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Ozet: Bloch-Landau Sabitleri hakkinda. Bu yazi, Girig harig, iki kistmdan
ibarettir. Birinci kisimda £ Sabiti hakkinda evvelee elde edilmig olan netice-
1er hatirlatihyor. (K) Birim- dairesinde, kdgeleri ¢cember iizerinde olan, kenar-
dar1 gembere dik sifir agihh dairesel iiggenler gdz &niine alimyor.

Bu tiggenler, kenarlarina nazaran simetrileri tam olarak w- duzlemml or-
ten bir (Ty) Giggenine konform tasvir ediliyor. Bilindigi gibi ¢ tip (Tw)
diggeni vardir, bualar egkenar, iki kenan egit dik a¢ih ve bir egkenar ii¢genin
yarisio1 tegkil eden iiggenlerdir. Bu iiggenleri sira ile (Tw)i, (Ta)z, (Tw)s ile
-gosteriyoruz.

Yukarda tarifi verilen tasvirlerden miitevellit normalize fonksiyonlarn
R simift igin agagidaki kat’i petice elde ediliyor.

2 simifi dahilinde bir ve birtek extremal fonksiyon vardir. Bu fonksiyon
-eskenar sifir agih {iggeni (Ty), eskenar iiggenine konform tasvir eder.

fkinci kisimda, sifir aqili diggenlerin, bunlara modiler figgen de denir,
yerine Schwarz iiggenleri gozénine alimiyor. Schwarz iiggeni diye kenarlan
Birim ‘gembere dik =/p, ©n/q, ®/r, p, g, r pozitif tam say), ile gdsterilen ig
agilart 1/p 4+ 1/g+ 1/ < 1 gartin1 sagliyan iiggene denir. Schwarz iggenleri-
nin (Tw)s n =1, 2, 8 iiggenlerine konform tasvirlerinden miitevellit normalize
analitik fonksiyonlarin stmfina B diyelim. Aynen yukardaki gibi gésteriyoruz
ki B simifr dahilinde bir ve birtek ekstremal fonksiyon vardir. Bu fonksiyon
egkenar ®/6 agili  Schwarz figgenini (Tw); egkenar iiggenine konform tasvir
‘eder. B

Bu teoremin ispati yukardakinden farkl: olarak Klasik Schwarz Lemma-
sinin Birim dairesinde tarifli fakat orada iiniform olmiyan analitik fonksiyon-
Jara tegmili olan bir Lemmaya dayanmaktadir.

Introduction. The paper is divided into two parts. In the
first part we consider the Class 8 of normalized analytic func-
tions which map conformally a zero-angled circular triangle, also
called a modular triangle, inscribed in the unit circle onto a
straight triangle whose repeated reflections in the sides just fill
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the whole plane, It is well known that there are three types of
such triangles, viz., the equilateral triangle, the isoceles rectan-
gular triangle an the half of an equilateral triangle. These triang--
les will be designated by (T,);, (T.)s (T.); respectively. The-
following Uniqueness Theorem is proved (§ 2.4). The normalized
analytic function which maps conformally the modular equilateral

triangle onto the straight equilateral triangle is the only extremal
function within the Class 2.

In the second part, the Class € is replaced by the Class B
consisting of normalized analytic functions which map confor-
mally a circular triangle orthogonal to and inside the unit circle:
with interior angles n/p, n/g. n/r satisfying the condition 1/p +
1/g 4 1/r << 1, where p, q, r are positive integers, also called a
Schwarz’ triangle, onto (T,),, n = 1,2,3. We prove similarly that
the normalized analytic function which maps conformally the
equiangular Schwarz triangle with interior angles equal to =/6.
onto the straight equilateral triangle is the only extremal func-
tion within the Class 8. The proof of this theorem is based upon-
a generalization of the Classical Schwarz’Lemma to non uniform.
analytic functions defined in the unit circle and which is an ex-
tension of the results obtained by L. Ahlfors and Z. Nehari.

