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Two dimensional wave motion in a compressible
rotating fluid bounded internally by a
radially oscillating circular cylinder

by A. N. ERGUN,

University of Ankara

Ozet: T.V. Davies son negriyatindan birisinde (1) temel irrotasyonel
hareket iizerine kiigiik bir pertiirbasyon hareketi bindirmek suretiyle sikigti-
rilabilen miitehavvil akiskan hareketine ait malim lineerlegtirme teorisinin
degrisik bir geklini gdstermistir. Simdiki yazi igte bu yeni teoriye dair bir or-
nek ¢dziim olup dahilen radial olarak titregmekte olan dairesel bir silindir ile
sioirl bulunan ve bu silindir etrafinda diizgiin olarak dénmen sikigtirilabilen
bir akigkan iginde meydana gelen dalga hareketini incelemektedir.

#
* ®

Summary : In a recent paper Davies (1) has presented an alternative
theory to the usual linearised theory of unsteady compressible flow by su-
perimposing a small perturbation upon the correct basic irrotational flow
pattern, The present paper is concerned with a particular example of this
theory in which a rotating compressible tluid is bounded internally by a
radialy oscillating circular cylinder.

1. Introduction.

In a recent paper T.V. Davies (1) has attempted to improve
the linear perturbation theory for unsteady motion of a comp-
ressible fluid in two dimensions, by substituting for the linear
basic flow the correct irrotational flow pattern.

He has considered the flow to be composed of a steady basic
flow, assumed to be compressible but irrotational, together with



TWO DIMENSIONAL WAVE MOTION... 7

an unsteady perturbation flow which is small compared with the
basic flow.

We shall first of all state the results he has obtained very
briefly, then pass on to the particular problem under conside-
ration, If dashes are used to represent the general expressions
for velocity components, pressure ard density, the equations of
motion may be written

ot L ¥ W,
TS T T w THY=—g, ()
where
4 d ’ 1 » 7
v=[Ftgwtote, (1.2
and the equation of continuity is
¥p' L D D,
M‘l‘b—x(Pu)‘f‘by(P")—o' (1.3)

Now, denoting the basic flow by capitals, we assume that ’
@' =U+u, v'=V+o, p’=P+p, p'=0+p, '=3o+%. (1.4

Since the basic flow is irrotational and steady it follows
that ¥, is an absolute constant,

[F+iu+vate=yp=comt, @5

and two functions ¢ and ¢ may be introduced of the nature of
velocity potential and stream functions, such that
op

R R R ¥
U—bx’ V—Dy' PU_P"by’ PV = ‘Pobx' (1.6)

where P, will represent the density at a stagnation point.

Substituting the expressions (1.4) into the general equations
of motion (1.1) and using the results previously stated we obtain
the equations governing the perturbation flow,

W yr— _ M D ) ¢!
YA dx 2T U= dy’ (t.7)

where
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_w_ %

T oy
and the unsteady motion is assumed to be sufficiently small to
neglect the products {u and Co.

In place of the components (u, v) we now introduce the
perturbation velocity components (u;, v;), the former being along

the direction of the main velocity ¢ = (U2+V“)l?, the latter
perpendicular to ¢ in the direction 6 increasing, and also we
introduce new independent variables (¢.¢) in place of (x, y),
the transformation being effected by the relations (1.6).

Davies has expressed uy, v;, ¥;, p and p in terms of a single
function a, which is a function of ¢, ¢ and ¢ Thus

o= cgg, (1.8)

== (1.9)

v1=g—:(%$+ﬁ), (1.10)

p =—P(§3;+ czg—:). (1.11)

e =-—%(g—:+c2§—;), (1.12)
where B is any solution of the differentiol equation

By adl g, (1.13)

and a is the local velocity of sound. Assuming that the adia-
batic relation holds good in the basic flow, i.e.

IT = % P, (1.14)
we have a = Z—HP =%y PY7] (115)

It is necessary to write down the following relations for fu-

ture reference, which can be found in any text book on comp-
ressible fluids :

ay=%y Py 1 (1.16)
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el = ??2_—1 al (=5 az for air), (1.17)
2
cc—2 Py "G’ (1.18)
2 ;P Ay—1
=1 =(_%>Y by (1.15) and (1.16),  (1.19)
0 .

where a, is the velocity of sound at a stagnation point. ¢, is
the maximum fluid velocity which can be attained when P =0,
and % is a non-dimensional variable lying in the range 0=rt<1.

