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On The Constant €.
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Ozet.: © sabiti hakkinda. 1929 da Landau < U egitsizligini ispat
etmistir. Evvelki bir yazida bir € sabiti tarif ederek bu egitsizligi, muhtemel
bir egitligi ihtiva eden bir egitsizlikle takviye ettik. Béylelikle U nin isldh
edilmis yeni bir alt simin1 tarif edilmig oldu. Simdiki yazida Bloch fonksiyon-
larin: benzeri olan bir ekstremal fonksiyonun varlign. géstetildikten sonra € nin
bir iist simiri verilmektedir. Bu sinir1 temin eden analitik fonksiyon, simetri
bakimindan Ahlfors-Grunsky ve Rademacherin tetkik etmig olduklari misal-
lerin benzeridir. Bu sebepten dolayr bu miielliflerin B ve £ hakkindaki tah-
mialeri aynen € ye tegmil edilebilir.

1. In 1929 Landau proved the inequality 8 << [']. We wish
however to obtain an inequality with a possible equality. In this
direction we have defined in [?] a constant € based on the ge-
neral results obtained in [*] and [?] about Bloch functions intreo-
duced by R. M. Robinson [¢]. Thus a better lower bound is
defined for U. In fact it was natural to introduce the constant
@€ since the associated . Riemann surface stands always «<some-
where> between a Bloch function of the second and third kind.
We recall first the definition of €. Afterward we shall obtain
an upper estimate for €. In the selection of the example yielding
this bound we have been guided mainly by the Theorem on
the existence of a Typical extremal function similar to a Bloch
funetion.

-
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Definition. We consider the subclass N of normalized ana-
lytic functions w = f(z) =z + --- defined in the unit circle
K such that the corresponding maps R are the universal covering
surfaces of planes slit along analytic arcs with a diameter bounded
away from zero by b5>0, say. It is clear that for all these
functions f'(z) %<0 in K. Now the totality of these analytic
functions falls into two classes. If the fundamental group of the
slit plane @ is not the unit element then to every interior point
of Q correspond in K more than one point, exactly a denume-
rable infinity. In this case we say that w = f(z) belongs to
the class C. Then € is defined as the minimum of the numbers
¢ = ¢'(f) where G’ is the upper bound of the radii of all
circles contained in the slit plane Q- € depends on the lower
bound b.

Functions associated to the number € are called extremals.
If on the contrary the Fundamental Group of Q is the unit ele-
ment then to every interior point of Q corresponds in K a
single point. i. e., w = f(z) is schlicht in K. In this case we
say that w = f(z) belongs to the class S. Then & is defined
as the minimum of the numbers & = &'(f) where ©& is the
upper bound of the radii of ‘all circles contained in the slit
plane Q

We have shown that for any b

P<e=6=2

2. For afixed b we wish to show the existence of a Typical
extremal function f=24 ... analytic in K such that the
corresponding map is a slit plane which does not contain any
circle of radius greater than ¢.

By definition of ¢ to every &£>>0 there exists a function
fEC whose values do not completely fill the interior of any
circle of radius ¢ + £. Hence for every integer n>0 we can
choose a function f, € C whose values do no completely fill the
interior of any circle of radius ¢ + 1/n and which satisfies the
inequality (E. Landau, loc. eit. p. 618, or R. M. Robinson, loc.
cit. p. 454) ‘

!f;.(z)]él—_T_zl—, for lz] <1

Hence the sequence {fa(2)} is normal in K. Therefore there

-
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exists in {f, ()} a subsequence {f,,p(z)} which converges uni-
formly in K to the analytic function f(2) =z + ---. Exactly
as in the case of Bloch functions (R. M. Robinson, loc. cit.) it
can be shown that the map of f(z) cannot contain any circle