1. GENERALITIES

L.1. The Function Space of The Modular Triangles. We-
designate by (ABC) the Fundamental triangle in the t-plane with
boundary consisting of the two positive half-rays BA:®Rt=0,
CA:%t=1 and the upper semi circle BEC:|2t— 1|==1. The
affixes of the vertices A, B, C being 1=, =0, v=1 res-
pectively.

Let « € (ABC) be any interior or boundary point different:
from the vertices. To every a the substitution
(1-1) Zz =

T—Q

T—a

associates in the unit circle (K): |z| <1, a Modular triangle-
(ABC)a containing z=0 in the interior or on the boundhry and
which is the transformed of (ABC) by (1.1), the vertex A cor-
responding to T=c being at z = 1. Conversely to every such
triangle (ABC). with the vertex A at z=1 there corresponds
by means of (1.1) a single point in (ABC) We thus obtain
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Theorem 1.1 The totality of the Modular triangles inscribed
in (K), with centre lying in the interior or on the boundary can,
save for an arbitrary rotation round the centre, be represented
on the Fundamental triangle.

Note that any of the Modular triangles (ABC), can be cho-
sen as a Fundamental triangle. In this case (1.1) is replaced by
a linear substitution which leaves fixed the unit circle (K).Such
‘a Fundamental triangle is called a Function Space of the Mo-
dular triangles.

1.2. The Modular Triangles. By means of the circles, centre
at =0, v=1, with radius unity and the line Rt = ; we may
divide (ABC) into six subtriangles FAG, FGB, FBE, FEC, FCH,
FHA read in the positive direction. Suppose « is in FAG. To
« is associated by (1.1) the Modular triangle (ABC)s with ver-
tex A at z=1. By rotating this triangle round z=0 in the
positive direction so as to carry the vertex B then C over in-
to z=1, we thus obtain the triangles (A’B'C')a’, (A’B"C")a’ to
which correspond in (ABC) the points

1 o o—1
1—a * 7 7%

(1.2) o =

respectively Thus to the above rotations correspond in the ©-pla-
ne the substitutions (1.2) which leave fixed (ABC) and take FAG
into FBE, FCH respectively. Hence together with the unit subs-
titution the substitutions (1.2) form a Group which is isomor-
phic to the Group of rotations of the triangle (ABC)« which ta-
ke B then C onto z=1 in such a way that these vertices would
correspond each time to t=0c by means of (1.1).

Next, to the reflections of these triangles in the real axis
correspond in order the points '

a

1—«,

Qi =

T a—1

Setting 1 — « = B we obtain again
b1 g _B—1

which transform FHA into FGB and FEC respectively. -
We thus arrive at the following definition.



236 C. ULUCAY

Definition. Two modular triangles (ABC)a, (ABC)a’ are
said 1o be equivalent if and only if @ and o' are related by one
of the above substitutions.

On the other hand two Modular triangles are said to be equi-
valent in the larger sense if and only if by means of a finite
number of reflections in the sides one obtains two Modular
triangles (ABC)a, (ABC)a’ which are equivalent.

1.3. Characterization of The Modular Triangles

(i) « is an interior point of (ABC). In this case z=0 is an
interior point of (ABC)a.

1. If « is on F, i.e., at the intersection of the lines which
divide (ABC) into six subtriangles, then the three sides of (ABC)z
are equal. In the sequel this very special triangle will be de-
noted by (ABC'r.

2. If « is on a line of division but is different from F then
(ABC)« has only two equal sides. ,

3. If for « neither one of the above cases hold then the
three sides of (ABC)« are unequal. .

(i) « is a boundary point of (ABC). In this case z=0 is on
the boundary of (ABC)..

1. a is on the line Rz =0. In this case z=0 is on the side

AB of (ABC)z. If ais above t=1i then the vertex C of (ABC)«

is on the arc of circle joining z=—1 and z=—i. If a is be-
low 5—1i, C is on the arc of circle joining z=—1i and z=1.
Finally if % coincides with t=i, C obviously coincides with
2=—1i. It is seen that in the last case (ABC)s has two sides

equal. This is in accordance with (i), 2. In short when a des-
cribes Rt=0 then C describes the lower- semi circle.