After the transformation to the new coordinates % and ¢,
becomes

- be_}_bvl P bll1 P’U1 08 PC bﬁ
Y W TP | Py oe

and the equation of continuxty is

L) A S () o

After substituting for u,, v;, p their expressions in terms of

o this becomes
1 va_ 2 wa_ ded (1) D )
a’c® ot? a® Dtdp Dt OY bcp{ a? bcp}

+ ¢3P2(¢+6)§ 0, (122)

where B is a solution of the equation (1.13)

f—oc (1.20)

2. Special case when the basic flow is circular and
bounded internally by an oscillating cylinder.

In plane polar coordinates the radial velocity ¥, =0, and
the transverse velocity ~1;— 9y == c. Now if we assume
¢ =Re,8, (2.1)

Rem
prasamd -9
’

we have

(2.2)
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where R is a constant of dimensions length. When r = R, ¢ at-
tains its maximum value, ie. ¢ =c,: herce R is a limiting ra-
dius for the motion.

The reciprocals of the hodegraph or Chapligin equations (2)
may be written as

P2co6 dc 00

d
b—,p(Pc)+~——0, Pﬂ—Poc$=0. (2.3)

Py 24
Since o0 =0, we have 2 (Pc) =0, i.e. Pc is a function
53 , > , i.e.
of ¢ only, and the relation between these quantities is
0¢c__ Pye
% Reg,’
which defines ¢ in terms of .

P

(2.4)

From (2.1) and (2.4) we obtain the operational relations
? 1 > ¢cP,

%  Re,28' 3¢ PRc, o

(2.5)

Substituting these in the general differential equation (1.22) we
obtain
_ 1 ¥a 2 wa 1 b1

a’c®* o2  a*Rec, 9t09 Rec, o 00| a®

1 > c?\oa Poc D (P?/ Pyc da -
trz, aeg(l ?)be t RPe, % Fg(PRcm_b_c + ﬁ)f =0
(2.6)

If we assume that the boundary of the cylinder is oscillating

radially with frequency n, the motion at the boundary will be

r=ry+ 3% cos(nt +¢g), (r,>R) 2.7)

where 7, is the mean radius of the cylinder and ¢ is an arbit-
rary constant. Hereafter we shall be concerned chiefly with the
outward propagation of this disturbance. Suppose therefore that
we determine a solution for « of the form.

%= a(c) :i(:ls ; nt, (2.8)
where o (c) is independent of . The function a(c) being inde-

pendent of 8, (2.6) becomes (a also being independent of 6)



TWO DIMENSIONAL WAVE MOTION... 11

nt + P;f = 0. (29)

i“()cos n 4 Poc d( Pc duacos
a?c? PRe¢, d¢c | Py R¢, dc sin

To determine a solution af type (2.8) we must choose f in-
dependent of 8 in the form

_ cos
f="0(g, nt

and from (1.13) it follows that B is identically zero, so that
(2.9) becomes
n?a Pyc A
a?c? ' (Re,)2P ¢

Pc da
P, dc
and the unsteady motian developed in the fluid is then irrota-

tional (see 1.20). If we transform to the variable <t defined in
(1.18) this equation may be written

=0,

(1) %% 4 (1—(1+B) 5} S+ ZE =0, (210)
where By = ” %i = %— for air,
and 2 —Rn @.11)
2a

=4

is a positive quantity.
The unsteady perturbation components for this motion (uy, v;)

can be derived from (1.8) and (1.10) by using the transformation
(2.5) which gives

boc ¢ da
Rc 20

so that the perturbation component along the circles is zero,
and the radial component is

__Pe Pc Pyc da ¢ daf = da
=P, ( +p) P, PRc, d¢ Rc,,,JE(‘ dr)(2'13)

@ being defined by (2.8).

lll:C

=0, (2.12)
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3. The form of the general solution for a.
Characteristic solutions.

Equation (2.10) may be transformed using

anm— 22 (3.1)
z
and it then assumes the form
43 (250'—1)

, d?a
(Z“"'4)‘2)d—;g+{2+

}d +2a=0 (3.2

If we write b= (28, — 1)\2=42)% for air, and assume

& == § A2s Jv+2s (2), ' (3.3)

§== —
we obtain

et

] [02) .
2 (V290 Ag, Iy g, — 2 3 Agg i-]v+2s—-2+-]v+23+2_2 Jvt2s

& Jv42s -2 2)ypos  Jvtoste i —0. (%
+ b_ZwA% vFos—17T (vF2s—1 v+2s+1 )

Equating to zero the coefficient of the term in J, 5, we ob-
tain a recurrence formula for the A,, coefficients, i.e.