of radius greater than . Clearly the limiting function is in the
Class N,

One can arrive at the same result by defining a larger Class..
e. g. we may consider all normalized analytic functions defined
in K such that the corresponding Riemann surfaces are without
inner branch points and with boundary consisting of continua
with a diameter bounded away from zero. Using same definitions
and notations, the proof of the existence of a Typical extremal
function is the same as before except that the map of the
limiting function f is the universal covering surface of a slit
plane is no longer evident. In this case one may apply the
proof for a Bloch function of the first or second kind [?] except
that for sufficiently smooth boundary arc it must be replaced
by the following one. Suppose R possesses boundary arc vy
which is sufficiently smooth to allow a circle of radius ¢ to
roll along it inside R. There will be no loss of generality by
assuming ¥ non analytic. In this case there exists a neighbour-
hood N, inside R such that (i) part of the boundary of N;
consists of a subarc of y (ii) a branch of the inverse function
is analytic in N;. If n; is the image of N; under this branch
then the Theorem of Carathéodory on the one toone corres-
~ pondence between points of Jordan boundary arcs can be applied
to these regions. But then N; is continuable univalently beyond
R just in the same way as for the schlicht case, thus yielding
the desired contradiction [?].

Note that the proof reduces to the proof for the schlicht
case when R is reduced to a single sheet. i. e., it makes no
difference between schlicht and non schlicht case. On the other
hand because of its simplicity and generality this proof can re-
place advantageously the one given for Bloch functions of the
first and second kind [?] but not conversely.

If fEC then f is called a Bloch function of the first type
(not to be confused with Bloch functions of the first or second
kind introduced by R. M. Robinson). If /&S then f is called a
Bloch function of the second type. '
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Obviously f is schlicht in case for every n f,(z) is schlicht
in K. On the other band for functions f,(z) not schlicht in K
it is not known whether the limiting function f is of the first
or second type or if there exist limiting functions f which are
Bloch functions of both types. But if f is of the second type
then again it coincides with a Bloch function of the third kind.

In what follows we let b vary. In other words we are inte-
rested in the g. . b. ¢ for 5>0.

3. Now we wish to obtain an upper estimate for ¢ (see end
of §2). We consider in the z-plane the circular polygon P:
GAG’EBE'FCF’, where G’E, E'F, F'G and GAG/, EBE’, FCF’
are arcs of circle orthogonal and belonging to the circumference
of the unit circle | z| << 1 respectively. The points A, B, C
have for affixes, say, z=—1, e "/3. e%/3 Moreover P is
symmetric with respect to the axes OA, OB, OC and is thus
circumscribed to the concentric circle of radius s

Fig. 1

S <<s<1

where s; is the radius of the circle inscribed in the zero-angled
circular triangle ABC, fig. 1.

Next we consider in the w-plane a straight equilateral triangle
T. Let e, f, g denote the vertices and o the centre of T. Consider
the cuts ga, eb, fc half way along the radii og, oe, of. We
shall see that s can be fixed uniquely in a conformal mapping
of P onto the given slit triangle. In this mapping the arc, say,
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GAG’ goes over into the slit ga as indicated by the arrows in
fig. 2. The function thus obtained can be continued analytically
across the sides of P by means of Schwarz’ principle of reflec-
_tion. In fact the repeated reflections of P 'n the sides interior
to the unit circle just fill the unit circle, whereas the correspon-
ding images in the plane obtaired by reflections in the sides
of T will build up a Riemann surface with infinitely many sheets.
Clearly the slit plane @ covered by the Riemann surface cannot
contain circles of radius greater than the radius of the circle ins-
cribed in T. Thusitis seen that our example belongs to the class
C and has the properties of a Bloch function of the first type.
Let 2% be the radius of these circles. It remains to evaluate 2*
which we do in the following sections.

4. Let x == x(z) be the function which maps P conformally
onto the unit circle with centre at the origin such that A, B,C
go over into x=—1, e /3 ¢mil3

Let
y=% kW®  k(x)=

respectively.

X 4
a=xr P axm
be the function which maps | x| <1 conformally onto |y|<<1
with three equal cuts along the three equidistant rays issued
from the origin such that one of the cuts extends from y=—1
to a point whose distance from the origin is r1/3[%].

Let

__t—a

be the linear substitution which transforms the slit circle
ly|<<1 into the slit upper half {-plane. Finally

&
w =— Kfc—zw(c' _])—213 dc

will transform the slit half {-plane into the slit equilateral tri-
angle. Once the parameters p and s are fixed suitably it will
suffice to combine these special mappings in order to obtain
the required function.

