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Abstract 

 

In this paper, we study multi-dimensional wave-like equations with variable coefficients 

within the frame of the fractional calculus using fractional natural decomposition method 

(FNDM). The considered algorithm is an elegant combination of natural transform and 

decomposition scheme. Five different cases are considered to illustrate and validate the 

competence of the projected technique in the present framework. The behaviours of the 

obtained results have been captured for diverse fractional order. To present the reliability 

and exactness of the FNDM, the numerical study has been presented. The achieved 

consequences illuminate that, the projected technique is very effective to analyse and easy 

to employ to investigate the nature of fractional nonlinear coupled system exemplifying 

the real-world problems. 

 

Keywords: Fractional wave-like equations, Caputo derivative, fractional natural 

decomposition method. 

 

 

Değişken katsayılı çok boyutlu dalga benzeri denklemler için 

kesirli yaklaşım üzerine etkili bir metot 
 

 

Öz 

 

Bu çalışmanın temel amacı, fraksiyonel doğal ayrıştırma yöntemini (FNDM) kullanarak 

kesirli operatör çerçevesinde değişken katsayılı çok boyutlu dalga benzeri denklemleri 

incelemektir. Değerlendirilen algoritma, doğal dönüşüm ve ayrıştırma şemasının güzel 

bir kombinasyonudur. Mevcut çerçevede öngörülen tekniğin yeterliliğini göstermek ve 

doğrulamak için beş farklı durum ele alınmıştır. Elde edilen sonuçların davranışları, 

çeşitli kesirli sıralar için değerlendirilmiştir. FNDM'nin güvenilirliğini ve kesinliğini 

göstermek için sayısal çalışma sunulmuştur. Elde edilen sonuçlar, öngörülen tekniğin 
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analiz edilmesinin çok etkili olduğunu ve gerçek dünya problemlerini örnekleyen kesirli 

doğrusal olmayan bağlı sistemin doğasını araştırmak için kullanılmasının kolay 

olduğunu göstermektedir. 

 

Anahtar kelimeler: Kesirli dalga benzeri denklemler, Caputo türevi, kesirli doğal 

ayrıştırma yöntemi. 

 

 

1. Introduction  

 

The pivotal aim of phenomena is describing using the concept of differentiation and 

integration is to exemplify the corresponding consequences related to the rate of change 

in an accurate and interesting manner. Particularly, while analysing processes with 

variation, changes, chaotic, epidemiology and randomness; these operators are effectively 

illustrated with supporting tools like software and mathematical algorithms to study the 

corresponding results. The achieving result of these tools related to nonlinear phenomena 

is the hot topic in the present era. However, when researchers seeking efficient and 

methodical tools to study long-range time-based problems, hereditary based models and 

history related systems, and as they proved classical concept is not suitable and later 

suggested the novel concept to overcome the limitations, called fractional calculus (FC). 

The most stimulating leaps in scientific and technological significance are found within 

FC from the last thirty years. 

 

The models with fractional order enlarge our perceptions of differentiability and 

amalgamate system memory and non-local properties through distinct class derivatives 

of FC. These constituents aid to illustrate the diverse problems through various spaces 

and time scales without segregate the systems into reduced components. The derivatives 

with fractional order capture or can limn significant features of nonlinear models. Further, 

the fractional operators are local in nature and which gives by employing integer order 

operators we can portray the vicissitudes in the neighbourhood of a point but applying 

non-integer operators one can analyse the variations in a spell [1-6]. These possessions 

make derivatives with fractional order appropriate to model various phenomena such as 

signal process, optics, financial models, chaos behaviour, image processing, human 

diseases and many others [7-25]. The numerical and analytical results for these models 

play a significant role in illustrating the nature of complex problems. Hyperbolic 

equations are amongst the most exigent to analyse due to sharp features in their solutions. 

Recently, many authors investigated many mathematical models exemplifying real world 

problems with the help of fractional calculus, for instance the mathematical model of 

HIV-1 infection of CD4+T-cells with conformable fractional operator is investigated in 

[26], the model arising in falling film problems is numerically studied by authors in [27] 

using two novel techniques, fractional SIR epidemic model of childhood disease 

examined with the help of Mittag-Leffler memory in [28], some interesting results 

integro-differential equation of fractional order ith state dependent delay are derived in 

[29], nondensely characterized integro-differential equations are studied by authors in 

[30], the numerical stimulation is presented by researchers in [31] for the coupled 

fractional Whitham-Broer-Kaup equations describing the propagation shallow water 

waves, by using Hilfer fractional derivative scholars in [32] derived some stimulating 

results, by using two different algorithms authors in [33] find the solution for Fokas–

Lenells equation, authors in [34] presented the numerical stimulation for the nonlinear 

equations occurs in ion acoustic waves in plasma with Mittag-Leffler law, and many 
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research considered FC has tool with its fundamental notions and results to derive some 

essential and stimulating results [35-36]. 

 

The study of wave-like equations is very essential in understanding and capturing the 

various complex phenomena arisen in connected areas of physics. For instance, the 

vibrations of acoustic or string waves in a pipe and the velocity of the wave are evaluated 

by the physical properties of the material through which it propagates. These equations 

are also employed to study and analyse fluid migration at depth in the crust through fluid-

saturated porous media [36], coupling currents in a flat two-layere multi-strand cable 

having superconductivity [37], elastic waves in soils with non-homogeneous [38] and 

earthquake stresses [39]. By the aid of single wave-like equation with time-dependent in 

the flat cables associated with the magnetic field, the gradually decaying long current 

loops with the additional established effects are illustrated [37]. Here, we hire the time-

fractional wave-like equation [40-43]: 

 

𝐷𝑡
𝜇
𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑓(𝑥, 𝑦, 𝑧)𝑣𝑥𝑥 + 𝑔(𝑥, 𝑦, 𝑧)𝑣𝑦𝑦 + ℎ(𝑥, 𝑦, 𝑧)𝑣𝑧𝑧, 1 < 𝜇 ≤ 2,

𝑡 > 0, 
(1) 

 

respectively associate with the Neumann boundary conditions and initial conditions 

 

 𝑣𝑥(0, 𝑦, 𝑧, 𝑡) = 𝑓1(𝑦, 𝑧, 𝑡), 𝑣𝑥(𝑎, 𝑦, 𝑧, 𝑡) = 𝑓2(𝑦, 𝑧, 𝑡), 
𝑣𝑦(𝑥, 0, 𝑧, 𝑡) = 𝑔1(𝑥, 𝑧, 𝑡), 𝑣𝑦(𝑥, 𝑏, 𝑧, 𝑡) = 𝑔2(𝑥, 𝑧, 𝑡), 

𝑣𝑧(𝑥, 𝑦, 0, 𝑡) = ℎ1(𝑥, 𝑦, 𝑡), 𝑣𝑧(𝑥, 𝑦, 𝑐, 𝑡) = ℎ2(𝑥, 𝑦, 𝑡), 
(2) 

 

And 

 

 𝑣(𝑥, 𝑦, 𝑧, 0) = 𝜒(𝑥, 𝑦, 𝑧), 𝑣𝑡(𝑥, 𝑦, 𝑧, 0) = 𝜓(𝑥, 𝑦, 𝑧). (3) 
 

 

Although the modelling the nonlinear and complex real-world problems is a difficult job, 

finding the solution for the corresponding systems of equations is very hard in order to 

analyse the corresponding behaviour. Since we can solve some linear equations without 

the essence of composite tools but when we want to study highly nonlinear phenomena, 

we should have an efficient and accurate method to find the solution. There are numerous 

algorithms in this connection, but each technique has its own equipment and limitations. 

For instance, some of the essentials of the method to convert nonlinear to linear and partial 

to ordinary, some schemes requires additional polynomials to evaluate, some methods 

requires more time for evaluations, few of the has complicated solution procedure and 

others. In this connection, the Adomian decomposition method (ADM) was proposed by 

George Adomian in 1984 with the help of Adomian polynomials [44]. Along with the 

arbitrary external parameter, Adomian polynomials are generalizing to a Maclaurin series 

and offers rapid convergence in the obtained results. Soon after, it has been widely 

employed by many physicists and mathematicians to find the solution for numerous 

classes of models in order to analyse corresponding consequences and capture them with 

stimulating results. However, scholars always look forward to the development of new 

tools to examine phenomena with methodical and accurate solution procedure by 

reducing the computational level.   

 

Some issues and limitations are pointed by authors about ADM related to huge 

computation and time taken for evaluation and others. Later, Rawashdeh and Maitama 

nurtured new modified scheme to overcome these limitations, called fractional natural 
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decomposition method (FNDM) by the help of natural transform [45] with ADM to solve 

fractional differential equation [46, 47]. From lost two years, FNDM is significantly and 

efficiently employed to the diverse class of real-world models [48-52]. 