26 )
{ 222 - (v2s)? + m,} Ay — A (A5 + Agy)
f A23+2 A2s’2 }
t N s i1 TV 25 — 1> 0

or

-—v&r4L+Héi )+A%pv+w+%ﬁ

822 ]
vz
4

+ 2 A2s+2(—‘ 1+ W_F—l) =0, (3.9

where we have now taken 5 = 4)2. Here we have to assume
that v does not take the values + 1, +-3, +5, -

If we take s= .-+, —2, —1, 0,1, 2, 3, --- the set of rela-
tions (3.4) becomes

(*) The second sign inside the bracket was wrong in the original paper
(1) as Mr Davies himself has been pointed out.
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..........................

—-A'A-s(l+v4 )+A—.f. ?212+(V—4)2+(T%1“——;2_1%

+x2A_2(—1 +V—_—3) =0, (a)

4 8 A2
—)\QA—4(1+ m)+A-z % 23+ (v—2) +(v o = e
+M A, (—l—i—;':'l') =0, (b)
—XZA—2(1+V—iT)+ A, 32x2+v +§£i€
+12A2(—1+_§_—1)=0, ()
8. 1 3-3)
—“Ao(1+ | )+A 3212+(v+2)’—|-m)2__—_-1{
—2A (1+——4—)+ A §2)\2+(v—|—4)2+——————8)‘2 l
2 v+3 4 (V4 —1
xeAﬁ(— 14 +5)=o, @
4 \ 8 12 /
—2AZA, (1+-v—+—§)+ A ;212+(V+6)2+6_:|__6)_2:_1§

+x2As(—1+v+7):o, ®

This infinite set of relations wil define an infinite determi-
nant in v whose vanishing will lead to a set of characteristic
solutions for v. Convergence of the infinite series (3.3) will be
assured, since for large values of s equation (3 4) becomes

— 22 (Ag—g + An) + Ay, {222+ (v + 25} =0,

which is similar to that for the Mathieu coefficients, hence we
can accept the convergence as a result of Mathieu function
theory.

In order to investigate the infinite determinant of the coeffi-
cients A;, we can approach the problem as in Hill’s determi-



14 A. N. ERGUN

nant. To ensure convergence of the infinite determinant we di-
vide throughout the s th row by the coefficient

822

20 4+ (v + QS)2+ m
of A,, in (3.4), so that (3.4) becomes
4 4
—_— )\2 (1 + V‘{"QS_‘——I—)AZS‘Z + A + Az(—'l + ;IQ;?)AZS—}_% -—-0
8t s 8 )2 -
27\2+(V+23)2+(V—+m'_—1 212+(V+25)2+m
suppose we write
4
__)\2(1 *y + Qs____l)
Eag (V) = 8 A2 ! (3'6)
2 2 _
20 4 (v+2s) +(v+ s — 1
4
kz(_]"’v-|-2s~|—1)
712; (V) = 8 )\2 ’ (3‘7)
2 2 . 2r
23 4+ (v+2s)2 -+ O F 2y =1
then €as AZs"I + Aﬂs + Nos A2s+2 = 0) (3‘8)

---------------

A(v)=0:0:0:801~q0:0:0:0 (3.9)

......................
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Write —v for v, then

+12<—1+ —i—)

v+ 2s41
8"'2;(—‘/) = 82 = s (V)
2 2 b
4
T _*_.)
—v—2541
n—Zs(_v): = E9¢ (V)

MPL

2%+ (v12s)® + CF By -1

and the determinant is unchanged, hence A(—=v)==A(v). That
is A(v) is an even function of v. Replacing s by s — 1 and v

by v + 2, _

E25*‘2 (V+2) = 823 (V)) 7]2;——2 (V+2) = n?s (V),
and thus A(v+2) = A(v). and similarly A(vIE2m)=A (v),
hence A (v) has period v =2.