2. @ is on the upper semi circle |2t—1|=1. In this case
2z=0 is on the side BC of (ABC)«.

3. « is on the line Rt =1. In this case z=0 is on the side

CA of (ABC)e.

2. PARTI1

2.1. Introduction. The Constant € has been defined by Landau
who gave at the same time an upper estimate [1]. He obtained the
above value by mapping the modular triangle (ABC)g say, confor-
mally onto the straight equilateral triangle (T,):. Rademacher impro-
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ved Landau’s estimate by mapping (ABC)r conformally onto
(T.)i[2]. As a reason for this improvement he notices the full
symmetry of (ABC)r over (ABC)g.

The main object of this PART I is to prove Rademacher’s
conjecture. More precisely we shall solve the following extremal
problem.

Consider the subclass 2,C £ of normalized analytic functions
obtained by mapping conformally a Modular triangle inscribed
in the unit circle (K) onto the straight equilateral triangle (T);.
It is clear that it will suffice to consider only Modular triangles
such as (ABC)a. The problem consists in finding a triangle (ABC)
which yields the extremal function within the Class £,. Obviously
in place of (ABC) asa Function Space we may chose any (ABC)a,
say (ABC)s. Accordingly we replace a by {€(ABC)r. Then to
every { there corresponds a definite Modular triangle (ABC),

- save for an arbitrary rotation. To §=0 will correspond of course

(ABC)z. Let e
w=f)=z+

be the function which maps (ABC)r onto (T,);. Then the func-

tion which maps (AEC); conformally onto (T,), is given by

w= R+ | CA—LHz+--
The extremal problem consists therefore in finding the value
¢ for which |f*({)|(1 —|%5|?) is maximal. We shall show that
this expression is maximal for the single value {=0 In other

words if the Function Space is (ABC) then the extremal func-
tion is unique and corresponds to the point F € (ABC).

On the other hand if in place of (T,); we consider (T,); or
(T,); we arrive at the same result within the subclasses £,, 2s.
i.e., in each case the extremal function occurs if and only if «
is at F. ’

Finally designating by (Lg);, (Lr)s (LF)s the radii of the “ma-

ximal, circles circumscribed to (T,)y, (To)a (To)s respectively
it is found that

(Lr); < (Lp)p < (Lr)s.
This solves completely the extremal problem within the Class £.

2.2. The Mapping Function. Let (T,), be a straight equilate-
ral triangle in the w plane. The function w = f(z) which realizes
the conformal mapping of (ABC)« onto (T,); in such a way that
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the vertices correspond may be obtained as follows: | -

Let

w= P"/\E 5—213(1 _ E)‘2I3 d&
1) o

where 1| is the positive scale constant of (T,);, be the function
which maps 3¢>0 onto (T.),. Let k2= A(7)=E be the elliptic
modular function which maps (ABC) onto S>> 0. Finally let

T—da

z = =
T—a
{ be the substitution which maps (ABC) onto (ABC)«.
Combining these three transformations we obtain the requi-
red analytic function which maps conformally (ABCj« onto (T,)-
Clearly w = f(z) depends on the two parameters a and .
% As it is well known the mapping function can be continued
analysically by reflections in the sides of (ABC)a. The repeated
images of (ABC)x will just fill the unit circle (K), whereas the
corresponding repeated images of (T,); will build up an infini-
tely many sheeted (% Riemann surface over the w-plane in
which the vertices of (T,); and its reflections- form a regular
point lattice where all these vertices become branch points of
infinite order. Evidently the circumference of (K) is a natural
boundary for w = f(z). On the other hand the image of any
circle interior and concentric to (K) cannot cover any of the
branch points of the above Riemann surface over the w-plane.
Hence w = f(z) cannot cover a circle greater than the circle
circumscribed to (T,);.

