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Abstract

In this work, we consider a logarithmic m-Laplacian type equation with delay term with initial and boundary conditions. Under suitable
conditions on the initial data, we study the nonexistence of solutions in a finite time with negative initial energy E (0)< 0 in a bounded domain.
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1. Introduction

In this article, we consider the logarithmic m-Laplacian type equation with delay term and initial-boundary conditions as follows:
utt −div

(
|∇u|m−2

∇u
)
+µ1ut (x, t)+µ2ut (x, t− τ)

= u |u|p−2 ln |u|k , x ∈Ω, t > 0,
u(x, t) = 0, x ∈ ∂Ω,
ut (x, t− τ) = f0 (x, t− τ) , in (0,τ) ,
u(x,0) = u0 (x) , ut (x,0) = u1 (x) , x ∈Ω,

(1.1)

where Ω⊂ Rn is a bounded domain with sufficiently smooth boundary ∂Ω. p > m≥ 2, k, µ1 are positive constants, µ2 is a real number,
τ > 0 represents the time delay. The term ∆mu = div

(
|∇u|m−2

∇u
)

is called m-Laplacian. u0, u1, f0 are the initial data functions to be
specified later.

• Logarithmic nonlinearity:

The logarithmic nonlinearity generally seems in super symmetric field theories and in cosmological inflation. From Quantum Field Theory,
that such kind of (u |u|p−2 ln |u|k) logarithmic source term seems in nuclear physics, inflation cosmology, geophysics and optics (see [1, 6]).
From the literature review, we begin with the study of Birula and Mycielski [2, 3]. The authors investigated the equation with logarithmic
term as follows

utt −uxx +u− εu ln |u|2 = 0. (1.2)

This type of logarithmic equation is a relativistic version of quantum mechanics. They are the pioneer of these kind of problems.
In 1980, Cazenave and Haraux [4] studied the logarithmic equation of type

utt −∆u = u ln |u|k , (1.3)

and the authors proved existence and uniqueness of the equation (1.3).
In [11], Liu introduced the plate equation with logarithmic term as follows:

utt +∆
2u+ |ut |m−2 ut = |u|p−2 u log |u|k . (1.4)

The author proved the local existence by the contraction mapping principle. Also, he studied the global existence and decay results. Moreover,
under suitable conditions, the author proved the blow up results with E (0)< 0.
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Piskin and Irkıl [17], investigated the following equation

utt −div
(
|∇u|m−2

∇u
)
−∆u+ut = ku ln |u| , (1.5)

and they obtained the local existence result.

• Time delay:

Problems about the mathematical behavior of solutions for PDEs with time delay effects have become interesting for many authors mainly
because time delays often appear in many practical problems such as thermal, economic phenomena, biological, chemical, physical, electrical
engineering systems, mechanical applications and medicine. Moreover, it is well known that delay effects may destroy the stabilizing
properties of a well-behaved system. In the literature, there are several examples that illustrate how time delays destabilize some internal or
boundary control system [7].
In 1986, Datko et al. [5] indicated that a small delay is a source of instability in a boundary control. In [14], Nicaise and Pignotti investigated
the following equation

utt −∆u+µ1ut (x, t)+µ2ut (x, t− τ) = 0. (1.6)

Under the condition 0 < µ1 < µ2, they proved the stability.
In [15], Nicaise et al. studied the wave equation in one space dimension in the presence of time-varying delay. In this article, the authors
showed that the exponential stability results with the condition

a≤
√

1−da0,

here d is a constant and

τ
′ (t)≤ d < 1, ∀t > 0.

In [9], Kafini considered the wave equation with logarithmic nonlinearity with distributed delay as follows:

utt −∆u+µ1ut (x, t)+
∫

τ2

τ1

µ2 (s)ut (x, t− s) = u |u|p−2 ln |u|k , (1.7)

the author established the local and global existence. Moreover, he proved the exponential decay of solutions for the equation (1.7).
When m = 2, then the problem (1.1) can be reduced the following equation

utt −∆u+µ1ut (x, t)+µ2ut (x, t− τ) = u |u|p−2 ln |u|k . (1.8)