Lemma 1. p = §/9.
Proof. Let us consider the integral
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(]) v :/ §—3/3 (C — 1)—’/3 dc
Differentiating (1) with respect to { we obtain
@ (o = g3 (1 — O
We put as usually ’
3) - df/dv = x*
(here x has not the same meaning as in the beginning of § 4).
" Then (2) becomes
” =0+ x=0

We consider the root

4) g1

_*+l(4 3_1)%,°
g T g U

determined by the conditions. x =0, T =0
Differentiating (4) and then taking account of (3) we have

d (v/3i) = dx[(4x® — 1)%

Putting = v/3i we have

X
f dx
u == —
o (4x®— 1)2

whose inverse function is

x = Pu
with
P2(u) =4P(@u) —1
and which corresponds to the well known equiharmonic case,
finally we can write (4) as

) Czé‘*“;‘P'(u)i or C=}2—+%(4P3u—~1)%i

It maps conformally an equilateral triangle with the vertex at
the origin u = 0 corresponding to { = © onto the upper-half
{-plane, the other vertices correspond of course to { =0 and 1
respectively. The real half period w, of Pu being the height oh
of the equilateral triangle, the image M on R{ = —;— of the
point m where om = 0A/3, has for affixe ’
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1 1 ., ,
CM‘:7 +5 P (wy/3) i
On the other hand
s —a
y - c__a »

1
where a = —21— -+ % 3%i, transforms the upper half {-plane into

the unit circle such that L=, 0,1 go over into

y=1, B, i
respectively. The image p of M is then on the real positive
axis with the affixe

We may now put Op = r'3, where 0O is the centre of the unit
circle. We have

s P (wy3) =3

(6) i
P’ (0y/3) +3°

We wish to show that r = —;— . We notice, by (5), that

P(20y/3) = 1

Taking account of »

' (e —ey) (e — e3)
P(u) €y

P(u +- vy) = €3 +

and replacing the unknowns by their values

u = — /3
and
e27il3 1 e—27i/8
a=FE e=pE =g
we obtain ;
- —w,/3) — _ 1

(7) ’ P( ' (\)2/3)1‘—- P(m2/3) — Ql—lii_:i ;
It suffices to write (6) as ;

) , 1 4 By
(6) P (m,/s)zs(l—:m)
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to see, when compared with (7), that r _—..L is the required

2
root. Consequently p = 8/9 which had to be shown.
I1(1/3) . ldz | .
¥ o T AT . = | —-— -
Lemma 2. 2% = 23T (23) C wher_e C dx |, is a po

sitive constant less than 1.
Proof. Denoting the vertices of T corresponding to {=0,1, «
by w,, w,, wy respectively the mapping function can be written as

w = K/ £=208 (L — 1)=28 dl + w,
4

Hence
1,
K [0 — 10704 = w— wy
4]
Consequently
_ |we—wy |
‘K]‘B 11
(33
Tience

| dw|dt |rep=| K | = 6.37% T=2(1/3) I'(2/3) £*
On the other hand .
| dyjdx |y = p'%, | dtfdy, =3}
Taking account of the identity
dw _ dv dtdy d
dz dt dydx dz
we get after putting | dwidz |,_o=1

gr_ Co1201j3)
4 - 3181 (2/3)
where C = [ dz[dx ;.
The theorem now follows since z = z(x) fulfils all the con
ditions of Schwarz’ Lemma assoon as we dispose of the positive
scale constant C soas to make the circle unity, i. e, |2z ] <<1.

5. Consider on the circumference | x| =1 the points
G, A, G}, E, B, E, F}, C,, F], where F,, F, say, are symmet-
rical with respect to C, whose affixe is e™/3, the affixes of A,
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and B, being —1 and e~™/8 respectively. Let a=e'V, 0<<y<<a/3,
designate the affixe of F;. Those of G, and E, are €a and £2a
where 1, ¢, €% are the roots of unity. The affixes of E[, F], G]
will be the conjugates of the affixes of F,, E,, G; respectively,
i. e., @ €a, €%a.

Theorem. z = z(x) satisfies the differential equation

2 (cos 3y—cos ) x*+(cos 61+
+4 cos 3y cos Y—5) x3+2(cos 3y—cos )
(x®*—2x3 cos 3y+ 1)?