2.3. Normalization. We now normalize the mapping by means
of the condition |f(0)|=1 and obtain the condition between «
and p as follows:

Let K and iK' be the quarter periods of the Jacobian ellip-
tic functions of modulus k. We have

(dw]dE)g — o = B(KH(1 — k%)) ~2"

_(diKKY =
(@5/dS)s = k2 = (“Tg—)g _ e SRR (—R)

(dz/dt)i—q = — i[(232)



ON THE BLOCH-LANDAU CONSTANTS 239

‘Carrying these expressions over into the identity
dw|dz = (dw/dE) (d&/d~) (d7/dz)

‘we obtain
_ 4
B== " 88aK? (R (1—K%))1B
But
K? =1 =2 I;Iol((l — g™ (1 4 q2n-1)®)
where
qzem‘al |(]|<1
and
1/3
(2 — s = 2C9"

101:(1 + ¢ )
together with the relation
B1(0] @) =8, (0 | 2) $5(0 | &) $,(0 | @)

and
= 10 | @)
II —g2n)i = D pr ]
n=1.(1 q ) 2(2q)”'3
the expression for | p| becomes simply
1

e = g T 0T

Denoting by (L), the radius of the circle in the w-plane
covered by w = f (z) we obtain after normalization

3% B(1/3, 1/2)

(23). L) = G8a 1570 [ ) |

which is a function of the position of a in (ABC).

2.4. Reduction of the Function Space. Fundamental Lemma.
The symmetry character of (T,), together with § 1.2 shows that
it will suffice to let vary « = u + iv in one of the six subtrian-
gular regions, say FAG. In other words (2.3) is invariant under
the substitutions.

- 1 o o—1 1
o->1—a, y = , y —
l—a’ 4.1 . @ o

Let (L@)1 be the radius of the circle corresponding to a point §
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1 1
on FA (u=1, v > 32/2). For any given v 3%/2 we consider
the ratio

(Lﬁ)l/d‘a)l E (_'_i—‘)" n g=¢e """ q

If we put
[1— g% |?=1—2¢" cos 2nnu + q:"
and make the change of variable u=; — u* we obtain

4q’" sin? nnu* \2
(LB\/(L )t - H (1 +( ) ( ) an)z =P2
or what is the same thing
. (1 4g’"=* sin®(2n — 1) nu*) (1 4q;" sin? 2nn:u*)‘
= (1 + gy (1 — gy

Because of the inequality

| sin 2nmu* | < 2n sin wa*
it is clear that
p (1 __4‘7?) sin? @) i (1 N 16n2qz"sinzrff)
o 1+ )" /= (1 —gq)")
For simplicity let us designate the first factor by 1 — @ and
the infinite product by i (1 + b..), so that the above inequa-

lity becomes

P=(l—a?) ﬁl(l + b3

1
Now it is immediately seen that for v =32/2 and & fortiori

1
for v> 322 a?/b. for n=1, is greater than 1 for all 0<u* < 3.
Hence

(1—a)(Q+b6)<l—a+b =1

The equality occurs if and only it u* = 0.
Thus

Pe(1—a+ &)1 (1+8))
n=2
Similarly (a® — b})/b; > 1, n=2. Hence
A—@—)A+b)=1—(2—b)+b=1
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and
P=(—a+ b+ b0+ 80)
In general
Sy=1—a +b+ byt + bn=1
and

Pac(l—at 4 b4 bt bp) T (1 82
For N — o we have
Pe1—a+ i?lbj,,é1

since by construction any partial sum Sy 1.

Obviously the equality, i. e, P =1 occurs if and only if
* —

We have thus shown that the “maximal, circle must neces-
sarily correspond to some point { on FA. We maintain that it
actually coincides with F. This is immediately seen by comparing

2T (1 + 45 (L —gqy)

v n=1 vﬁ,

o n—2 4n
qop (1 + gy ) (1 — a5,

u

(L) /(Le) =

In fact we remark that ¢ach factor (1 +qt"ﬁ—2) (1— q:“ﬁ) for
any positive n (i. e., for n=1 and a fortiori for n>>1) decreases
toward 1 as o increases from a certain value vy<<ur. Conse-

quently the infinite product

1+ g7 (1 —dsy)

n=s

decreases toward 1 from the value i 1+ qi';:z) 11— q:,';) as
: 1

1

v increases from v = vp = 3?/2. Hence
P quy ) (1 —qgy
w1 (1+ gy ) (1= q5y)

is less or equal to 1 and decreases steadily as v increases. On
the other hand

Y3, 13
vglTo, = 1
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1
and decreases in the same interval (v 3?/2).
Consequently (Lr);/(Lg); =<1 and the equality occurs if and

1
only if © =372, We collect the results in the Fundamental
Lemma stated as.