Kafini and Messaoudi [8], studied the local existence result and they proved the blow-up result in a finite time for the equation (1.8). When
p = 2, Park [16] obtained local and global existence of solutions by using Faedo-Galerkin’s method and the logarithmic Sobolev inequality.
Then, the author investigated the decay rates and infinite time blow-up results by using the potential well and perturbed energy methods of the
equation (1.8). In recent years, some other authors investigate hyperbolic type equations (see [7, 10, 12, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]).
Inspired by these results, we consider the nonexistence of solutions for the problem (1.1). The main goal of this paper is to establish the
sufficient conditions for the nonexistence of solutions for the logarithmic (u |u|p−2 ln |u|k) m-Laplacian (div

(
|∇u|m−2

∇u
)

) type equation

(1.1) with delay term (µ2ut (x, t− τ)).
The outline of this paper is as follows: Firstly, in Sect. 2, we present some materials that shall be used in order to establish the main result. In
Sect. 3, we state and prove the nonexistence results.

2. Preliminaries

In this part, we give some lemmas that we will use later. Firstly, as in [13], we introduce the new variable

z(x,ρ, t) = ut (x, t− τρ) , x ∈Ω, ρ ∈ (0,1) , t > 0.

Therefore, we get

τzt (x,ρ, t)+ zρ (x,ρ, t) = 0, x ∈Ω, ρ ∈ (0,1) , t > 0.

Hence, problem (1.1) can be transformed as follows

utt −div
(
|∇u|m−2

∇u
)
+µ1ut (x, t)+µ2z(x,1, t)

= u |u|p−2 ln |u|k , in Ω× (0,∞)
τzt (x,ρ, t)+ zρ (x,ρ, t) = 0, in Ω× (0,1)× (0,∞)
z(x,ρ,0) = f0 (x,−ρτ) , in Ω× (0,1)
u(x, t) = 0, on ∂Ω× [0,1)
u(x,0) = u0 (x) , ut (x,0) = u1 (x) , in Ω.

(2.1)

We define the energy functional of (2.1) by

E (t) =
1
2
‖ut‖2 +

1
m
‖∇u‖m

m +
k
p2 ‖u‖

p
p−

1
p

∫
Ω

|u|p ln |u|k dx

+
ξ

2

∫
Ω

∫ 1

0
|z(x,ρ, t)|2 dρdx, (2.2)

where

τ |µ2|< ξ < τ (2µ1−|µ2|) and µ1 > |µ2| . (2.3)
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Lemma 2.1. Suppose that (2.3) holds and µ1 > |µ2|. Then, for C0 ≥ 0, we obtain

E ′ (t)≤−C0

∫
Ω

(
|ut |2 + |z(x,1, t)|2

)
dx≤ 0. (2.4)

Proof. We multiply the first equation in (2.1) by ut and integrate over Ω, we have

d
dt

(
1
2
‖ut‖2 +

1
m
‖∇u‖m

m +
k
p2 ‖u‖

p
p−

1
p

∫
Ω

|u|p ln |u|k dx
)

+µ1 ‖ut‖2 +µ2

∫
Ω

utz(x,1, t)dx

= 0. (2.5)

Later, we multiply the second equation in (2.1) by (ξ/τ)z and integrate over Ω× (0,1), ξ > 0, we obtain

ξ

2
d
dt

∫
Ω

∫ 1

0
z2 (x,ρ, t)dρdx+

ξ

τ

∫
Ω

∫ 1

0
z(x,ρ, t)zρ (x,ρ, t)dρdx = 0. (2.6)

We note that

− ξ

τ

∫
Ω

∫ 1
0 z(x,ρ, t)zρ (x,ρ, t)dρdx

=− ξ

2τ

∫
Ω

∫ 1
0

∂

∂ρ
z2 (x,ρ, t)dρdx

= ξ

2τ

∫
Ω

(
z2 (x,0, t)− z2 (x,1, t)

)
dx

= ξ

2τ

(∫
Ω

u2
t dx−

∫
Ω

z2 (x,1, t)dx
)

.

(2.7)

By combining (2.5) and (2.6) and taking into consideration (2.7), we get

E ′ (t) = −
(

µ1−
ξ

2τ

)∫
Ω

|ut (x, t)|2 dx− ξ

2τ

∫
Ω

|z(x,1, t)|2 dx

−µ2

∫
Ω

z(x,1, t)ut (x, t)dx, (2.8)

for t ∈ (0,T ) .
Thanks to Young’s inequality, we get the estimate as follows

−µ2

∫
Ω

z(x,1, t)ut (x, t)dx≤ |µ2|
2

∫
Ω

(
|ut (x, t)|2 + |z(x,1, t)|2

)
dx.

