T(a,+ay)
we obtain

O(R)T(a,) T(as) =w(R,a,) T(Ra,)O(R) T (a,)
=w(R,a,)w(R,a;) T(Ra,) T(Ray) O(R)
or
(54) w(R,a;Ha,)=w(R a)w(R,a,),
therefore

(35)  w(R,a)=exp {2nia f(R)! where f is a vector.
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Inserting this back into (53) we obtain
a-§ f(SR) — f(R) — R"f(S)}:n .

where n is_ integer ; which shows, since n depends linearly on
the arbitrary vector a, that n=0 and

(56) §(SR) = £(R) -+ R—'§(S).
It is shown in Ref. 2 (page 175) that (56) is equivalent to
" f(R)=(1—RYr,
where ;'0 is an arbitrary constant vector. We thus obtain
w(R,a)=exp 2xia (1—R~1) r}
and o ;
O(R)T(a)=exp |2nia-(1—R~Y)r, T(Ra) O(R)
or, after multiplying ’evéry T(a) by exp {—2mia-ro}, for the
new operators '
(57) O(R)T(a)==T(Ra)O(R).
This completes the normalization of T(a).

V1. Normalization of G(v) is done in the same way as in
V. and results are :

(58) C wyv)=1; wRv)=1

VIL. 6(b) commutes with O(R).

Proof : By applying the same method as' the one used in
eliminating w(R,a) we obtain the two relations:

(59)  w(R,by+b)=w(R,b;) + w(R.b,)
(60) w(RyR,,b)=1w(Ry,b)w(R;,b).

From (59) follows .
w(R,b)=exp {2nibf(R)}

where f is a scalar. Inserting this in (60) we obtain as usual,

(61) - ARR) = f(Rz) + f(Rl)'
Consequently we have ’
(62) f(R")=nf(R) and f(E)=0

where n is a positive integer and E is identity matrix. It fol- -
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lows from (62) that if R, is a rotation around any axis by

an angle 2xn _Io)[— (p» q being positive integers) we have

af(R)=0 or f(R)=0.
Therefore f(R) must vanish identically and we have
(63) w(R, b) =1,
VIll. 6(b) commutes with 7'(a).
Proof: From (23) we. obtain as previously,
(64) w(a;,b) w(ay,b) = w(a,+ay, b)
(65) w(a,b;) w(a,b,) = wia,b;+b,).
and the resulting equations
w(a,b)=exp {2wia- f(b)}
where f is a vector; and
(66) £(by1+-bs) = £(by) + (by).
The general solutions of (66) is
(o) =1B
where B is an arbitrary constant vector. We have now
(67) ) T(a)8(b) = exp {2niba-B} 6(b)T(a).

However, transforming with O(R) we can see that B =0; it
gives in fact

O(R)T(a)8(b) O(R)'=exp |2niba B} O(R)@(b) T(a)O(R)
or using V. and VIL,

(68) T(Ra)B(b)=exp {2niba-B}8(b) T(Ra);
but we also have from (67) directly
(69) T(Ra) 8(b)=exp {2nibRa'B}®(b) T(Ra).

Comparing (68) and (69) we obtain, since b is arbitrary,
a-B=Ra:-B or a-(B—R-'B)=0 for every a;
hence

RB =B for every R.
Consequently

B=0

Il
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and
(70) w(a, b) = 1.

IX. Normalization of O(R) It is shown in Ref. 2 (pages
176-178) that O(R) can be normalized so as to give
1) ’ w(R, Ry) = + 1.
Because of the form of the relations (19-22), this normaliza-
tion does not interfere with other normalizations.

X. Determination of w(a,v).

From (24) we obtain, in the usual way,
(72) ' w(a,,v)wla, v)=w(a;+a,v)
(73)-. w(a,v)w(a,vy)=w(a,v;~-Vs)
from which follows

w(a’,v)=éxp {2xia- f(v)}
where f is a vector satisfying
(74) fovvy)=Ff(v)+ f(va).
The general solution of (74) is given by
f(v) = Av

" where A is a constant arbitrary matrix. Hence (24) becomes
(75) T(a)G(v)==exp {2nia- Av}G(v)T(a).
However, asin VIII., this expressibn is notsymmetrical enough;
in fact transforming with O(R) we obtain ‘
(76) T(Ra)G(Rv)=exp {2nia- Av}G(Rv) T(Ra)
which combined with (75) gives e

a-Av=Ra-ARv=a-R-'ARv for every a and v;

or
A=R-1AR for every R.

It follows that A is a multiple of the unit matrix and can
be taken as an ordinary number ; we have thus finally,
(17) w(a,v)==exp {2nida v} |
where A is an arbitrary constant.

XI. Determination of w(v,b).

From (25) we have,
(78) G(v1)8(b)G(vy)~ '=w(vy,b)8(b) T(bvy) ;
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transforming this with G(v,) we obtain,
G(vy)G(v)B(b)G(v) ™' G(vy) ~'=1(v;,b)G(v5)O(b) T(bv,)G(v,) !
or using the relations éstablished so far, v
(79) W(V1+ Vo, b)=w(¥1b,)W(vy,b) exp {—2riAbv,- vy},
On the other hand by means of
G(v)B(by)B(bs)=w(v,b,)8(by) T(by v)ew(v,bg)O(b,) T(bev)G(v)

we find
(80) w(v, b+ by)=w(v,bjw(v,b,)

from which follows

w(v,b)=exp {2“ibf (v)}

where f is a scalar. Inserting this in (79) we find
(81) f(V1+V2):f(V1)+f(V2)—AV1 'V
The general solution of (81) is given by

A
fo) =—7 vi4v-V,:
but again by operating with O(R) one can show that V,=0.
Thus we have

82 w(v,b)= exp | —2miA % vt

Conclusion, _

Using (48), (51), (57), (58), (63), (70), (71), (77) and (82 we
have for the normalised operators '

D(N)D(N),= T(a1)®(b1) G(v)O(R)T(ay)0(bs)G(v) O(Ry)
= exp —2niA(ay v+ g_z Vi’)} T(a; +bevi-+R;a5)0(b;+by)

G(vi+Rv,)O(R,R,)
or by (14) |

83)  DWNYDWNy=T exp

—2nid(a, v1+12 byvid)| DIV,V,)

where A is an arbitrary constant. This shows that by prope

normalization all the represetations up to a factor of the Ga-
lilei group (of the form (2) where w(N;, V) is of modulus unity)
can be brought to the same form. They will only differ from
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each other by the value of the arbitrary constant A. Further-
more, (83) is essentially the representation formed by the pla-
ne-wave solutions of the non-relativistic Schréndinger equa-
‘tion. Consider in fact th2 plane-wave solution for a partlcle ;
with mass m, momentum p and spin zero,

84) Wip=exp 20 (px— P |
\ |

One easily obtains for this solution

T(a)¥(p)=exp 2——7 2n a: vg W(p)
. 2nim b -
- O { 2 ¢l w
85) 8(b)W(p)= expt 7 v W(p)

G(V)W(P)—W(P—mv)
OR)¥(p)=T(R~'p)

and consequently

86)  D(N)DNW(p)=exp {2ni 2 (a,1v) 5 bavit) | DIN, N W(p).

This répresentation is identical with the one obtained from
(83) by letting A —=— % and taking the positive sign for ze+

ro spin. :

I am greatly indebted to Prof. Wigner for many illumina-
ting discissions always resulting in extremely helpful sugges-
tions and to Prof. Bargmann for very kmdly communicating to
me his unpublished results.
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