The singularities of A (v) occur at simple poles of the terms
€2 Moe» We note that v = — 2s T 1 are not poles of the func-
tion, and from (3.6) and (3.7) we derive the simple poles at the
zeros of the equation

)
N2 L (v4+26)7 + (v?% —0,

which leads to the two expressions

(v +2s)2 = i {V (4r—28124 1)—(202—1) } = %,(}) (
(3.11)
(‘/+25)’“—‘———{\/(414—281?+1)+(212 ) = xz()

where %,(1) and %,(1) are
(a) real and positive when 0 << A2 é%(7—-4\/§)
(b) complex  when %(7—4\/§)<12<%(7+4¢§) (3.12)
(c) real and negative  when %(7+4\/3)_ék2<+00. \]

i

Hence the simple poles are
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= — T Ve () )
PETEEVAD (—n,0)  (313)
V= —25 FVu, () )
It is easily shown that A(v) is an analytic function except
for simple poles at the points (3.13). The function defined by

%(v) = A {cot % ®(v—yr) — cot% T (vtva) )
+ B{cot% T (v—g/»,?z)—cot% w () } (3.14)

is also an analytic function except for simple poles at the points
(3.13) and it has period v = 2. It follows that the function

fO)=4A0)—x0) (3.15)
will be of period 2. Furthermore, if A and B are so chosen
that the singularities at v == 3~ \/»;, and v = 3 \/», cancel, then
in virtue of the periodicity it follows that all the singular‘ties
of f(v) disappear and f(v) will be an analytic function The sin-
gularities at v = - \/z;, and v =T \/x; will cancel provided
‘that the residues of A(v) and y (v) at these poles are the same.
Since A(v) and ¥ (v) are bounded as v tends to infinity, it fol-
lows that f(v) is bounded, and thus by Liouville’s Theorem f(v)
is a constant, To determine this constant make v - o in (3.15),
then since lim A(v) =1 and lim y(v) =0 it follows that

V00 V-0
f(v)=1. Thus
AW)— 1=y (3.16)
Since this is an identity in v, A and B may be determined by
equating the left and right hand sides at any two conveniet

points in the v-plane. These points are taken to be v =0 and
v =1, With v =0 we obtain the equation

A0) — 1 — — 2A cot% 7 Vi — 2B cot % i, (3.17)
and when v =1 the equation
A1) —1=2Atan  wyi + Btan ;. (318)
When v =1 it follows from (3.6) and (3.7) that

gg="Np=—1 ta=tq4=Mp="1=0,
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and thus A(1) == 0. Equation (3.18) now becomes

—1=2A tan%'n\/u—;—l— QBtan%n\/;[z—, (3.19)
and (3.17), (3.19) lead to
A (cos @ \fu, — cos T \/xy) = % sin my/%; [A(0) sin? % ay/x;—1] ,

. ) .(3.20)
B (cos m % — cos @y = — 5 sin my/zg [A(O)sin? 3 ay/—1)

The equation A(v) = 0, which gives the characteristic values,
becomes ¥ (v) = — 1, and this reduces to
2A sin 2B sin nty/x, — 1. (3.21)

COST \/x; — COS VR = COS W\/x; — COS ¥ T

By eliminating A and B between the equations (3.20) and
(3.21) we obtain an equation of the second order in cosvm,
which after some trigonometric transformations and rearrange-
ment can be put into the factorised form

(cos vt + 1) [cos v — 1 + % A(0) (1—cos my/z; — cos TY/x,
+ cos my/x; cos myxz) ] = 0. (3.22)
Hence either

cosvn = — 1
vy=2m+ 1 (m integer),
!
2
The first set of values are excluded as solutions of the prob-

lem ((see (3.4) et seq.)). In order to find the values of v satis-
fying the equation (3.23) we must first of all calculate A (0),

g 1 .
cos myx and cos Tyx . It is evident that when AZ> 5 (7—4v3),

A(0) (1—cos my/%, ) (1—cos qyzg ) (3.23)

or cosvi=1—

%, and %, are either complex or negative (see 3.12); hence in
this case cos v and therefore v is complex.