Theorem 2.4. In the Class 2, there exists a unique analytic
function w =f*z) =2z + --- which covers in the w-plane
the least maximal circle whose radius is

B(1'3, 1/3)
{2.49) (Le), = 3x | 9,75 (0 |/e1'r.il3) l

2.5. An expression for (2.4) in terms of I'-Function.

For u= (g = ig,) we have
| 370 1L o) |*P=2% q(l,/?'nlll(l — (ig0)™)*
"Put
S=T (1 —Ggn K1 —(—rgr
n= n=1
cor what is the same thing
S+ a0~ i)
Letting v =K’'/[K we have
nf;il(l — gy = Q=2 g k¥ kP K
and

i (14 gin—2) = 20 g5 (1 — kY= k=5 (1 + Ky
n=1

‘The product of these two infinite products gives S% Hence.
[ 92 | = 2a—2(1 — K')—"B LB LV (1 + k)P K?
and therefore
3TB(1/3, 1/3)
12k%3 k'%(1 + k') KK’

The expression in the denominator can be reduced further
by means of Landen’s transformation, viz ,

(Lﬂ)1 ==

’ —_\A’ s ’ —_ ’———l_m.
2K'/K=M'/M, 2K'=(14+m)M’, K=(14m)M, k—l+m
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Hence,

1
(2.5) (Le) = 3443 (mm’;)'® MM’

M in (2.5) we put M'/M =3% and compute the coniplete integ-
rals M and M’ in terms of I'-Function we get
1
(L), = 32I'(2/3) I*(1/3) T2 (1/6)
Numerically we have
(L), = .5432589. . .
Using the well known identity

F'(z2) T (1 — z) = n cosec nz

I'(2/3) can be calculated in terms of TI'(1/3) (just put z = 1/3

in the above identity). Replacing this value of TI'(2/3) in (Lg),
by the one in term of T (1/3) we obtain Rademacher’s formula.

2.6. Some Applications. The radius of a circle corresponding
#o a point @ on the side AB of (ABC) is easily seen to be

37x B(1/3, 1/3)

La) = SRR (Ry®

"To obtain the radius of the circle corresponding to G we put
K'/K=1 and k%= i. In terms of I'-Function it is
(Lo)y = 2 T3 (1/3) D=4 (1/4)

“This is the formula obtained by Landau. On the other hand
we know that

(LG)I = (LE)I = (LH)I

Hence putting in (2.3) a= i4il=0-1n e™’ and comparing
with the above formula we get
1, 1
| 9,0]272 e™y | = g—3/2277 3-38 [ —314 (2/3) T34 (1/3) T3 (1/4)

Similarly comparing the expression of (Lr), in terms of I'-Func-
tion with (2.4) we obtain

| 9(0 | exi®) | = n—s14 3-9/8 T=372(2/3) T2 (1/6)
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2.7. Solution of the Extremal Problem for the Cases-
(T,),, n=2,3. It is immediately obtained by Topological argu-
ments, i. e., let '

| w=fE@) =z
be the function which maps (ABC)r onto (T,';. We have for:
all CE(ABC)r

w=fC)+1COIA—=15)z+"--
which maps (ABC). onto (T,);. When normalized we have

(Lr),
G A — (5]

Similar arguments and expressions hold when the index 1 is-
replaced by n. Now, as (T,), is deformed continuously into-
(T.)., (Lg), goes over into (Lp), whereas | ()| (1 — 1¢12)
is deformed continuously into | f, (%) | (1 — |7 |%). Hence (L)