Hence, by (2.8), we obtain

E ′ (t)≤−
(

µ1−
ξ

2τ
− |µ2|

2

)∫
Ω

|ut (x, t)|2 dx−
(

ξ

2τ
− |µ2|

2

)∫
Ω

z2 (x,1, t)dx. (2.9)

From (2.3), we get, for some C0 > 0,

E ′ (t)≤−C0

∫
Ω

(
u2

t + z2 (x,1, t)
)

dx≤ 0.

Lemma 2.2. Let C > 0, u ∈ Lp+1 (Ω), 2≤ s≤ p, and
∫

Ω
|u|p ln |u|k dx≥ 0. Then,(∫

Ω

|u|p ln |u|k dx
)s/p

≤C
[∫

Ω

|u|p ln |u|k dx+‖∇u‖m
m

]
.

Proof. In [8] from Lemma 3.2 we know that
(∫

Ω
|u|p ln |u|k dx

)s/p
≤C

[∫
Ω
|u|p ln |u|k dx+‖∇u‖2

2

]
is satisfied, by using Sobolev Embedding

Theorem we get this result.

Similar to the [8], we also get the following lemmas:

Lemma 2.3. Let C > 0 and
∫

Ω
|u|p ln |u|k dx≥ 0. Then,

‖u‖2
2 ≤C

[(∫
Ω

|u|p ln |u|k dx
)2/p

+‖∇u‖4/p
m

]
. (2.10)

Lemma 2.4. Let C > 0, u ∈ Lp (Ω) and 2≤ s≤ p. Then,

‖u‖s
p ≤C

[
‖u‖p

p +‖∇u‖m
m

]
. (2.11)

Firstly, to get the nonexistence result, we define

H (t) = −E (t) =−1
2
‖ut‖2− 1

m
‖∇u‖m

m−
k
p2 ‖u‖

p
p +

1
p

∫
Ω

|u|p ln |u|k dx

−ξ

2

∫
Ω

∫ 1

0
|z(x,ρ, t)|2 dρdx.
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3. Nonexistence results

In this part, we establish the nonexistence results of (2.1).

Theorem 3.1. Assume that (2.3) holds. Suppose further that{
m < p≤ mn

n−m , if n > m
p > m, if n≤ m,

and

E (0)< 0. (3.1)

Then, the solution of (2.1) blows up in finite time T ∗ and

T ∗ ≤ 1−α

ΛαLα/(1−α) (0)
.

Proof. From (2.4), we get

E (t)≤ E (0)< 0.

So,

H ′ (t) =−E ′ (t) =C0

∫ 1

0

(
u2

t + z2 (x,1, t)
)

dx≥C0

∫ 1

0
z2 (x,1, t)dx≥ 0 (3.2)

and

0 < H (0)≤ H (t)≤ 1
p

∫
Ω

|u|p ln |u|k dx. (3.3)

We introduce

L(t) = H1−α (t)+ ε

∫
Ω

uutdx+
µ1ε

2

∫
Ω

u2dx, t ≥ 0,

where ε > 0 to be specified later and

0 < α ≤ mp−4
mp

. (3.4)

Utilizing the first equation in (2.1), we obtain

L′ (t) = (1−α)H−α (t)H ′ (t)+ ε ‖ut‖2 + ε

∫
Ω

uuttdx+ εµ1

∫
Ω

uutdx

= (1−α)H−α (t)H ′ (t)+ ε ‖ut‖2− ε ‖∇u‖m
m− εµ2

∫
Ω

uz(x,1, t)dx

+ε

∫
Ω

|u|p ln |u|k dx. (3.5)

By using

−εµ2

∫
Ω

uz(x,1, t)dx≤ ε |µ2|
(

δ

∫
Ω

u2dx+
1

4δ

∫
Ω

z2 (x,1, t)dx
)
, ∀δ > 0, (3.6)

we obtain, by (3.5),

L′ (t) ≥
[
(1−α)H−α (t)− ε |µ2|

4δC0

]
H ′ (t)+ ε ‖ut‖2− ε ‖∇u‖m

m

+ε

∫
Ω

|u|p ln |u|k dx− εδ |µ2|‖u‖2 . (3.7)

By taking δ so that |µ2|/4δC0 = κH−α (t) , for large κ to be specified later and substitute in (3.7), we obtain

L′ (t) ≥ [(1−α)− εκ]H−α (t)H ′ (t)+ ε ‖ut‖2− ε ‖∇u‖m
m−

ε |µ2|2

4κC0
Hα (t)‖u‖2

+ε

∫
Ω

|u|p ln |u|k dx.

