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On The Constant S.

by C. ULUÇAY

(Institute of Mathematics of Ankara Universitg)

Özet. sabin hakkında. 1929 da Landau 2 < Ul eşitsizliğini ispat 
etmiştir. Evvelki bir yazıda bir S sabiti tarif ederek bu eşitsizliği, muhtemel 
bir eşitliği ihtiva eden bir eşitsizlikle takviye ettik. Böylelikle 31 nın İslah 
edilmiş yeni bir alt sınırı tarif edilmiş oldu. Şimdiki yazida Bloch fonksiyon­
ların benzeri olan bir ekstremal fonksiyonun varlığı, gösterildikten sonra (S nın
bir üst sının verilmektedir. Bu sınırı temin eden analitik fonksiyon, simetri
bakımından Ahlfors-Grunsky ve Rademacher in tetkik etmiş oldukları misâl-
lerin benzeridir. Bu sebepten dolayı bu müelliflerin ve 
minleri aynen (S ye teşmil edilebilir.

& hakkındaki tah-

1. In 1929 Landau proved the inequality 8 31 [']. We wish
however to obtain an inequality with a possible equality. In this
direction we have defined in [^] a constant S based on the ge­
neral results obtained in [’] and [®] about Bloch functions intro-
duced by R. M. Robınson [<]. Thus a better Iower bound is
defined for 31. In fact it was natural to introduce .the constant 
S since the associated Riemann surface stands always «some-
where> between a Bloch function o{ the second and third kind.
We recall first the definition of S. Afterward we shall obtain 
an upper estimate for £. İn the selection of the example yielding
this bound we have been guided mainly by the Theorem on
the existence of a Typical extrenıal function sitnilar to a Bloch 
function.
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Definition. We consider the subclass N of normalized ana-
lytic functions =■ = z + ■■ ■
K such that the corresponding- maps R

defined in the unit circle 
are the universal covering

surfaces of planes slit along- analytic arcs with a diameter bounded
away from zero by b 0, say. It is clear that for ali these
functions in K. Now the totality of these analytic
functions falls into two classes If the fundamental group of the 
slit plane £2 is not the unit element then to every interior point
of Q correspond in K more than one point, exactly a denume-
rable infinity. İn this case we say that w = f (z) belongs to 
the class C. Then S is defined as the minimum of the numbers 
S' = (/) where (i' is the upper bound of the radii of ali
circles contained in the slit plane Q- S depends on the lower 
bound b.

Functions associated to the number S are called extremals. 
If on the contrary the Fundamental Group of £2 is the unit ele­
ment then to every interior point of £2 corresponds in K a 
single point. i. e., w = f{z} is schlicht in K. İn this case we 
say that w ~ /(z) belongs to the class S. Then © is defined 
as the minimum of the numbers ©'= ©'(/) where S' is the
upper bound of the radü of ali circles contained in 
plane Q

We have shown that for any b

the slit

S S = 21
2. For a fixed b wish to show the existence of a Typical

extremal function f — z • analytic in K such that the
corresponding map is
circle of radius greater than £. 

By definition of c to every

a slit plane which does not contain any

£ 0 there exists a function
/6C whose values do not completely fiil the interior of any
circle of radius S + £. Hence for every integer n 0 we can
choose a function G C whose values do no completely fiil the
interior of any circle of radius S+l/n and which satisfies the 
inequality (E. Landau, loc. eit. p. 618, or R. M. Robinson, loc. 
cit. p. 454)

ı/;wı^ 1
1- I z I a for I I 1.

Hence the sequence (z)^ is normal in K. Therefore there
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exists in (z)^ a subsequence which converges uni-
formly in 
as in the

K to the analytic function / (z) = z -t- ■ • •. Exactly 
case of Bloch functions (R. M. Robinson, loc. cit.) it

can be shown that the map of / (z) cannot contain any circle 
of radius greater than S. Clearly the limiting function is in the 
Class N,