 

 

2. Preliminaries  

 

In this segment, we presented some basic and essentials notions of FC [1-6]. 

 

Definition 1.The integral of a function𝑓(𝑡) ∈ 𝐶𝛿(𝛿 ≥ −1) with respect to fractional 

Riemann-Liouville is presented as [1-6] 

 𝐽𝛼𝑓(𝑡) =
1

𝛤(𝜇)
∫ (𝑡 − 𝜗)𝜇−1𝑓(𝜗)𝑑𝜗
𝑡

0
. (4) 

 

Definition 2. The Caputo fractional derivative of𝑓 ∈ 𝐶−1
𝑛  is presented as [1-6] 

 

 

𝐷𝑡
𝛼𝑓(𝑡) =

{
 
 

 
 𝑑𝑛𝑓(𝑡)

𝑑𝑡𝑛
,                                                  𝛼 = 𝑛 ∈ ℕ ,                     

1

Γ(𝑛 − 𝛼)
∫ (𝑡 − 𝜗)𝑛−𝛼−1𝑓(𝑛)(𝜗)𝑑𝜗,   𝑛 − 1 < 𝛼 < 𝑛 , 𝑛 ∈ ℕ.
𝑡

0

 (5) 

 

Definition 3. For the one-parameter, the Mittag-Leffler type function is presented [54] as  

 

 𝐸𝛼(𝑧) = ∑
𝑧𝑘

Γ(𝛼𝑘+1)
∞
𝑘=0 , 𝛼 > 0, 𝑧 ∈ ℂ. (6) 

  

Definition 4. For the function 𝑓(𝑡), the natural transform (NT) is denoted by ℕ[𝑓(𝑡)] for 

𝑡 ∈ ℝ and presented with the NT variables 𝑠 and 𝜔 by [55] 

 

ℕ[𝑓(𝑡)] = 𝑅(𝑠, 𝜔) = ∫ 𝑒−𝑠𝑡𝑓(𝜔𝑡)𝑑𝑡
∞

−∞
;     𝑠, 𝜔 ∈ (−∞,∞). 

 

Now, using Heaviside function 𝐻(𝑡) we define the NT as 

 

ℕ[𝑓(𝑡)𝐻(𝑡)] = ℕ+[𝑓(𝑡)] = 𝑅+(𝑠, 𝜔) = ∫ 𝑒−𝑠𝑡𝑓(𝜔𝑡)𝑑𝑡
∞

0
;   𝑠, 𝜔 ∈

(0,∞)and𝑡 ∈ ℝ. 
(7) 

 

Further, for 𝜔 = 1, Equation (7) is reduces to the Laplace transform, for 𝑠 = 1 and the 

Equation (7) represents the Sumudu transform. 

 

Theorem 1 [55]: The NT 𝑅𝛼(𝑠, 𝜔) of the fractional derivative of 𝑓(𝑡) Riemann-Liouville 

sense is symbolized by 𝐷𝛼𝑓(𝑡) and defined as 

 

 ℕ+[𝐷𝛼𝑓(𝑡)] = 𝑅𝛼(𝑠, 𝜔) =
𝑠𝛼

𝜔𝛼
𝑅(𝑠, 𝜔) − ∑

𝑠𝑘

𝜔𝛼−𝑘
[𝐷𝛼−𝑘−1𝑓(𝑡)]𝑡=0

𝑛−1
𝑘=0 , (8) 

 

where𝑅(𝑠, 𝜔)is NT of 𝑓(𝑡), 𝛼 is the order and 𝑛 be any positive integer. Further𝑛 − 1 ≤
𝛼 < 𝑛. 

 

Theorem 2 [55]: The natural transform 𝑅𝛼(𝑠, 𝜔) of the fractional derivative in Caputo 

sense of 𝑓(𝑡) is symbolize by 𝐷𝛼 
𝑐 𝑓(𝑡) and defined as  
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ℕ+[ 𝐷𝛼 

𝑐 𝑓(𝑡)] = 𝑅𝛼
𝑐(𝑠, 𝜔) =

𝑠𝛼

𝜔𝛼
𝑅(𝑠, 𝜔) − ∑

𝑠𝛼−(𝑘+1)

𝜔𝛼−𝑘
[𝐷𝑘𝑓(𝑡)]𝑡=0

𝑛−1
𝑘=0 . (9) 

 

 

3. Fundamental solution procedure of the proposed algorithm    

 

In this section, we hired coupled equations to present the basic procedure of the projected 

scheme with initial conditions 

 

 𝐷𝑡
𝛼𝑣(𝑥, 𝑡) + 𝑅𝑣(𝑥, 𝑡) + 𝐹𝑣(𝑥, 𝑡) = ℎ(𝑥, 𝑡), (10) 

 

and 

 

 𝑣(𝑥, 0) = 𝑔(𝑥), (11) 

 

where 𝐷𝛼𝑣(𝑥, 𝑡) signifies the fractional Caputo derivative of 𝑣(𝑥, 𝑡), ℎ(𝑥, 𝑡) is the source 

term, 𝑅 and 𝐹 respectively the linear and nonlinear differential operator. On plugging NT 

and by the assist of Theorem 2, then Equation (10) gives 

 

 

𝑉(𝑥, 𝑠, 𝜔) =
𝑣𝛼

𝑠𝛼
∑

𝑠𝛼−(𝑘+1)

𝜔𝛼−𝑘
[𝐷𝑘𝑣(𝑥, 𝑡)]𝑡=0

𝑛−1

𝑘=0

+
𝜔𝛼

𝑠𝛼
ℕ+[ℎ(𝑥, 𝑡)] 

−
𝜔𝛼

𝑠𝛼
ℕ+[𝑅 𝑣(𝑥, , 𝑡) + 𝐹𝑣(𝑥, 𝑡)]. 

(12) 

 

On employing inverse 𝑁𝑇 on Equation (12) to get 

 

 
𝑣(𝑥, 𝑡) = 𝐻(𝑥, 𝑡) − ℕ−1 [

𝜔𝛼

𝑠𝛼
ℕ+[𝑅𝑣(𝑥, 𝑡) + 𝐹 𝑣(𝑥, 𝑡)]]. (13) 

 

From non-homogeneous terms and given initial condition, 𝐻(𝑥, 𝑡) are exists. The infinite 

series solution is presented as 

 

 
𝑣(𝑥, 𝑡) = ∑𝑣𝑛(𝑥, 𝑡)

∞

𝑛=0

,       𝐹 𝑣(𝑥, 𝑡) = ∑𝐴𝑛

∞

𝑛=0

, (14) 

 

where the 𝐴𝑛 is indicating the nonlinear terms of 𝐹𝑣(𝑥, 𝑡). By using the Equations (13) 

and (14), we have 

 

 
∑𝑣𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝐻(𝑥, 𝑡) − ℕ−1 [
𝜔𝛼

𝑠𝛼
ℕ+ [𝑅∑𝑣𝑛(𝑥, 𝑡)

∞

𝑛=0

] +∑𝐴𝑛

∞

𝑛=0

]. (15) 

 

By associating two sides of Equation (15), we get 

 

𝑣0(𝑥, 𝑡) = 𝐻(𝑥, 𝑡), 

𝑣1(𝑥, 𝑡) = −ℕ−1 [
𝜔𝛼

𝑠𝛼
ℕ+[𝑅𝑣0(𝑥, 𝑡)] + 𝐴0], 

𝑣2(𝑥, 𝑡) = −ℕ
−1 [

𝜔𝛼

𝑠𝛼
ℕ+[𝑅𝑣1(𝑥, 𝑡)] + 𝐴1], 
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⋮ 
In the same manner, we can achieve the recursive  

 

 
𝑣𝑛+1(𝑥, 𝑡) = −ℕ−1 [

𝜔𝛼

𝑠𝛼
ℕ+[𝑅𝑣𝑛(𝑥, 𝑡)] + 𝐴𝑛]. (16) 

 

Finally, we define the approximate solutions as 

 

𝑣(𝑥, 𝑡) = ∑𝑣𝑛(𝑥, 𝑡)

∞

𝑛=0

. 

 

 

4. Solution for wave-like equations having fractional order 

 

Here, we consider arbitrary order wave-like equations having variable coefficients in 

ordered to illuminate the exactness and competence of the considered method.  