(L’;)l =

is mapped topologically onto (L;),. Hence the extremal function

within the Class £, corresponds to a single point in. (ABC)e.
To show that this point is F we may argue as follows. We
know that the totality of the radii (L;), remains unchanged say

under the rotation ¢ of (ABC)r through an angle of 120° round
the centre 7 =0. Consequently the totality of the radii (L)
must be also unchanged under a mapping ¢ of (ABC)r ontoitself
in which the corners are mapped onto the corners since infinite
radius must correspond to vertices, and also that ¢ is the trans-
formed of 7 under the deformation. Thus ¢ has a single fixed
point which is necessarily 7 == 0 since ¢ stands for a mapping
of the set of triangles (ABC), onto itself in which (ABC)r is-
mapped onto itself.

Finally it is clear that the minimum occurs for 1 =0 for,.
being uniquely determined it should occur at a point which must
be fixed under ¢.

We have shown at the same time that it will suffice to let
vary the parameter « in one of the six subtriangles.

We may verify this result analytically as follows. The elliptic
modular function £=k? = X (1) which maps (ABC) conformally
onto the upper half plane 3% >>0 turns the triangles FAG, FGB,.
FBE, FBC, FCH, FHA over into F*A*G* F*G*B*, F*B*E*,
F*B*C* F*C*H*, F*H*A* The boundary of these triangles-
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.consists of the real axis of the E.plane, the line RE=73 and the
apper semi circles of radius 1 and centre at £ =0, § = 1. We
may and shall suppose @ varying in FHC. The vertices F,C, H
.correspond in order to the vertices F*, C* H* with affixes

E=:+ l'3§1/2» E=o, E=—1 respectively.
Clearly, ’ :
(2.6.1) IAEIES

The equality occurs if and only if « ison FH or k. is on F*H¥*,
and ’

2 . 2
{2.6.2) =k > 11—k, |

‘The equality occurs if and only if « is at F.
Finally we may write

1

l—kia

1—k2

ki

3

K5
K:

1
an

Le)a __ %
(La)n M UF

-where for
n— 1, a; == bl = 3

n=2, ayg=0by=4
n=3,  a=6, b =3
For n=1 we know that
(Lr) _
. 1
Lok T

We ‘wish to show that it.is true for all n. In fact this follows
at once from (2.6.1) and (2.6.2), since '

1—k
1— kp

1
3

kZ

ke

11—k L

1— kr

2 1
K b
kF

1
an

By calculation it is found that
T (Lr)y < (Lr)y < (L)
thus solving uniquely the extremal problem.

Our next goal is to establish similar results when Modular
triangles are replaced by Schwarz’ triangles.
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3. PART Il

. 8.1, A Generalization of Schwarz’ Lemma. The Classicalt
Schwarz’ Lemma has been generalized by L. Ahlfors [¥] to-
analytic functions w = f(z) from [z| << 1 to a Riemann surface
R with a Riemannian metric ds = X | dw | of negative curvature:
= —4 at every point wER. Here ) is a positive function of
Class C, depending on the local complex parameter © in such
a way that ds remains invariant.

More recently Schwarz’ Lemma has been generalized by Z,
Nehari [*] to non uniform functions w = f(z) analytic in |z|<<1
except for branch points of finite brder with [f(z) | =<1 for alk
determinations f(z). ;

By combining these two results i. e., releasing the last con-
dition one obtains a generalization such as stated below.

Lemma. Let w={f(2) be analytic in | z| <1 except for
branch point of finite order and satisfying the following condi-
tions (i) f'(z2} << in |z| <1, (ii) at every point.of the Riemann
surface generated by w is defined a Riemannian metric
ds = X |dw| with a Gaussian curvature < — 4. Now if do, is
the hyperbolic metric of | z| <<1 then

ds < do,

The proof is based essentially on a method of proof due to-
‘Ahlfors and offers no difficulty in adapting it to the present
case,

In fact if we add the condition | f(z) | <1 for all deter-
minations f(z) and replace ds =21 |do| by the hyperbolic
metric do, of | w | <<1 we still have

do, < do,

Here the equality holds if and only if -f(z) = €%z, § real.