One can arrive at the same result by defining a larger Class.
e. g. we may consider ali normalized analytic functions defined 
in K such that the corresponding Riemann surfaces are without 
inner branch points and with boundary consisting of continua
with a diameter bounded away from zero. Using same definitiöns
and notations, the proof of the existence öf a Typical extremal
function is the same as before except that the map of the
limiting function f is the universal covering surface of a slit
plane is no longer evident. In this case One may apply the
proof for a Bloch function of the first or second kind P]except
that for sufficiently smooth boundary arc it must be replaced
by the following one. Suppose R possesses boundary arc y
which is sufficiently smooth to allow a circle o.f radius 6 to
roll along it inside R. There will be no loss of generality by
assuming y non analytic. İn this case there exists a neighbour-
hood Nj inside R such that (i) part of the boundary of N,-
consists of a subarc of y (ii) a branch of the inverse function
is analytic in N,-. If Tif is the image of N,- under this branch
then the Theorem of Caratheodory on the one to one corres-
pondence between points of Jordan boundary arcs can be applied 
to these regions. But then N,- is continuable univalently beyond 
R just in the same way as for the schlicht case, thus yielding 
the desired contradiction

Note that the proof reduces to the proof for the schlicht
case when R is reduced to a single sheet. i. e., it makes no
difference between schlicht and nOn schlicht case. On the other 
hand because of its simplicity and generality this proof can re- 
place advantageously the one given for Bloch functions of the 
first and second kind [^] but not conversely.

If /GC then / is called a Bloch function of the first type
(not to be confused with Bloch functions of the first or second 
kind introduced by R. M. Robinson). If / G S then f is called a 
Bloch function of the second type.
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Obviously f is schlicht in case for every n is schlicht 
in K. On the other hand for functions not schlicht in K
it is not known whe,ther the limiting function f is of the first 
or second type or if there exist limiting functions / which are 
Bloch functions of both types. But if / is of the second type
then again it coincides with a Bloch function of the third kind.

In what follows we let b vary. In other words we are inte- 
rested in the g. 1. b. S for 6;

3 Now we wish to obtain
>0.
an upper estimate for S (see end

of § 2). We consider in the z-plane the circular polygon P : 
GAG'EBE'FCF', where G'E, ET, F'G and GAG', EBE', FCF' 
are arcs of circle orthogonal and belonging to the circumference
of the unit circle ) z 1 1 respectively. The points A, B, C
have for affixes, say, z = — 1, e Moreover P is
symmetric with respect to the axes OA, OB, OC and is thus 
circumscribed to the concentric circle of radius s

s

Fi?- 2

F

E

Fig. 1

C

O

&'

«o
where Sg is the radius of the circle inscribed in the zero-angled 
circular triangle ABC, fig. 1.

Next we consider in the wplane a straight equilateral triangle 
T. Let e, /, g denote the vertices and o the centre of T. Consider 
the cuts ga, eb, fc half way along the radii og, oe, of. We 
shall see that s can be fixed uniquely in a conformal mapping 
of P onto the given slit triangle. In this mapping the arc, say,
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GAG' goes över
fig. 2. The function thus obtained

into the slit ga as indicated by the arrows in
can be continued analytically

across the sides of P by means of Schwarz’ principle of reflec- 
tion. In fact the repeated reflections of P n the sides interior 
to the unit circle just fiil the unit circle, whereas the correspon- 
ding itnages in the plane obtained by reflections in the sides
of T will build up a Riemartn surface with infinitely raany sheets.
Clearly the slit plane Q covered by the Riemann surface cannot 
contain circles of radius greater than the radius of the circle ins­
cribed in T. Thus it is seen that our example belongs to the class
C and has the properties of a Bloch function of the first type.
Let 2* be the radius of these circles. It remains to evaluate 2* 
which we do in the following sections.

4. Let X —- x(z) be the function which maps P conformally 
onto the unit circle with centre at the origin such that A, B, C
go över into 

Let
X = — 1, g— sti/S respectively.

y = -{4-> X
(1 - ’ p

4r
(1 + rr

be the function which maps | x | 1 conformally onto | i] | < 1
with three equal cuts along the three equidistant rays issued 
from the origin such that one of the cuts extends from g=—1 
to a point whose distance from the origin is

Let

= Ç-5
be the linear substitution which transforms the slit circle

1 into the slit upper half Ç-planet Finally 
ç

w -t)-1-2/3 JÇ

a

will transform the slit half Ç-pIane into the slit equilateral tri-
aftgle. Önce the parameters p and s are fixed suitably it will
suffice to combine these special mappings in order to obtain 
the tequired function.