 

Example 4.1. Consider the 1D fractional wave-like equation [17, 35]:  

 

 𝐷𝜇𝑣(𝑥, 𝑡) =
1

2
𝑥2𝑣𝑥𝑥 ,      1 < 𝜇 ≤ 2,  (17) 

 

associate to initial conditions  

 

 𝑣(𝑥, 0) = 𝑥and 𝑣𝑡(𝑥, 0) = 𝑥2 . (18) 

 

By employing 𝑁𝑇 on Equation (17), we have 

 

 ℕ+[𝐷𝑡
𝜇
𝑣(𝑥, 𝑡)] = ℕ+ [

1

2
𝑥2

𝜕2𝑣

𝜕𝑥2
]. (19) 

 

The non-linear operator is defined as 

 

 𝑠𝜇

𝑤𝜇
ℕ+[𝑣(𝑥, 𝑡)] − ∑

𝑤𝑘−𝜇

𝑠𝑘+1−𝜇
[𝐷𝑘𝑣]𝑡=0

𝑛−1
𝑘=0 = ℕ+ [

1

2
𝑥2

𝜕2𝑣

𝜕𝑥2
]. (20) 

 

By Equations (18) and (20), we get 

 

 ℕ+[𝑣(𝑥, 𝑡)] = 𝑥 + 𝑥2𝑡 +
𝑤𝜇

𝑠𝜇
ℕ+ [

1

2
𝑥2

𝜕2𝑣

𝜕𝑥2
]. (21) 

 

On plugging inverse 𝑁𝑇 to Equation (21), we obtain 

 

𝑣(𝑥, 𝑡) = 𝑥 + 𝑥2𝑡 + ℕ−1 [
𝑤𝜇

𝑠𝜇
ℕ+ [

1

2
𝑥2
𝜕2𝑣

𝜕𝑥2
]]. (22) 

 

Let 𝑣(𝑥, 𝑡) = ∑ 𝑣𝑛(𝑥, 𝑡)
∞
𝑛=0  be the infinite series solution of 𝑣(𝑥, 𝑡).  Now, we rewrite 

Equation (22) as  
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∑ 𝑣𝑛(𝑥, 𝑡)
∞
𝑛=0 = 𝑥 + 𝑥2𝑡 + ℕ−1 [

𝑤𝜇

𝑠𝜇
ℕ+ [

1

2
𝑥2 ∑

𝜕2𝑣𝑛

𝜕𝑥2
∞
𝑛=0 ]].                                (23) 

 

On relating Equation (23) with two sides, we get 
 

𝑣0(𝑥, 𝑡) = 𝑥 + 𝑥
2𝑡,       𝑣1(𝑥, 𝑡) =

𝑥2𝑡𝜇+1

Γ[𝜇 + 2]
,        𝑣2(𝑥, 𝑡) =

𝑥2𝑡2𝜇+1

Γ[2𝜇 + 2]
,   

𝑣3(𝑥, 𝑡) =
𝑥2𝑡3𝜇+1

Γ[3𝜇 + 2]
,        𝑣4(𝑥, 𝑡) =

𝑥2𝑡4𝜇+1

Γ[4𝜇 + 2]
,        𝑣5(𝑥, 𝑡) =

𝑥2𝑡5𝜇+1

Γ[5𝜇 + 2]
,  

𝑣6(𝑥, 𝑡) =
𝑥2𝑡6𝜇+1

Γ[6𝜇 + 2]
,        𝑣7(𝑥, 𝑡) =

𝑥2𝑡7𝜇+1

Γ[7𝜇 + 2]
,        𝑣8(𝑥, 𝑡) =

𝑥2𝑡8𝜇+1

Γ[8𝜇 + 2]
,  

𝑣9(𝑥, 𝑡) =
𝑥2𝑡9𝜇+1

Γ[9𝜇 + 2]
, ⋯ 

 

Similarly, the rest of the terms of 𝑣𝑛(𝑛 ≥ 10) can be achieved. Then, we establish the 

series solutions as 
 

𝑣(𝑥, 𝑡) = ∑𝑣𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝑣0(𝑥, 𝑡) + 𝑣1(𝑥, 𝑡) + 𝑣2(𝑥, 𝑡) + 𝑣3(𝑥, 𝑡) + ⋯ 

= 𝑥 + 𝑥2𝑡 +
𝑥2𝑡𝜇+1

Γ[𝜇 + 2]
+
𝑥2𝑡2𝜇+1

Γ[2𝜇 + 2]
+
𝑥2𝑡3𝜇+1

Γ[3𝜇 + 2]
+
𝑥2𝑡4𝜇+1

Γ[4𝜇 + 2]
+
𝑥2𝑡5𝜇+1

Γ[5𝜇 + 2]
 

+
𝑥2𝑡6𝜇+1

Γ[6𝜇 + 2]
+
𝑥2𝑡7𝜇+1

Γ[7𝜇 + 2]
+ ⋯ 

 

The exact solution for Equation (17) at 𝜇 = 2 is 𝑣(𝑥, 𝑡) = 𝑥 + 𝑥2 sinh(𝑡). 
 

 
   (𝒂)                                                          (𝒃) 

 
(𝒄) 

Figure 1. Behaviour of (𝒂) obtained results (𝒃) analytical solution (𝒄)𝑣𝐴𝑏𝑠.𝐸𝑟𝑟. =
|𝑣𝐸𝑥𝑎𝑐𝑡 − 𝑣𝐹𝑁𝐷𝑀| for Ex. 4.1 at 𝜇 = 2. 



BENLİ F.B. 

497 

 
Figure 2. Behaviour of obtained solution for Ex. 4.1 with distinct 𝜇 at 𝑥 = 1. 

 

Table 1. Numerical comparison of different order solution for Ex. 4.1 with diverse 𝑡 and 

𝑥 at 𝜇 = 2. 

𝒙 𝒕 
|𝒗𝑬𝒙𝒂𝒄𝒕

− 𝒗𝑭𝑵𝑫𝑴
(𝟑)

| 

|𝒗𝑬𝒙𝒂𝒄𝒕

− 𝒗𝑭𝑵𝑫𝑴
(𝟓)

| 

|𝒗𝑬𝒙𝒂𝒄𝒕

− 𝒗𝑭𝑵𝑫𝑴
(𝟕)

| 

|𝒗𝑬𝒙𝒂𝒄𝒕

− 𝒗𝑭𝑵𝑫𝑴
(𝟗)

| 

0.25 

0.25 
6.57391
× 10−13 

0 0 0 

0.50 
3.37159
× 10−10 

1.22818
× 10−15 

6.10623
× 10−16 

6.17562
× 10−16 

0.75 1.29984 × 10−8 
2.39093
× 10−13 

5.96190
× 10−14 

5.96190
× 10−14 

1 1.73809 × 10−7 
1.00849
× 10−11 

1.66533
× 10−16 

1.38778
× 10−17 

0.50 

0.25 
2.62956
× 10−12 

0 0 0 

0.50 1.34864 × 10−9 
4.91274
× 10−15 

2.44249
× 10−15 

2.47025
× 10−15 

0.75 5.19938 × 10−8 
9.56374
× 10−13 

2.38476
× 10−13 

2.38476
× 10−13 

1 6.95236 × 10−7 
4.03395
× 10−11 

6.66134
× 10−16 

5.55112
× 10−17 

0.75 

0.25 
5.91652
× 10−12 

0 0 0 

0.50 3.03443 × 10−9 
1.10467
× 10−14 

5.60663
× 10−15 

5.55112
× 10−15 

0.75 1.16986 × 10−7 
2.15183
× 10−12 

5.36515
× 10−13 

5.36460
× 10−13 

1 1.56428 × 10−6 
9.07638
× 10−11 

1.55431
× 10−15 

0 

1 

0.25 
1.05183
× 10−11 

0 0 0 

0.50 5.39454 × 10−9 
1.96509
× 10−14 

9.76996
× 10−15 

9.88098
× 10−15 

0.75 2.07975 × 10−7 
3.82550
× 10−12 

9.53904
× 10−13 

9.53904
× 10−13 

1 2.78095 × 10−6 
1.61358
× 10−10 

2.66454
× 10−15 

2.22045
× 10−16 



BAUN Fen Bil. Enst. Dergisi, 23(2), 490-514, (2021) 

498 

Example 4.2. Consider the 2D wave-like equation having fractional order:  

 

 𝐷𝜇𝑣(𝑥, 𝑦, 𝑡) =
1

12
(𝑥2𝑣𝑥𝑥 + 𝑦

2𝑣𝑦𝑦),      1 < 𝜇 ≤ 2,  (24) 

 

associated with  

 

 𝑣(𝑥, 𝑦, 0) = 𝑥4and 𝑣𝑡(𝑥, 𝑦, 0) = 𝑦
4 . (25) 

 

By employing 𝑁𝑇 on Equation (24), we have 

 