1 -
Let us first confine ourselves to the case when 1255(7—4\/3)

ie. when v is real. A is positive and small and 0 < A < 0.1894.
Hence we can exkress A(0), cos myx; and cos ®yx, as conver-
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gent series of positive powers of A. The following formulae are
correct to the final power included :

5 37 265
AO) = 1 — 232 e B oA I VN
0)=1 ) A —[—-(8 n 5 )7& . (3.24)
e 2 34 2 36 32 2\ 38
cos Mk, = — 1 4 82 A4 |- 128 n2 A% —3 + 2368 n%) A

+ (%2-‘3 nt + 47744 n’) MO 4

cos My, =1 — 3 w2 A? 4 (_;LnA — 24 nz) by

._i 6_ i 2y %6 9 ‘s 36 8
+( 101T+245t 33631)1 + 2—8(-)11;‘“*5*3

+ 43278 — 58561:2) 2 e
Now the equation (3.23) becomes

cosvu:1-37:212—1—(—;—154——%—1—112)&4

3 81 347 :
— b 2 d — 2] A8 e
(10“ 7 v+ 5 n)7~+ . (3.25)
The solution of this equation is
v — /K ﬁ 2 8917 4
x~vax(1+81+3847»+---), (3.26)

which is very rapidly convergent for the values of A under con-
sideration. There wiil be an infinite set of solutions for v which
make A(v) vanish, and these will be obtained from (3.26) by
the addition or subtraction of an even integer.

In order to check the result (3.25) we return to the equati-
ons (35) and solve for v by an alternative method (this method
is possible as in Mathieu function theory, for sufficiently smail
values of 4). We neglect A_; in (3.5a) and solve for A_, in
terms of A_,. Then we insert this in(3.5b) and solve for A_; in
terms of A,. We do the same thing with the equations (3.5¢)
and (3.5d) to express A, in term of A, Finally we insert A,
and A; into the equation (3 5¢) and then the coefficient of A

gives an approximate expression for the equation A(v) = 0.
This equation is
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—14(1 _(T}_‘Sl_))

oy 16
o = 3p yio pyy B
+ 2824 (v — )+EVT4)E;—1

+ 242 - v?

20+ =4+
16
gt
2 2
-i_ vfil + e (V + ) =0’
—}“4(1_—3_)’) Az
s 8Az +2l2+(\' +2)2+(V+84)l___1
M4 (v+ 4+ F 2P—1

and it is easily verified that (3.26) is a solution of this equation.
In fact the first three terms of (3.26) satisfies the equation up
to the power A8

Using the expressidn for v we obtain

941 )
4 Pt .
= o' (35+ Ty VER+ - Ao \
1 941
Ay=rgs M (35___%1 + -)Ao,
| (3.27)
A= (5+9¢ N C R -)Ao,
4 72
A=) (5 9¢1+19—412 6523\/ 23 - -)AO.

i

We see that A_, and A, are of order 2 in A, A_, and A, are
of order 4, etc., and since v changes sign when A does, we
have the following relations between the coefficients

A"‘!s (— V) = A2s(V) ’
As (—v) = A,
If we neglect )° the solution (3.3) reduces to
2
%= ZAzq(V)J-v +2s(2):A0°‘1

S==—9

say, where A; are given in terms of X by (3.27) and by (3.26).

(3.28)
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Now, if we change the signs of v and z in (3.5) the system
turns to itself. Hence, considering the relations (3.28), we con-
clude that

Z A, (V)] —y—25 (2) (3:29)

s—=— P

is also a solution of the differential equation (2.2), and by neg-
lecting A® we obtain a second independent solution

2
=3 Ap()]_y_9s(z) =A%

s==—2
say.
Hence the general solution is

a=K;a 3 nt+ Ky, nt, (3.30)
. A2s
where K, and K, are arbitrar A= then
0
% = 2 bszV+2s!
(3.31)

Oy = Z b2sJ—v~23

s==——2 !

and by, = Ay,/A, are given by (3.27) in terms of A.

We now have two arbitrary constants in the general solution
(3.30), as expected, since the differential equation (3.2) is of
the second order, and we now satisfy the boundary conditions.

The inner conditions near the oscillating cylinder is that the
radial velocity of the fluid at the surface of the cylinder is the
same as the radial velocity of a point on the cylinder. From
(2.7) it follows that

dr s s
;= — nlosin (nt + ¢).