Leinma 1. p = 8/9.
Proof. Let us consider the integral
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(1) V = / (Ç -1)-»'’ t/ç

Differentiating (1) with respect to Ç we obtain
(rfÇ/Jv)’ = Ç» (1 - Ç)^

We put as usually 
(3) d^ldv = X*
(here X has not the same meaning as in the beginning of §4). 

Then (2) becomes
r - ç + = 0

We consider the root
1(4) •r ___S — y -t- 1(4x3-1)5/

determined by the conditions x = 0, : = o
Differentiating (4) and then taking account of (3) we have

Putting u = vjSi
</ (vl3i) = dxl(4x^ — 1)^ 
we have

a =
00

«/x
(4x3 _ 1)1

whose inverse function is

X == Pu 
with

p'2 (a) z= 4 p’ («) — 1
and which corresponds to the well known equiharmonic 
finally we can write (4) as

case,

(5)
1

Ç = y + y2 or = 1 + 1(4 P3«-I)5f1

It maps conformally an
the origin

equilateral triangle with the vertex at
w = 0 corresponding to Ç = 00 onto the upper half

Ç-plane, the other vertices correspond of course to Ç=0 and 1 
respectively. The real half period 0)2 of Pu being the height oh
of the equilateral triangle, the image M on RÇ = 1 

point m where oın = ohl3, has for affixe

of the
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y T
On the other hand

Z/ == Ç-5’

where
1

~ fh® upper half Ç-plane into
the unit circle such that Ç — oo, 0, 1 go över into

e -2T^i/S

respectively. The image p of M is then on the real positive 
axls wlth the affixe

a

We may now put Op = where 0 is the centre of the unit 
circle. We have

(6) r'l^ =
P7a)2/3) -3^

P'+3^-

wish to show that r = ~ • We notice, by (5), that

p{2w,/3) = 1
Taking account of

H- <^2) = «2 + (eş — eı) (e^ — 63) 
P{«) —e2

and replacing the unknoWns by their values
« =

and
— (»2/3

ej = '2^13 ’ 62 =
1

22/8’ es =
g— 2-üij^

we obtain

(7) P(—«»2/3) = P(^2İ3) = 1
—1

It suffices to write (6) as

(6)' P'(^2İ3)=3[ 1 + r^'^Y 
1—r‘'d
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to see, when compared with (7), that r =
1_

2 is the required

root. Consequently p — which had to be shown.

Lemma 2. C* = __ r« (1/3)
4-i^ıU'\2l3) • C where C — dz 

dx is a po-
0

sitive constant less than 1.
Proof. Denoting the vertices of T corresponding to Ç=0,1,oo 

by zi’ı,W2, »a respectively the mapping function can be written as
00

Hence

Consequently

|K| =

Hence
I dwld^ I K I 6.3-1 r-Ml/3) V{2I3) 2*

On the other hand

I dy/dx lo = p^'^, 
Taking account of the identity

1 d^ldy !„ = 3^

dw  dw dK^ dy dx 
dz d'Ç dy dx dz

we get after putting | dzvldz l^-o

'4-3^'■■i T {213)
where C = | dzjdx ig.

The theorem now follows since z = z (x) fulfils ali the con
ditions of Schwarz’ Lemma assoon as v/e dispose of the positive
scale constant C soas to make the circle unity, i. e,,

5. Consider on the circumference j jc | = 1 the points
Gj, Al, G'ı, El, Bı, Ep Fp Cp Fp where Fp Fp say, are symmet- 
rical with respect to Cj whose affixe is the affixes of Aj

w
Ç

1

o

Ii — «>1 !

B 1 1
3 ’ 3

1

I z I ].
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and Bj being —1 and e "'^ respectively. Let a='
designate the affixe of F

0<ıp<3r/3,

where 1, e, E^
Those of Gı and Ej are £a and E^a

are the roots of unity. The affixes of Ej, Fj, GJ
will be the conjugates of the affixes of Fj, E], Gj respectively, 
i. e., ö, E5, E^ö.

V

Theorem. z = z (x) satisfies the differential equation

=3(1—a’)x ■

2 (cos 3ıp—cos İp) x®+(cos 6ıp4-
+ 4 cos 3ıp cos İp—5) x^+2(cos 3ıp—cos ıp) 

(a:®—2x® cos 3ıp-p ıp

where ^z, is the welt known Schıvarzian derivative, a = .