 ℕ+[𝐷𝑡
𝜇
𝑣(𝑥, 𝑦, 𝑡)] = ℕ+ [

1

12
(𝑥2

𝜕2𝑣

𝜕𝑥2
+ 𝑦2

𝜕2𝑣

𝜕𝑦2
)]. (26) 

 

The non-linear operator is defined as 

 

 𝑠𝜇

𝑤𝜇
ℕ+[𝑣(𝑥, 𝑦, 𝑡)] − ∑

𝑤𝑘−𝜇

𝑠𝑘+1−𝜇
[𝐷𝑘𝑣]𝑡=0

𝑛−1
𝑘=0 = ℕ+ [

1

12
(𝑥2

𝜕2𝑣

𝜕𝑥2
+ 𝑦2

𝜕2𝑣

𝜕𝑦2
)]. (27) 

 

By Equations (25) and (27), we get 

 

 ℕ+[𝑣(𝑥, 𝑦, 𝑡)] = 𝑥4 + 𝑡𝑦4 +
𝑤𝜇

𝑠𝜇
ℕ+ [

1

12
(𝑥2

𝜕2𝑣

𝜕𝑥2
+ 𝑦2

𝜕2𝑣

𝜕𝑦2
)]. (28) 

 

On applying inverse 𝑁𝑇 to Equation (28), it gives 

 

𝑣(𝑥, 𝑦, 𝑡) = 𝑥4 + 𝑡𝑦4 + ℕ−1 [
𝑤𝜇

𝑠𝜇
ℕ+ [

1

12
(𝑥2

𝜕2𝑣

𝜕𝑥2
+ 𝑦2

𝜕2𝑣

𝜕𝑦2
)]]. (29) 

 

Assume that, the infinite series solution for 𝑣(𝑥, 𝑦, 𝑡)is𝑣(𝑥, 𝑦, 𝑡) = ∑ 𝑣𝑛(𝑥, 𝑦, 𝑡)
∞
𝑛=0 .  

Now, we rewrite Equation (29) as  

 

∑ 𝑣𝑛(𝑥, 𝑦, 𝑡)
∞
𝑛=0 = 𝑥4 + 𝑡𝑦4 + ℕ−1 [

𝑤𝜇

𝑠𝜇
ℕ+ [

1

12
(𝑥2∑

𝜕2𝑣𝑛

𝜕𝑥2
∞
𝑛=0 +

𝑦2∑
𝜕2𝑣𝑛

𝜕𝑦2
∞
𝑛=0 )]].                                

(30) 

 

On relating Equation (30) with two sides, we get 

 

𝑣0(𝑥, 𝑦, 𝑡) = 𝑥4 + 𝑡𝑦4,   𝑣1(𝑥, 𝑦, 𝑡) = (
𝑥4

Γ[𝜇 + 1]
+

𝑡𝑦4

Γ[𝜇 + 2]
) 𝑡𝜇,   𝑣2(𝑥, 𝑦, 𝑡)

= (
𝑥4

Γ[2𝜇 + 1]
+

𝑡𝑦4

Γ[2𝜇 + 2]
) 𝑡2𝜇,   

𝑣3(𝑥, 𝑦, 𝑡) = (
𝑥4

Γ[3𝜇 + 1]
+

𝑡𝑦4

Γ[3𝜇 + 2]
) 𝑡3𝜇 ,     𝑣4(𝑥, 𝑦, 𝑡)

= (
𝑥4

Γ[4𝜇 + 1]
+

𝑡𝑦4

Γ[4𝜇 + 2]
) 𝑡4𝜇 ,  
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𝑣5(𝑥, 𝑦, 𝑡) = (
𝑥4

Γ[5𝜇 + 1]
+

𝑡𝑦4

Γ[5𝜇 + 2]
) 𝑡5𝜇 ,      𝑣6(𝑥, 𝑦, 𝑡)

= (
𝑥4

Γ[6𝜇 + 1]
+

𝑡𝑦4

Γ[6𝜇 + 2]
) 𝑡6𝜇 ,      

𝑣7(𝑥, 𝑦, 𝑡) = (
𝑥4

Γ[7𝜇 + 1]
+

𝑡𝑦4

Γ[7𝜇 + 2]
) 𝑡7𝜇 ,      𝑣8(𝑥, 𝑦, 𝑡)

= (
𝑥4

Γ[8𝜇 + 1]
+

𝑡𝑦4

Γ[8𝜇 + 2]
) 𝑡8𝜇 ,  

𝑣9(𝑥, 𝑦, 𝑡) = (
𝑥4

Γ[9𝜇 + 1]
+

𝑡𝑦4

Γ[9𝜇 + 2]
) 𝑡9𝜇 , ⋯ 

 

Then, we obtain 

 

𝑣(𝑥, 𝑦, 𝑡) = ∑𝑣𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

= 𝑣0(𝑥, 𝑦, 𝑡) + 𝑣1(𝑥, 𝑦, 𝑡) + 𝑣2(𝑥, 𝑦, 𝑡) + 𝑣3(𝑥, 𝑦, 𝑡) + ⋯ 

= 𝑥4 + 𝑡𝑦4 + (
𝑥4

Γ[𝜇 + 1]
+

𝑡𝑦4

Γ[𝜇 + 2]
) 𝑡𝜇 + (

𝑥4

Γ[2𝜇 + 1]
+

𝑡𝑦4

Γ[2𝜇 + 2]
) 𝑡2𝜇

+ (
𝑥4

Γ[3𝜇 + 1]
+

𝑡𝑦4

Γ[3𝜇 + 2]
) 𝑡3𝜇 

+(
𝑥4

Γ[4𝜇 + 1]
+

𝑡𝑦4

Γ[4𝜇 + 2]
) 𝑡4𝜇 + (

𝑥4

Γ[5𝜇 + 1]
+

𝑡𝑦4

Γ[5𝜇 + 2]
) 𝑡5𝜇

+ (
𝑥4

Γ[6𝜇 + 1]
+

𝑡𝑦4

Γ[6𝜇 + 2]
) 𝑡6𝜇 

+(
𝑥4

Γ[7𝜇 + 1]
+

𝑡𝑦4

Γ[7𝜇 + 2]
) 𝑡7𝜇 + (

𝑥4

Γ[8𝜇 + 1]
+

𝑡𝑦4

Γ[8𝜇 + 2]
) 𝑡8𝜇

+ (
𝑥4

Γ[9𝜇 + 1]
+

𝑡𝑦4

Γ[9𝜇 + 2]
) 𝑡9𝜇 +⋯ 

 

The analytical solution for Equation (24) for 𝜇 = 2 is  

 

𝑣(𝑥, 𝑦, 𝑡) = 𝑥4 cosh(𝑡) + 𝑦4 sinh(𝑡). 
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(𝒂)                                                                                         (𝒃) 

 
                         (𝒄) 

Figure 3. Behaviour of (𝒂) obtained results (𝒃) analytical solution(𝒄)𝑣𝐴𝑏𝑠.𝐸𝑟𝑟. =
|𝑣𝐸𝑥𝑎𝑐𝑡 − 𝑣𝐹𝑁𝐷𝑀| for Ex. 4.2 at 𝜇 = 2. 

 

 

 
Figure 4. Nature of FNDM results for Ex. 4.2 with distinct 𝜇 at 𝑥 = 1. 
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Table 2. Numerical study for Ex. 4.2 with diverse 𝑡 and 𝑥 at 𝜇 = 2. 