It is in this form that the Lemma will be used in the solution:
of the extremal problem. Later we shall give a direct proof of
the solution.

3.2. The Solution of the Extremal Problem. Let (ABC),;
with corresponding angles n/p, ©t/q, n/r respectively, be a Schwarz”
triangle containing z =0, say in its interior and which is map-
ped by
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[U:f(z)—_—_z-l.-.- .
conformally onto (T,);. Then for all L€ (ABC), we have

(3.2.1) w=f(7) + g_zz_}_ ee.

~where ds=|dw| and do is the hyperbolic metric of |{|<C1.
Let p* ¢* r* be another set of integers and (A*B*C*), be
the conformal map of (ABC), in which vertices with the same
letter and the origin correspond Hence for a {* which is the
image of T (3.2.1) can be written as '

w = ) + 55 e

Now assuming p* > p, ¢* > ¢, r* > r we have by the pre-
vious Lemma ‘ '

(3.2.2) do

— =

do* =1

where the equality holds if and only if p=p* q=gq* r=r*
Hence we may state this first result as.

Theorem 3.2.1, The extremal function is in the Class deter-
mined by the normalized functions which map an equiangular
Schwarz’ triangle with interior angles equal to %/6 onto (T).

The theorem says that the extremal function belongs to the
Class of normalized analytic functions whose Riemann surfaces
possess branch points of least order. ’

Finally because of the symmetry character of the above ar-
gument there is a one to one correspondence between the radii
(B); and (Bgs); of the circles circumscribed to (T,); and cove-
red univalently by the values of the corresponding normalized
functions.

In fact in the conformal mapping of (ABC), onto (A*B*C¥),
let e€ (ABC), and e*€ (A*B*C*), be the set of points such that
at these points
(32.3) do __ do

do* ~ da¥

Let ACe be the set of points such that after normalization
each corresponding radius is equal to (Bo);. Thus
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ds__d_sn

(3.2.9) =

On the other hand if A*C e* is the image of £, (T,), remaining
fixed in this mapping, we have
(3.2.5) ds* =ds, ds¥=ds,
Hence (3.2.3) together with (3.2.5) can be written as
ds/[ds _ ds,/ds,
ds¥[ds* — dsy|(dsy
Because of (3.2.4) we have
ds* __ds;
do* ~ dsy
which means that after normalization, radii corresponding to
points of A* are equal.
Hence making p=g¢=r= o and comparing the associated
Modular triangle with the ®/6 equiangular Schwarz’ triangle the
one to one correspondence between the radii (L¢»); and (Bek

just obtained yields the final result, i.e..

Theorem 3.2.2. The extremal function within the Class B, is
unique and corresponds to the m/6 equiangular equilateral. Sch-
warz’ triangle.

Analoguous results hold when (T,); is replaced by (Tgo)
(T,);- In each case the extremal function is unique and is de-
termined by mapping conformally the equilateral Modular triang-
le onto the Schwarz’ triangle yielded by the analogue of Theo-
rem 3.2.1 in such a way that the origins correspond.

Numeral comparison solves completely the extremal problem
stated for the case of a Schwarz’ triangle. ’

Note that the present solution together with the results ob-
tained on Bloch functions [5] ®) give a partial answer to the
conjecture made by Abhlfors and Grunsky [¢].

(1) There follows evidently that a Bloch function of the first or second
" kind is an Automorphic function (Fuchsoid). Accordingly the size B or £
must be unaltered under the Group of Conformal maps of the associated
Riemann surface onto itself. It will be shown in a subsequent paper that this
is possible whenever the group of the Conformal maps is generated by
the repeated symmetries of a triangle (To)a, n=1, 2, 3, with respect to '
the sides, thereby yielding in conjunction with the present work the exact
wvalues of these constants.