Proof. İn the conformal mapping of P, inscribed in the circle
1, onto I X I121 1 (the arcs of circle G'E, E'F, F'G are

not necessarily orthogonal to the unit circle) the points Gj, Aı, 
Gp ..., Fj correspond to G, A, G',..., F' respectively. Conse- 
quently the corresponding differential equation is

(8) ^z, ~ (1—a^) [(x—a)~‘^ + (x—Ea)”^ + (x—E^a)-^

+ (x—S)-* -|- (x — E®5)~^ ~ e5)“^]
+ hl(x—a) + hiH,x—£«) + hsl{x—e^a) 
+ hil{x—â) 4- h5İ(x--£^a)-\-hQİÇx — eâ) 

with the conditions
A + /«2+---+Ao = O

+ "1" ® = — 3 (1 a^)
a* (A+s’^^'i + s^s) + 5^ (A4+eAs+e^Aj) = 0

In additioh to these conditions we must have the following 
symmetry conditions

= h 
^5 = h.■2

'3

Aa = £^h,
Finally in the limit case ip
z = Cx, where C is a

Aj = £h 
= 0 («-> 1), z = z (x) becomes

constant. But
^Cx, = 0
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Hence the second member in (8) must be identically zero. This 
implies

Hence for. 0
6+6 = 0 

ip < 3t/3 vre obtain 
«^-1 
a — 5

Taking account of the symmefry conditions and putting this 
value in (8) we obtain the Theorem. Now if we put y = — 1 
in the equation of section 4 vfe find for p — 819

1
. 4 • 2â

x3 = -y +'• 9
We set

coa B — — 719, sin ö = 4 • 2^19

with n. CoBsequently the argument of a re ip = 6/3.Jt /2 < 6

Setting « = we obtain the required differential equation in 

this particular case. Numerically it can be written as

(9) =

where

9 (816+126) x + (1266+388) x*+(81&-f- 126)x^
8 81+252x8+358x«+252x9+81x>2

6 = 2 cos il) = 1 • 3634
For short, (9) is of the form

BıX+84^^+1 j V _ Bı^+B^^^+Bı^'^_____
2 ' ’ Ao+Ag+'^+Ae^^’+As^^+Ao ,̂12

6. Consider the differential equation

0’ + F (x) 0 = 0

where F {x) is the right member of the equation (9). İn fact we 
have

(A,+A,x*+A,*’+A»*’+A,x*«) 0" + (Btx+B**«+Bxx’) 0 = 0
Setting in it a series of the form

0 = Co + cix+c2X^4----
we find for the general integral an ezpression of the form
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ö = Co6o + Cı0ı
where Ço and Cj are now two arbitrary constants.

The two particular Solutions are of the form
% — 1 + C3X® + -j- . • •
01 = X 4" C4X* + C,X'’ + • • •

which are valid in the neighbourhood of the origin and whose 
coefficients can be calculated step by step by means of the 
recurrence formula

(10)

(p—1) pCpAo-l- (p—3) (p—4) C;,_3A3+(p—7)

+(p—10) (p—9} (p—12)cp -12A0

+cp—gBıd-Cp-jB^+cp—9B, = 0,
where p=3n for % and p—3n+l for 8 n=l, ‘1, .. .İt

Now, it cap be easily verified that Oj/ög is a solution of (9).
Hence the required mapping function up to an 

scale constant C is given by
arbitrary

(11) z = 0j/0Q = Cx 1 + C4X^+CtX^+ • • • 
H-CgX3 + c8X«4- • • ■

The series (11) converges absolutely and uniformly in the inte-
rior of the unit circle | x | 1. Moreover by a Theorem due
to Fejer it converges at the point — 1. (see e. g. G. Julia,X =
Leçons sur la representation conforme des aires multiplement 
connexes, 1934, p. 35.). Thus C can be determined by the con- 
dition z(—1) = — 1. We find C = 0.70. and conseguently

g. 1. b. e 2* = 0.64.
£xample of the same type has been considered successively 

by Ahlfors and Grunsky [®] and Rademacher [’] for 93 and 2 
respectively. For reason of symmetry it is very likely that 2* 
is the exact value.
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