𝒙 𝒕 |𝒗𝑬𝒙𝒂𝒄𝒕 − 𝒗𝑭𝑵𝑫𝑴
(𝟑)

| |𝒗𝑬𝒙𝒂𝒄𝒕 − 𝒗𝑭𝑵𝑫𝑴
(𝟓)

| |𝒗𝑬𝒙𝒂𝒄𝒕 − 𝒗𝑭𝑵𝑫𝑴
(𝟕)

| |𝒗𝑬𝒙𝒂𝒄𝒕 − 𝒗𝑭𝑵𝑫𝑴
(𝟗)

| 

0.25 

0.25 
1.19976
× 10−11 

0 0 5.55112
× 10−17 

0.50 
5.77404 × 10−9 2.16493

× 10−14 

1.11022
× 10−16 

0 

0.75 
2.17735 × 10−7 4.08451

× 10−12 

0 0 

1 
2.87891 × 10−6 1.69558

× 10−10 

2.88658
× 10−15 

0 

0.50 

0.25 
3.41873
× 10−11 

5.55112
× 10−17 

0 0 

0.50 
1.14665 × 10−8 5.15143

× 10−14 

0 0 

0.75 
3.64134 × 10−7 7.97140

× 10−12 

1.11022
× 10−16 

0 

1 
4.34840 × 10−6 2.92558

× 10−10 

5.77316
× 10−15 

2.22045
× 10−16 

0.75 

0.25 
1.30343
× 10−10 

0 0 1.11022
× 10−16 

0.50 
3.61337 × 10−8 1.80966

× 10−13 

1.11022
× 10−16 

1.11022
× 10−16 

0.75 
9.98530 × 10−7 2.48142

× 10−11 

4.44089
× 10−16 

2.22045
× 10−16 

1 
1.07162 × 10−5 8.25556

× 10−10 

1.79856
× 10−14 

2.22045
× 10−16 

1 

0.25 
3.89223
× 10−10 

0 0 0 

0.50 
1.02545 × 10−7 5.29798

× 10−13 

2.22045
× 10−16 

0 

0.75 
2.70652 × 10−6 7.01603

× 10−11 

4.44089
× 10−16 

0 

1 
2.78602 × 10−5 2.26055 × 10−9 5.01821

× 10−14 

4.44089
× 10−16 

 

Example 4.3. Consider the 3D fractional wave-like equation:  

 

𝐷𝜇𝑣(𝑥, 𝑦, 𝑧, 𝑡) = (𝑥2 + 𝑦2 + 𝑧2) +
1

2
(𝑥2𝑣𝑥𝑥 + 𝑦

2𝑣𝑦𝑦 + 𝑧
2𝑣𝑧𝑧),      1 < 𝜇 ≤ 2,  (31) 

 

associated with  

 𝑣(𝑥, 𝑦, 𝑧, 0) = 0and 𝑣𝑡(𝑥, 𝑦, 𝑧, 0) = 𝑥
2 + 𝑦2 − 𝑧2 . (32) 

 

By employing 𝑁𝑇 on Equation (31), we have 

 

 ℕ+[𝐷𝑡
𝜇
𝑣(𝑥, 𝑦, 𝑧, 𝑡)] = ℕ+ [(𝑥2 + 𝑦2 + 𝑧2) +

1

2
(𝑥2

𝜕2𝑣

𝜕𝑥2
+ 𝑦2

𝜕2𝑣

𝜕𝑦2
+ 𝑧2

𝜕2𝑣

𝜕𝑧2
)]. (33) 

 

The non-linear operator is defined as 
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 𝑠𝜇

𝑤𝜇
ℕ+[𝑣] − ∑

𝑤𝑘−𝜇

𝑠𝑘+1−𝜇
[𝐷𝑘𝑣]𝑡=0

𝑛−1
𝑘=0 = ℕ+ [(𝑥2 + 𝑦2 + 𝑧2) +

1

2
(𝑥2

𝜕2𝑣

𝜕𝑥2
+

𝑦2
𝜕2𝑣

𝜕𝑦2
+ 𝑧2

𝜕2𝑣

𝜕𝑧2
)]. 

(34) 

 

By Equations (32) and (34), we get 

 

ℕ+[𝑣(𝑥, 𝑦, 𝑧, 𝑡)] = (𝑥2 + 𝑦2 − 𝑧2)𝑡 +
𝑤𝜇

𝑠𝜇
ℕ+ [(𝑥2 + 𝑦2 + 𝑧2) +

1

2
(𝑥2

𝜕2𝑣

𝜕𝑥2
+ 𝑦2

𝜕2𝑣

𝜕𝑦2
+ 𝑧2

𝜕2𝑣

𝜕𝑧2
)]. 

(35) 

 

On applying inverse 𝑁𝑇 to Equation (35), it gives 

 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = (𝑥2 + 𝑦2 − 𝑧2)𝑡

+ ℕ−1 [
𝑤𝜇

𝑠𝜇
ℕ+ [(𝑥2 + 𝑦2 + 𝑧2)

+
1

2
(𝑥2

𝜕2𝑣

𝜕𝑥2
+ 𝑦2

𝜕2𝑣

𝜕𝑦2
+ 𝑧2

𝜕2𝑣

𝜕𝑧2
)]]. 

(36) 

 

The infinite series solution for 𝑣(𝑥, 𝑦, 𝑧, 𝑡)is𝑣(𝑥, 𝑦, 𝑧, 𝑡) = ∑ 𝑣𝑛(𝑥, 𝑦, 𝑧, 𝑡)
∞
𝑛=0 .  Now, we 

rewrite Equation (36) as  

 

∑𝑣𝑛(𝑥, 𝑦, 𝑧, 𝑡)

∞

𝑛=0

= (𝑥2 + 𝑦2 − 𝑧2)𝑡 + ℕ−1[
𝑤𝜇

𝑠𝜇
ℕ+[(𝑥2 + 𝑦2 + 𝑧2) 

 +
1

2
(𝑥2∑

𝜕2𝑣𝑛

𝜕𝑥2
∞
𝑛=0 + 𝑦2∑

𝜕2𝑣𝑛

𝜕𝑦2
∞
𝑛=0 + 𝑧2∑

𝜕2𝑣𝑛

𝜕𝑧2
∞
𝑛=0 )]]. 

(37) 

 

On relating Equation (37) with two sides, we get 

 

𝑣0(𝑥, 𝑦, 𝑧, 𝑡) = (𝑥
2 + 𝑦2 − 𝑧2)𝑡,   𝑣1(𝑥, 𝑦, 𝑧, 𝑡)

= (𝑥2 + 𝑦2 + 𝑧2)
𝑡μ

Γ[𝜇 + 1]
+ (𝑥2 + 𝑦2 − 𝑧2)

𝑡μ+1

Γ[𝜇 + 2]
, 

𝑣2(𝑥, 𝑦, 𝑧, 𝑡) = (𝑥
2 + 𝑦2 + 𝑧2)

𝑡2μ

Γ[2𝜇 + 1]
+ (𝑥2 + 𝑦2 − 𝑧2)

𝑡2μ+1

Γ[2𝜇 + 2]
,   

𝑣3(𝑥, 𝑦, 𝑧, 𝑡) = (𝑥
2 + 𝑦2 + 𝑧2)

𝑡3μ

Γ[3𝜇 + 1]
+ (𝑥2 + 𝑦2 − 𝑧2)

𝑡3μ+1

Γ[3𝜇 + 2]
, 

𝑣4(𝑥, 𝑦, 𝑧, 𝑡) = (𝑥
2 + 𝑦2 + 𝑧2)

𝑡4μ

Γ[4𝜇 + 1]
+ (𝑥2 + 𝑦2 − 𝑧2)

𝑡4μ+1

Γ[4𝜇 + 2]
,⋯ 

 

Then, we can obtain 

 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = ∑𝑣𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝑣0(𝑥, 𝑦, 𝑧, 𝑡) + 𝑣1(𝑥𝑦, 𝑧, , 𝑡) + 𝑣2(𝑥, 𝑦, 𝑧, 𝑡) + 𝑣3(𝑥, 𝑦, 𝑧, 𝑡) + ⋯ 

= (𝑥2 + 𝑦2 − 𝑧2)𝑡 + (𝑥2 + 𝑦2 + 𝑧2)
𝑡μ

Γ[𝜇 + 1]
+ (𝑥2 + 𝑦2 − 𝑧2)

𝑡μ+1

Γ[𝜇 + 2]
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+(𝑥2 + 𝑦2 + 𝑧2)
𝑡2μ

Γ[2𝜇 + 1]
+ (𝑥2 + 𝑦2 − 𝑧2)

𝑡2μ+1

Γ[2𝜇 + 2]
+ (𝑥2 + 𝑦2 + 𝑧2)

𝑡3μ

Γ[3𝜇 + 1]
 

+(𝑥2 + 𝑦2 − 𝑧2)
𝑡3μ+1

Γ[3𝜇 + 2]
+ (𝑥2 + 𝑦2 + 𝑧2)

𝑡4μ

Γ[4𝜇 + 1]
+ (𝑥2 + 𝑦2 − 𝑧2)

𝑡4μ+1

Γ[4𝜇 + 2]
+ ⋯ 

 

The analytical solution for Eq. (31) for 𝜇 = 2 is  

 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = (𝑥2 + 𝑦2)(𝑒𝑡 − 1) + 𝑧2(𝑒−𝑡 − 1). 
 

 
(𝒂) (𝒃) 

 
(𝒄) 

Figure 5. Behaviour of (𝒂) obtained results (𝒃) analytical solution(𝒄)𝑣𝐴𝑏𝑠.𝐸𝑟𝑟. =
|𝑣𝐸𝑥𝑎𝑐𝑡 − 𝑣𝐹𝑁𝐷𝑀| for Ex. 4.3 at 𝜇 = 2. 