Since
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it folows that the inner condition can be expressed by

(go;‘)rzro == q,3, sin (nt 4 ¢) - (3.32)

approximately.
Suppose the general solution (3.30) is of the form

2 3 '
o= KI(Z A )ei"‘—{— K, (z W )e—fnf, (3,33)
—2 —2

and suppose also that K; = k,+ik{, K; = ky-+ik; are arbitrary
complex numbers, Then

da_K int 2 b 4 K ~-int 2 b 4
dz M€ E 2sz+28+ 2 € _22 25 J_V_Qs

1., .. 2
=5 Kie™ ¥ b,(Jy 426—1 — Jyt2s41)
-2

1 2
+ 5 Kpe=int 2 by, (J—v——-2s—1— J—V—2s+1)’
—2

after using the relation 2}, = J,—i — J,4+1- Only the real part
ofg—z must be retained, since the right hand side of (3.32) is

real. Now (3.32) becomes

1 S |
7 R{(kl_i‘ z kl)elnt : 2 b2s (J‘v+2s——-] - Jv-|-23+1)r=ro
\ -3

. 2 i
+ (k st lk;) e~int. Zb2s (J——v—2s—1_ J—v—2s+1)r=ro }
= J

= ay §, sin (nt + g).
or '

( )i{k, cos nt—ki sin nt)+( )(kscos nt-+kjsinnt) == 2a3, sin (nt-}-¢)

where

Or= 3 b1 = Iogzet sy » 8
X (3.34)
()= 2 bys (J—v—2s—1"" J——v—23+1)r=ro ’ S

This has to be true for all values of n#, hence the coefficients
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of cos nt and sin nt must be equal on both sides; this gives
k() + ks ()2=2a,8,sine,
—ki( W+ k;()e=2ay8 cose.
Thus we can express k; and k, in terms of k, and k1
__2a¢3;sine — k() __2ay3, cos etk () .

ky = O, k= O)s

After k, and k, are eliminated, the general solution (3.33)
becomes

2
=R { eyt i) et 3 b, ],y
-2

2a0d, (sin & + i cos &) —( ) (ky —ik)) ;00 &
agd, (sin i cczs)2 )ik — ik)) . _22525.]—4—%} . (3.35)

This satisfies the inner boundary condition. The outer con-
dition is the existence of diverging waves 2zt points distant from
the cylindir. Since we are considering the motion at points far
from the cylinder we can use the asymptotic expansions for the
Bessel functions involved. We use the formula

Ju(2) =(;i)”zcos (z -5 - %) : (3.36)

Then we obtain the relations

é by JV+2s (2)=(— by —b_p+by+b_y) cos (z L E) ,
—2

+

2 4
and
2 ., YT ¥
31 Budoy®) = (1= by byt bbb cos (2 45 — 1)
Ss==—9

After inserting these into the equation (3.35) and transform-
ing the cosines into exponentials it can be written

1/
%= (1= by boy + by + bo1) (ﬂ%) ZR{ (ky + ik0)

fvT w NEZ T
[e“‘ (T+I> . gilz¥nt) | e’(T+Z>.e-i<z—nt)-‘

+'2 a, 5 (sin 8+icczs)8’) — () (kg — 1 KY)

- (Z-1) ! g ]
e P ¥/, g-ilztnt) P 4/, gilz—nt) .
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In order to get rid of the terms in (z + n#) which represent
converging waves we choose

Jvm o=
(ky + i k) e"(? +3)
_2ay¥, (sing + i cos &) —( )(k; — i ki) i(E..Z‘.)
( )2 2 4

. ___,Z,ggéﬂ K (3.37)

say, where K is a constant and then (3.35) becomes

__2a8(1 —by-—b_y+ b+ b_y) (;_2«)1/2
— (r—0)% Rz

R {iK sin (z + nt) + iKe"®cos (2— nt)} .

If K is real we obtain the solution for large volues of z

—py— 1
« :——20080(1 b(2 i ~5_—2(—|;§b4+b—4)K(ﬂZz) “sin v&t- cos (z—nt) (3.38)
which represents diverging wave solution,

Since K is now given by

K=[();(sine —i cos ¢) — ( )x(cos & — i sin e)] e‘i(_z_+2> ,

from (3.37) and the imaginary part of K must vanish, this
determines the unknown constant ¢ : we obtain

)-(»mn(?—%§)

tan ¢ = Ty (3.39)
On=Onten (F+F)
and with this value of &, K becomes
K= O — (), (3.40)

[0 + (2—2();( )y cos va]“
Finally the general solution (3 35) takes the form

2a,3,
[O)+( )2 —2( )1 ( )zcos Vﬂ:]l/za 2 62‘JV+23 (2)-cos (nt +
vy ™

v2n: )+ 2 b, _y_ 9, (2)-sin ( 2 —4—)

s=i—9

% —=

»  (3.41)