{zxp =3(1—a?)x-

where {z, x} is the well known Schwarzian derivative, @ = L .

2
Proof. In the conformal mapping of P, inscribed in the circle
|z] <1, onto | x| <C1 (the arcs of circle GE, E'F, F'G are
not necessarily orthogonal to the unit circle) the points G,, A,
G},..., F correspond to G, A, G’,..., F’ respectively. Conse-
quently the corresponding differential equation is

® o= % (1—e?) [(x—a)~? + (x—ea)2 + (x—e%a)—*

+ (x—a)y 4 (x—e?a) 2 -+ (x—¢ea@)~?]
+ hf(x—a) + hol(x—ea) + hyf(x—s%)
+ ho/(x—a) + hs/(x —€2a) + he/(x— &)
with the conditions
h+h+- -+ h=0
a (h+-Ehy+8%hy) + @ (hy+E3hst-ehg) = — 3 (1—a?)
a? (h-+8"hy+8hy) + @ (hy+ ehs+8%he) = 0 |

In addition to these conditions we must have the following
symmetry conditions

71—4=h
Z5=h2
Z(;:hg

hy=¢*h, ~ hyg=-c¢h ,
Finally in the limit case y=0(a—>1), z=2z(x) becomes
z = Cx, where C is a constant. But

{Cx, xp=0
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Hence the second member in (8) must be identically zero. This
implies

; h+h=0

Hence for. 0 < ¢ << n/3 we obtain
2

h— at—1

a—a

Taking account of the symmetry conditions and putting this
value in (8) we obtain the Theorem. Now if we put y=—1
in the equation of section 4 we find for p = 8/9

We set

cosB=—79,  sinh=4-2%9
with @ /2<<0<m Consequently the argument of a is y=26/3.
Setting o =% we obtain the required differential equation in

this particular case. Numerically it can be written as

) 1 9 (815+126) x+(1266+388) x*+(816+126)x"
glat=—3% 81+ 252x3+ 3580+ 252471 81 x1

where
b=2cosy=1-3634
For short, (9) is of the form

1 N Byx +Bxt+Byx7
2 o xp = A+ A3+ Agx® 4 Agx®+ Agx'?

6. Consider the differential equation
0"+ F(x)06=0

where F (x) is the right member of the equation (9). In fact we
have

(Ao tAgr®+Agx®+Agx®+Apx'?) 0" + (Bix+Byx'-+B1x") 0 =0
Setting in it a series of the form
9 - 00+Clx+02x2+ e

we find for the general integral an expression of the form
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6= 0060 + 0191

where ¢, and .c; are now two arbitrary constants.
The two particular solutions are of the form

O =14 cpx® +eex*4 - -~
0, = x + cuxt + X7+ - - ;
~ which are valid in the neighbourhood of the origin and whose

coefficients can be calculated step by step by means of the
- recurrence formula

(p—1) pcrAgt (p—3) (p—4) cr—5A5+(p—T7) (p—6) cp—As
(10) +(p—10) (p—9) cp—A3+(p—13) (p—12) cp -12A¢
+¢p—gBi+cp— Byt cp—oB, = 0,
where p=3n for 6, and p=3n+41 for 8, n=1, 2, ...
Now, it can be easily verified that 6,/6, is a solution of (9).

Hence the required mapping function up to an arbitrary
scale constant C is given by

‘ 1 4+ cgx x4+ -
== e ==
(1) 2 =0:/% ¥ Ty F oo+ -

The series (11) converges absolutely and uniformly in the inte-
rior of the unit circle | x | << 1. Moreover by a Theorem due
to Féjer it converges at the point x= —1. (see e. g. G, Julia,
Legons sur la représentation conforme des aires multiplement
connexes, 1934, p. 35.). Thus C can be determined by the con-
dition z(—1) = — 1. We find C=0.70. and consequently

g. L b. &< 8* = 0.64.

Example of the same type has been considered successively
by Ahlfors and Grunsky [®] and Rademacher[’] for B and £
respectively. For reason of symmetry it is very likely that 2*
is the exact value.
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