 

 
Figure 6. Nature of FNDM results for Ex. 4.3 with distinct 𝜇 at 𝑥 = 1. 
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Table 3. Numerical study for Ex. 4.3 with diverse 𝑡 and 𝑥 at 𝜇 = 2. 

𝒙 𝒕 
|𝒗𝑬𝒙𝒂𝒄𝒕

− 𝒗𝑭𝑵𝑫𝑴
(𝟑)

| 

|𝒗𝑬𝒙𝒂𝒄𝒕

− 𝒗𝑭𝑵𝑫𝑴
(𝟓)

| 

|𝒗𝑬𝒙𝒂𝒄𝒕

− 𝒗𝑭𝑵𝑫𝑴
(𝟕)

| 

|𝒗𝑬𝒙𝒂𝒄𝒕

− 𝒗𝑭𝑵𝑫𝑴
(𝟗)

| 

0.25 

0.25 
3.36903 × 10−4 7.00901 × 10−7 7.81737

× 10−10 

5.42546
× 10−13 

0.50 
5.43243 × 10−3 4.50567 × 10−5 2.00711 × 10−7 5.56867

× 10−10 

0.75 2.78314 × 10−2 5.16656 × 10−4 5.16625 × 10−6 3.22101 × 10−8 

1 8.93872 × 10−2 2.92888 × 10−3 5.18998 × 10−5 5.74275 × 10−7 

0.50 

0.25 
3.69012 × 10−4 7.66822 × 10−7 8.54716

× 10−10 

5.92895
× 10−13 

0.50 
5.97391 × 10−3 4.94356 × 10−5 2.19938 × 10−7 6.09719

× 10−10 

0.75 3.07259 × 10−2 5.68478 × 10−4 5.67372 × 10−6 3.53313 × 10−8 

1 9.90651 × 10−2 3.23173 × 10−3 5.71236 × 10−5 6.31066 × 10−7 

0.75 

0.25 
4.22528 × 10−4 8.76692 × 10−7 9.76348

× 10−10 

6.76939
× 10−13 

0.50 
6.87640 × 10−3 5.67337 × 10−5 2.51983 × 10−7 6.97805

× 10−10 

0.75 3.55502 × 10−2 6.54848 × 10−4 6.51951 × 10−6 4.05334 × 10−8 

1 1.15195 × 10−1 3.73646 × 10−3 6.58299 × 10−5 7.25718 × 10−7 

1 

0.25 
4.97450 × 10−4 1.03051 × 10−6 1.14663 × 10−9 7.94511

× 10−13 

0.50 
8.13987 × 10−3 6.69511 × 10−5 2.96847 × 10−7 8.21127

× 10−10 

0.75 4.23041 × 10−2 7.75766 × 10−3 7.70361 × 10−6 4.78164 × 10−8 

1 1.37776 × 10−1 7.00901 × 10−7 7.80187 × 10−5 8.58231 × 10−7 

 

Example 4.4. Consider the 1D nonlinear wave-like equation having fractional order [36]:  

 

 𝐷𝜇𝑣(𝑥, 𝑡) = 𝑥2
𝜕

𝜕𝑥
(𝑣𝑥𝑣𝑥𝑥) − 𝑥

2(𝑣𝑥𝑥)
2 − 𝑣,      1 < 𝜇 ≤ 2,  (38) 

 

associated with initial conditions  

 

 𝑣(𝑥, 0) = 0and 𝑣𝑡(𝑥, 0) = 𝑥2 . (39) 

 

By employing 𝑁𝑇 on Equation (38), we have 

 

 
ℕ+[𝐷𝑡

𝜇
𝑣(𝑥, 𝑡)] = ℕ+ [𝑥2

𝜕

𝜕𝑥
(
𝜕𝑣

𝜕𝑥

𝜕2𝑣

𝜕𝑥2
) − 𝑥2 (

𝜕2𝑣

𝜕𝑥2
)
2

− 𝑣]. (40) 

 

The non-linear operator is defined as 

 

𝑠𝜇

𝑤𝜇
ℕ+[𝑣(𝑥, 𝑡)] − ∑

𝑤𝑘−𝜇

𝑠𝑘+1−𝜇
[𝐷𝑘𝑣]𝑡=0

𝑛−1
𝑘=0 = ℕ+ [𝑥2

𝜕

𝜕𝑥
(
𝜕𝑣

𝜕𝑥

𝜕2𝑣

𝜕𝑥2
) − 𝑥2 (

𝜕2𝑣

𝜕𝑥2
)
2

− 𝑣]. 
(41) 

 

By Equations (39) and (41), we get 
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ℕ+[𝑣(𝑥, 𝑡)] = 𝑥2𝑡 +

𝑤𝜇

𝑠𝜇
ℕ+ [𝑥2

𝜕

𝜕𝑥
(
𝜕𝑣

𝜕𝑥

𝜕2𝑣

𝜕𝑥2
) − 𝑥2 (

𝜕2𝑣

𝜕𝑥2
)
2

− 𝑣]. (42) 

 

On plugging inverse 𝑁𝑇 to Equation. (42), we obtain 

 

𝑣(𝑥, 𝑡) = 𝑥2𝑡 + ℕ−1 [𝑥2
𝜕

𝜕𝑥
(
𝜕𝑣

𝜕𝑥

𝜕2𝑣

𝜕𝑥2
) − 𝑥2 (

𝜕2𝑣

𝜕𝑥2
)

2

− 𝑣]. (43) 

 

Let 𝑣(𝑥, 𝑡) = ∑ 𝑣𝑛(𝑥, 𝑡)
∞
𝑛=0  be the infinite series solution for 𝑣(𝑥, 𝑡). Note that, 𝑣𝑥𝑣𝑥𝑥 =

∑ 𝐴𝑛
∞
𝑛=0  and(𝑣𝑥𝑥)

2 = ∑ 𝐵𝑛
∞
𝑛=0 ,  are the Adomian polynomials. Then, Equation (43) 

becomes  

 

∑ 𝑣𝑛(𝑥, 𝑡)
∞
𝑛=0 = 𝑥2𝑡 + ℕ−1 [

𝑤𝜇

𝑠𝜇
ℕ+ [𝑥2

𝜕

𝜕𝑥
∑ 𝐴𝑛
∞
𝑛=0 − 𝑥2 ∑ 𝐵𝑛

∞
𝑛=0 − ∑ 𝑣𝑛

∞
𝑛=0 ]].                                (44) 

 

On relating Equation (44) with two sides, we get 

 

𝑣0(𝑥, 𝑡) = 𝑥
2𝑡,                   𝑣1(𝑥, 𝑡) = −

𝑥2𝑡𝜇+1

Γ[𝜇 + 2]
,        𝑣2(𝑥, 𝑡) =

𝑥2𝑡2𝜇+1

Γ[2𝜇 + 2]
,   

𝑣3(𝑥, 𝑡) = −
𝑥2𝑡3𝜇+1

Γ[3𝜇 + 2]
,        𝑣4(𝑥, 𝑡) =

𝑥2𝑡4𝜇+1

Γ[4𝜇 + 2]
,            𝑣5(𝑥, 𝑡) = −

𝑥2𝑡5𝜇+1

Γ[5𝜇 + 2]
,  

𝑣6(𝑥, 𝑡) =
𝑥2𝑡6𝜇+1

Γ[6𝜇 + 2]
,            𝑣7(𝑥, 𝑡) = −

𝑥2𝑡7𝜇+1

Γ[7𝜇 + 2]
,        𝑣8(𝑥, 𝑡) =

𝑥2𝑡8𝜇+1

Γ[8𝜇 + 2]
,  

𝑣9(𝑥, 𝑡) = −
𝑥2𝑡9𝜇+1

Γ[9𝜇 + 2]
, ⋯ 

 

Similarly, the remaining terms of 𝑣𝑛(𝑛 ≥ 10) can be attained. Then, we have 

 

𝑣(𝑥, 𝑡) = ∑𝑣𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝑣0(𝑥, 𝑡) + 𝑣1(𝑥, 𝑡) + 𝑣2(𝑥, 𝑡) + 𝑣3(𝑥, 𝑡) + ⋯ 

= 𝑥2𝑡 −
𝑥2𝑡𝜇+1

Γ[𝜇 + 2]
+
𝑥2𝑡2𝜇+1

Γ[2𝜇 + 2]
−
𝑥2𝑡3𝜇+1

Γ[3𝜇 + 2]
+
𝑥2𝑡4𝜇+1

Γ[4𝜇 + 2]
−
𝑥2𝑡5𝜇+1

Γ[5𝜇 + 2]
+
𝑥2𝑡6𝜇+1

Γ[6𝜇 + 2]

−
𝑥2𝑡7𝜇+1

Γ[7𝜇 + 2]
+ ⋯ 

 

The analytical solution for Equation (38) at 𝜇 = 2 is 𝑣(𝑥, 𝑡) = 𝑥2 sin(𝑡). 
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(𝒂)                                                                 (𝒃) 

 

 
(𝒄) 

Figure 7. Behaviour of (𝒂) obtained results (𝒃) analytical solution(𝒄)𝑣𝐴𝑏𝑠.𝐸𝑟𝑟. =
|𝑣𝐸𝑥𝑎𝑐𝑡 − 𝑣𝐹𝑁𝐷𝑀| for Ex. 4.4 at 𝜇 = 2. 