= HOR 4 =2 ( )1( )g cos vl
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where a, is velocity of sound at a stagnation point, is the
amplitude of the periodic motion of the surface of the cylinder,
v is given in terms of A by (3.26), ( )i, and ( ), are given by
(3.34), by, = A,,/A, by (3.27), and

2) 2Xc,,
z:_jgl—/zz " by (],18),
2 p
n
= by (2.11),

r being the distance from the axis of the cylinder.
If we insert this walue of z and K into the equation (3.38)
it becomes

—2a8 (1— by—b—y+by+b—y) (ﬁ)

1y, n 4
mtr) sin Wt-cos;‘-)(r———aot), (3.42)

which shows that the diverging waves far from the cylinder are
propagated with velocity ay, namely with the velocity of sound

at a stagnation point, and the amplitude of the waves decreases
-1 ’
as r 2.

If instead of (3.36), the form

L = 2) eos (-2 — 2} 4 L gin(c "R -2
mZ) =\ nz 277 4 8z sm(z 2 —Z)g

is used, proceeding exactlly in the same way, we obtain

2a,5, (1— b, —b_5+ b ) K72\ ,
a== gy ( z)i—z)z&—l_ ) (E)zsmvw

{4 VZS_Z_ 1 sin(z — nt) — cos (z — nt)] (3.43)

corresponding to (3.38), where K has the same value given by
(3.40).
The solution (3.41) is valid only if A* < —;— (7 —4y3). When

A? is greater than this value the selution of the equation (3.23)
for v is complex. Then since A2 is not necessarily small the
series (3.24) for A(0) will not converge at least after some criti-
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cal value of A% In this case, we have to express A(0) by an in-
finite series in powers of 1/A%, The same is true for cos m
and cos m/x;. Then the equation (3.23) gives v in series form
proceeding in powers of 1/A%, but it will be complex, since y7x;
and \/z, are complex. Then the Bessel functions hecome of com-
plex order. But as we take the real part of «, these functions
or, where it is necessary, the combinations of functions must be
expressed in the form a-+b7, and then the method of satisfying
the boundary conditions explained above proceeds in the same
way. ,
It is interesting to know how the amplitude of the waves
depens on A :%, i.e. on the frequency n of the oscillating
0

cylinder. In order to obtain a dimensionless coeffient for this
dependence we divide the amplitude of resulting wave by the
amplitude of the motion of the cylinder, and denote its absolute
value by M. Then (see 3.42)

2(1—62_5—5+b4+b—4) 2 ap\"z .
M= 24 .
(T =309 o o ) sinvm (3.44)

nwr

For the sake of simplicity let us take only the middle terms
in ( );, and ( )g, namely the terms corresponding to s = 0, and
shoose a;==33,500 cm/sec. R=10 c¢m, r,= 20 cm, and r =10,000
cm. That is, we shall do our calculations for a particular
point 100 metres far from the axis of the cylinder. Then
1— by — b_y+ by + b_, reduces to unity, and taking v =62,
M becomes

_0.03568 sinv m

M==Tg w

(3.45)

where

1 24 . 1 2 A 2
— 2 — / —2v .
{} =24 V[z To) T +2)] +24) [QH‘(—V) 1‘(—v+2)]
—2 1 2 1 2h A cos vit
T TE+)||Aar =y T(—v+2)|°°
By some lengthy calculations we can prepare the table of values

of M for different values of % in the range 0 < A2 < -;— (7 — 4v3)

and plot a curve, When A ==0, M vanishes since there is then
no radial motion,
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Al 0001 0.01 0.02 0 04 0.06 0.08 0.10

M | 0.00354 0.0111 0.0156 0.0217 0.0260 0.0293 0.0321

0.12 0.14 0.16 0.18 0.1894
0.0344 0.0365 0.0386 0.0396 0.0401

The graph is as follows :
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This shows that ‘M increases as A or the frequency n of the
periodic motion of the cylinder increases, and it reaches the
value 0.0401 when A = 0.1894. This value of A sorresponds to
n == 1270/sec. Hence when the frequency of the cylinderis
1270 per second the amplitude of the diverging waves
at a point 100 metres distant from the axis of the cylinder is
0.0401 §, .
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