9
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3.3. Second Proof. In this section we are going to give a
direct proof of (3.2.2). More precisely we shall prove the Lemma
for the particular case of a function which maps conformally
“a Schwarz’ triangle onto another with suitably chosen interior
angles,

 Let be given in the unit circle (K) two Schwarz’ triangles
(ABC), (A’'B’'C’) with interior angles

P q r

and
LI
p ’ q b r'

respectively such that
r>r

By means of two non Euclidean displacements the triangles
(ABC), (A’B'C’) can be replaced by (obc), (0'b'c’) in such a way
that the angles at o coincide and ob, oc are colinear with ob’,
oc’ respectively. An elementary geometrical consideration shows
that the third side bc with a bigger angle m/r at ¢ will be, ex-
cept for the end points, completely inside the triangle (0b'c’).

Let
(3.3.1) z=1{(z")
be the function which maps conformally (0b’c’) onto (obc) with
the vertices o, &', ¢’ corresponding to o, b, ¢ respectively. By means
of repeated reflections in the sides of the triangles round the
origin we obtain two regions F and F’ such that F is comple-
tely inside F’. On the other hand because of Schwarz’ Principle
of symmetry (3.3 1) maps F’ conformally onto F.

The origin being a fixed point in this transformation we have
(see e.g., Principes géometriques d’analyse, 1930 by G. Julia)

(3.3.2) lM‘ﬂQ¢=a<l
20| #
We may now prove
Lemma 1. Let z=¢(2’) and #' > r then
D(o, z) < D(o, 2')
The #quality holds if and only if F' =7r. =
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Proof. Let (0bc) and (ob'c’) be any two neighbouring triang-

"les with "= r -+ ¢ & > 0. Consider two corresponding points

¢, %" on the corresponding sides &c, b’c’. It is clear that for ¢
sufficiently small

. 1sl<<ivl.

Hence the inequality holds for the sides b¢c, &'¢c’ of any two
such triangles whenever ' > r,

Now, §(z’)/2z" is analytic in F’ except perhapsat z’' = 0. But
because of (3.3.2) the origin is a removable singularity. Hence
$(2)/z" is analytic in the interior of F’ without exception. Since
| $(2")/z"1 <<1 on the boundary of F’ it follows by the Maximum
Principle that it is true in the interior. Hence |z|<C|z’], or in
terms of non euclidean distances,

. D (o0,2) < D(o,2')
Obviously D(o, z) = D(o, 2} if and only if r=1/r
" Lemma 2. Let z and z be any two corresponding points
under z=1{(z') with do’ and do as the values of the hyperbo-

lic métric of the unit circle at these points respectively. Then
for r" > r. '

ds =< dd’
The wmequality holds if and only if r’ = r.
Proof. By Lemma 1

1+|z[41+|z'{

1—|z|] 71—z
Hence
1 1+ |z| 1 1__4"lzl‘
slog 3— 2] = ?l°g1 -y

Along the radial Vpath 0—z

%logu'_ﬂ—_ / ds

1‘|Z|_ 0o—z

f dcé/ do’
0o—z J o—z’

. ’ e . -
But if the arc o — 2z’ is, say, the image of 0 — z, then clearly

Hence



ON THE BLOCH-LANDAU CONSTANTS 251

o — 2z
Hence
[do= [ a
Jo—z Jo—2z
But then it is well known that
ds < do’,

Lemma 2 may now be extended to the general case
PP>p, ¢ >q, r>r

by repeated applications to a chain of mappings as follows.

Let

T
-,
P
T
R ’
P

‘tl:l \’::l

be the interior angles of two intermediary Schwarz’ triangles.
The chain of conformal mappings I, IL, Il of cne Schwarz’ triang-
le onto another is indicated schematically below.

nomo® .
l pr qr r/ 3
T m ®
nl P q r
LA ]
mw, » g r
l“ LI
p g r

We have successively,

doy < dsy, doy<do, doy< doy,
Hence

doy < doy
which was the assertion.

Since the hyperbolic metric is invariant with respect to re-
flections it follows that the above inequality holds when the
mapping is extended by reflections to the whole unit circle.
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