 

 
Figure 8. Nature of FNDM results for Ex. 4.4 with distinct 𝜇at 𝑥 = 1. 
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Table 4. Numerical study of obtained results for Ex. 4.4 with diverse 𝑡 and 𝑥at 𝜇 = 2. 

𝒙 𝒕 |𝒗𝑬𝒙𝒂𝒄𝒕 − 𝒗𝑭𝑵𝑫𝑴
(𝟑)

| |𝒗𝑬𝒙𝒂𝒄𝒕 − 𝒗𝑭𝑵𝑫𝑴
(𝟓)

| |𝒗𝑬𝒙𝒂𝒄𝒕 − 𝒗𝑭𝑵𝑫𝑴
(𝟕)

| |𝒗𝑬𝒙𝒂𝒄𝒕 − 𝒗𝑭𝑵𝑫𝑴
(𝟗)

| 

0.25 

0.25 6.56645 × 10−13 0 0 0 

0.50 3.35630 × 10−10 1.22125 × 10−15 0 0 

0.75 1.28662 × 10−8 2.37810 × 10−13 0 0 

1 1.70677 × 10−7 9.98928 × 10−12 1.73472 × 10−16 0 

0.50 

0.25 2.62658 × 10−12 0 0 0 

0.50 1.34252 × 10−9 4.88498 × 10−15 0 0 

0.75 5.14647 × 10−8 9.51239 × 10−13 0 0 

1 6.82710 × 10−7 3.99571 × 10−11 6.93889 × 10−16 0 

0.75 

0.25 5.90983 × 10−12 0 2.77556 × 10−17 2.77556 × 10−17 

0.50 3.02067 × 10−9 1.10467 × 10−14 0 5.55112 × 10−17 

0.75 1.15796 × 10−7 2.14034 × 10−12 0 0 

1 1.53610 × 10−6 8.99035 × 10−11 1.60982 × 10−15 0 

1 

0.25 1.05063 × 10−11 0 0 0 

0.50 5.37008 × 10−9 1.95399 × 10−14 0 0 

0.75 2.05859 × 10−7 3.80496 × 10−12 0 0 

1 2.73084 × 10−6 1.59828 × 10−10 2.77556 × 10−15 0 

 

Example 4.5. Consider the 2D nonlinear fractional wave-like equation [36]:  

 

 𝐷𝜇𝑣(𝑥, 𝑡) =
𝜕2

𝜕𝑥𝜕𝑦
(𝑣𝑥𝑥𝑣𝑦𝑦) −

𝜕2

𝜕𝑥𝜕𝑦
(𝑥𝑦𝑣𝑥𝑣𝑦) − 𝑣,      1 < 𝜇 ≤ 2, (45) 

 

associated with initial conditions  

 

 𝑣(𝑥, 𝑦, 0) = 𝑒𝑥𝑦and 𝑣𝑡(𝑥, 𝑦, 0) = 𝑒
𝑥𝑦. (46) 

 

By employing 𝑁𝑇 on Equation (45), we have 

 

 ℕ+[𝐷𝑡
𝜇
𝑣(𝑥, 𝑦, 𝑡)] = ℕ+ [

𝜕2

𝜕𝑥𝜕𝑦
(
𝜕2𝑣

𝜕𝑥2
𝜕2𝑣

𝜕𝑦2
) −

𝜕2

𝜕𝑥𝜕𝑦
(𝑥𝑦

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
) − 𝑣]. (47) 

 

The non-linear operator is defined as 

 

 𝑠𝜇

𝑤𝜇
ℕ+[𝑣(𝑥, 𝑦, 𝑡)] − ∑

𝑤𝑘−𝜇

𝑠𝑘+1−𝜇
[𝐷𝑘𝑣]𝑡=0

𝑛−1
𝑘=0 = ℕ+ [

𝜕2

𝜕𝑥𝜕𝑦
(
𝜕2𝑣

𝜕𝑥2
𝜕2𝑣

𝜕𝑦2
) −

𝜕2

𝜕𝑥𝜕𝑦
(𝑥𝑦

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
) − 𝑣]. 

(48) 

 

By Equations (46) and (48), we get 

 

 ℕ+[𝑣(𝑥, 𝑦, 𝑡)] = (1 + 𝑡)𝑒𝑥𝑦 +
𝑤𝜇

𝑠𝜇
ℕ+ [

𝜕2

𝜕𝑥𝜕𝑦
(
𝜕2𝑣

𝜕𝑥2
𝜕2𝑣

𝜕𝑦2
) −

𝜕2

𝜕𝑥𝜕𝑦
(𝑥𝑦

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
) −

𝑣]. 
(49) 

 

On plugging inverse 𝑁𝑇 to Equation (49), we obtain 
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𝑣(𝑥, 𝑦, 𝑡) = (1 + 𝑡)𝑒𝑥𝑦

+ ℕ−1 [
𝑤𝜇

𝑠𝜇
ℕ+ [

𝜕2

𝜕𝑥𝜕𝑦
(
𝜕2𝑣

𝜕𝑥2
𝜕2𝑣

𝜕𝑦2
) −

𝜕2

𝜕𝑥𝜕𝑦
(𝑥𝑦

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
) − 𝑣]]. 

(50) 

 

Let 𝑣(𝑥, 𝑦, 𝑡) = ∑ 𝑣𝑛(𝑥, 𝑦, 𝑡)
∞
𝑛=0  be the infinite series solution of 𝑣(𝑥, 𝑦, 𝑡). Note that, 

𝑣𝑥𝑥𝑣𝑦𝑦 = ∑ 𝐴𝑛
∞
𝑛=0  and 𝑣𝑥𝑣𝑦 = ∑ 𝐵𝑛

∞
𝑛=0  are the Adomian polynomials.  Then, Equation 

(51) becomes 

 

∑ 𝑣𝑛(𝑥, 𝑦, 𝑡)
∞
𝑛=0 = (1 + 𝑡)𝑒𝑥𝑦 + ℕ−1 [

𝑤𝜇

𝑠𝜇
ℕ+ [

𝜕2

𝜕𝑥𝜕𝑦
∑ 𝐴𝑛
∞
𝑛=0 −

𝜕2

𝜕𝑥𝜕𝑦
(𝑥𝑦∑ 𝐵𝑛

∞
𝑛=0 ) − ∑ 𝑣𝑛

∞
𝑛=0 ]].                                

(52) 

 

On relating Equation (52) with two sides, we get 

 

𝑣0(𝑥, 𝑦, 𝑡) = (1 + 𝑡)𝑒𝑥𝑦,    

𝑣1(𝑥, 𝑦, 𝑡) = −(
𝑡𝜇

Γ[𝜇 + 1]
+

𝑡𝜇+1

Γ[𝜇 + 2]
) 𝑒𝑥𝑦, 

𝑣2(𝑥, 𝑦, 𝑡) = (
𝑡2𝜇

Γ[2𝜇 + 1]
+

𝑡2𝜇+1

Γ[2𝜇 + 2]
) 𝑒𝑥𝑦,   

 𝑣3(𝑥, 𝑦, 𝑡) = −(
𝑡3𝜇

Γ[3𝜇 + 1]
+

𝑡3𝜇+1

Γ[3𝜇 + 2]
) 𝑒𝑥𝑦 

𝑣4(𝑥, 𝑦, 𝑡) = (
𝑡4𝜇

Γ[4𝜇 + 1]
+

𝑡4𝜇+1

Γ[4𝜇 + 2]
) 𝑒𝑥𝑦,   

𝑣5(𝑥, 𝑦, 𝑡) = −(
𝑡5𝜇

Γ[5𝜇 + 1]
+

𝑡5𝜇+1

Γ[5𝜇 + 2]
) 𝑒𝑥𝑦 , 

𝑣6(𝑥, 𝑦, 𝑡) = (
𝑡6𝜇

Γ[6𝜇 + 1]
+

𝑡6𝜇+1

Γ[6𝜇 + 2]
) 𝑒𝑥𝑦,   

𝑣7(𝑥, 𝑦, 𝑡) = −(
𝑡7𝜇

Γ[7𝜇 + 1]
+

𝑡7𝜇+1

Γ[7𝜇 + 2]
) 𝑒𝑥𝑦 , 

𝑣8(𝑥, 𝑦, 𝑡) = (
𝑡8𝜇

Γ[8𝜇 + 1]
+

𝑡8𝜇+1

Γ[8𝜇 + 2]
) 𝑒𝑥𝑦,   

𝑣9(𝑥, 𝑦, 𝑡) = −(
𝑡9𝜇

Γ[9𝜇 + 1]
+

𝑡9𝜇+1

Γ[9𝜇 + 2]
) 𝑒𝑥𝑦 , ⋯ 

 

Then, we have 

 

𝑣(𝑥, 𝑦, 𝑡) = ∑𝑣𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

= 𝑣0(𝑥, 𝑦, 𝑡) + 𝑣1(𝑥, 𝑦, 𝑡) + 𝑣2(𝑥, 𝑦, 𝑡) + 𝑣3(𝑥, 𝑦, 𝑡) + ⋯ 

= 𝑥4 + 𝑡𝑦4 + (
𝑥4

Γ[𝜇 + 1]
+

𝑡𝑦4

Γ[𝜇 + 2]
) 𝑡𝜇 + (

𝑥4

Γ[2𝜇 + 1]
+

𝑡𝑦4

Γ[2𝜇 + 2]
) 𝑡2𝜇

+ (
𝑥4

Γ[3𝜇 + 1]
+

𝑡𝑦4

Γ[3𝜇 + 2]
) 𝑡3𝜇 
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+(
𝑥4

Γ[4𝜇 + 1]
+

𝑡𝑦4

Γ[4𝜇 + 2]
) 𝑡4𝜇 + (

𝑥4

Γ[5𝜇 + 1]
+

𝑡𝑦4

Γ[5𝜇 + 2]
) 𝑡5𝜇

+ (
𝑥4

Γ[6𝜇 + 1]
+

𝑡𝑦4

Γ[6𝜇 + 2]
) 𝑡6𝜇 

+(
𝑥4

Γ[7𝜇 + 1]
+

𝑡𝑦4

Γ[7𝜇 + 2]
) 𝑡7𝜇 + (

𝑥4

Γ[8𝜇 + 1]
+

𝑡𝑦4

Γ[8𝜇 + 2]
) 𝑡8𝜇

+ (
𝑥4

Γ[9𝜇 + 1]
+

𝑡𝑦4

Γ[9𝜇 + 2]
) 𝑡9𝜇 +⋯ 

 

The analytical solution for Equation (45) for 𝜇 = 2 is 𝑣(𝑥, 𝑦, 𝑡) = 𝑥4 cosh(𝑡) +
𝑦4 sinh(𝑡). 
 

 
(𝒂) (𝒃) 

 
(𝒄) 

Figure 9. Behaviour of (𝒂) obtained results (𝒃) analytical solution(𝒄)𝑣𝐴𝑏𝑠.𝐸𝑟𝑟. =
|𝑣𝐸𝑥𝑎𝑐𝑡 − 𝑣𝐹𝑁𝐷𝑀| for Ex. 4.5 at 𝜇 = 2. 
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Figure 8. Nature of FNDM results for Ex. 4.5 with distinct 𝜇at 𝑥 = 1. 

 

Table 5. Numerical analysis for Ex. 4.5 with diverse 𝑡 and 𝑥at 𝜇 = 2. 

𝒙 𝒕 |𝒗𝑬𝒙𝒂𝒄𝒕 − 𝒗𝑭𝑵𝑫𝑴
(𝟑)

| |𝒗𝑬𝒙𝒂𝒄𝒕 − 𝒗𝑭𝑵𝑫𝑴
(𝟓)

| |𝒗𝑬𝒙𝒂𝒄𝒕 − 𝒗𝑭𝑵𝑫𝑴
(𝟕)

| |𝒗𝑬𝒙𝒂𝒄𝒕 − 𝒗𝑭𝑵𝑫𝑴
(𝟗)

| 

0.25 

0.25 4.99082 × 10−10 0 2.22045 × 10−16 2.22045 × 10−16 

0.50 1.30948 × 10−7 6.79012 × 10−13 3.30846 × 10−14 3.30846 × 10−14 

0.75 3.43267 × 10−6 8.95364 × 10−11 4.99401 × 10−12 4.99334 × 10−12 

1 3.50012 × 10−5 2.87118 × 10−9 2.05285 × 10−10 2.05220 × 10−10 

0.50 

0.25 6.40834 × 10−10 4.44089 × 10−16 8.88178 × 10−16 4.44089 × 10−16 

0.50 1.68141 × 10−7 8.71303 × 10−13 4.17444 × 10−14 4.17444 × 10−14 

0.75 4.40763 × 10−6 1.14967 × 10−10 6.41309 × 10−12 6.41176 × 10−12 

1 4.49424 × 10−5 3.68667 × 10−9 2.63591 × 10−10 2.63508 × 10−10 

0.75 

0.25 8.22847 × 10−10 0 4.44089 × 10−16 4.44089 × 10−16 

0.50 2.15897 × 10−7 1.11910 × 10−12 5.41789 × 10−14 5.37348 × 10−14 

0.75 5.65952 × 10−6 1.47620 × 10−10 8.23341 × 10−12 8.23208 × 10−12 

1 5.77072 × 10−5 4.73378 × 10−9 3.38458 × 10−10 3.38351 × 10−10 

1 

0.25 1.05656 × 10−9 4.44089 × 10−16 4.44089 × 10−16 4.44089 × 10−16 

0.50 2.77218 × 10−7 1.43663 × 10−12 6.92779 × 10−14 6.83897 × 10−14 

0.75 7.26696 × 10−6 1.89549 × 10−10 1.05724 × 10−11 1.05707 × 10−11 

1 7.40975 × 10−5 6.07830 × 10−9 4.34588 × 10−10 4.34452 × 10−10 

 

 

5. Numerical results and discussion  

 

Here, the multi-dimensional time-fractional linear and nonlinear wave-like equations with 

variable coefficients have been examined with the aid of FNDM. To illustrate the 

capability and exactness of the projected procedure, the numerical study presented with a 

change in the order of the solution for five cases considered and presented in Tables 1-5 

in terms of absolute error for change in 𝑥 and 𝑡. From the demonstrated results shows for 

the higher value of order the obtained solution closure to analytical results of the 

corresponding equations and also authorize the accuracy of FNDM. Moreover, for some 

cases, the obtained results are identical to the exact one and hence it shows the absolute 

error is zero. These types of analysis may aid researchers about the reliability and 

capability of the scheme while investigating complex systems.  
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As much as important of formulating the problem and finding the solution for the 

corresponding equations, it is very important to capture nature also. In this connection, 

we presented the obtained results behaviour for each case related to the exact result to 

both exemplify exactness and nature of results achieved. For Example 4.1, the response 

of FNDM results and the absolute surface is cited in Figure 1 with the exact solution. In 

the same manner, we presented for Example 4.2, 4.3, 4.4 and 4.5 respectively in the 

Figures 3, 5, 7 and 9. Moreover, by incorporating the concept of the classical derivative 

by non-integer derivative we get more degree of freedom and aid us to illustrate more 

hide future of the model related to history and hereditary based results. In regard to this, 

with respect to different arbitrary order, the response with time is illustrated respectively 

for Examples 1-5 in Figures 2, 4, 6, 8 and 10. With the assist of tables and figures, we can 

observe the hired solution procedure is very effective and more accurate to analyse the 

projected wave-like equations with fractional order. Further, this investigation can 

capture or limn more behaviour and it can help the researchers to analyse diverse 

applications of projected problems. 

 

 

6. Conclusion 

 

In the present framework, the multi-dimensional wave-like equations with variable 

coefficients are effectively and accurately analysed with the assist of FNDM within the 

frame of fractional calculus. The projected solution procedure assesses the solution for 

the differential equations without employing any conversion, discretization or 

perturbation. The plots authorize the reliability of the hired algorithm and the effect of 

fractional order while we are analysing wave equations. Related to significances available 

in the literature, the attained results with the projected scheme are more stimulating and 

interesting. The nature of the obtained results are exemplified with the aid of figures and 

tables, and also which helps understand the behaviour of the projected models with the 

specific values. Moreover, we authorize the achieved results to get closure to the 

analytical solution as the number of iterative terms increases. Lastly, we can say that the 

illustrated solution procedure accurate and highly systematic and it can be employed to 

analyse the numerous families of linear and nonlinear equations arisen in science and 

engineering. 
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