We get, for 0 < a < 1,

L′ (t) ≥ [(1−α)− εκ]H−α (t)H ′ (t)+ εa
∫

Ω

|u|p ln |u|k dx+ ε
p(1−a)+2

2
‖ut‖2

+ε

(
p(1−a)

m
−1
)
‖∇u‖m

m +
ε (1−a)k

p
‖u‖p

p−
ε |µ2|2

4κC0
Hα (t)‖u‖2

+ε p(1−a)H (t)+
ε (1−a) pξ

2

∫
Ω

∫ 1

0
z2 (x,ρ, t)dρdx. (3.8)
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From (2.10) and (3.3), we have

Hα (t)‖u‖2
2 ≤

(∫
Ω

|u|p ln |u|k dx
)α

‖u‖2
2

≤

[(∫
Ω

|u|p ln |u|k dx
)α+2/p

+

(∫
Ω

|u|p ln |u|k dx
)α

‖∇u‖4/p
m

]
.

By using Young inequality, we obtain

Hα (t)‖u‖2
2 ≤

(∫
Ω

|u|p ln |u|k dx
)α

‖u‖2
2

≤


(∫

Ω
|u|p ln |u|k dx

)(pα+2)/p
+ 4

mp ‖∇u‖m
m

+mp−4
mp

(∫
Ω
|u|p ln |u|k dx

)αmp/(mp−4)

 .
Therefore, we have

Hα (t)‖u‖2
2 ≤

(∫
Ω

|u|p ln |u|k dx
)α

‖u‖2
2

≤ C


(∫

Ω
|u|p ln |u|k dx

)(pα+2)/p
+‖∇u‖m

m

+
(∫

Ω
|u|p ln |u|k dx

)αmp/(mp−4)

 ,
where C = max

{
4

mp ,
mp−4

mp

}
. From (3.4), we obtain

2 < α p+2≤ p and 2 < αmp≤ mp−4.

Therefore, lemma 2.2 provides

Hα (t)‖u‖2
2 ≤C

(∫
Ω

|u|p ln |u|k dx+‖∇u‖m
m

)
. (3.9)

Combining (3.8) and (3.9), we get

L′ (t) ≥ [(1−α)− εκ]H−α (t)H ′ (t)+ ε

(
a− ε |µ2|2

4κC0

)∫
Ω

|u|p ln |u|k dx

+ε

(
p(1−a)−m

m
− ε |µ2|2

4κC0

)
‖∇u‖m

m +
ε (1−a)k

p
‖u‖p

p

+ε
p(1−a)+2

2
‖ut‖2 + ε p(1−a)H (t)

+
ε (1−a) pξ

2

∫
Ω

∫ 1

0
z2 (x,ρ, t)dρdx. (3.10)

Since, choosing a > 0 small enough, such that

p(1−a)+2
2

> 0,

and k large enough so that
p(1−a)−m

m − ε|µ2|2
4κC0

,

a− ε|µ2|2
4κC0

> 0.

Picking ε small enough, once κ and a are fixed, such that

(1−α)− εκ > 0,

H (0)+ ε

∫
Ω

u0u1dx > 0.

Therefore, for λ > 0, from (3.10), we have

L′ (t) ≥ λ

[
H (t)+‖ut‖2 +‖∇u‖m

m +‖u‖p
p

]
+λ

[∫
Ω

∫ 1

0
z2 (x,ρ, t)dρdx+

∫
Ω

|u|p ln |u|k dx
]

(3.11)

and

L(t)≥ L(0)> 0, t ≥ 0, (3.12)
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then, from the embedding ‖u‖2 ≤C‖u‖p and Hölder’s inequality, we get∫
Ω

uutdx≤ ‖u‖2 ‖ut‖2 ≤C‖u‖p ‖ut‖2 ,

and exploiting Young’s inequality, we obtain∣∣∣∣∫
Ω

uutdx
∣∣∣∣1/(1−α)

≤C
(
‖u‖µ/(1−α)

p +‖ut‖
θ/(1−α)
2

)
, for 1/µ +1/θ = 1. (3.13)

From Lemma 2.4, we take θ = 2(1−α) which gives µ/(1−α) = 2/(1−2α)≤ p. So, for s = 2/(1−2α) , estimate (3.13) yields∣∣∣∣∫
Ω

uutdx
∣∣∣∣1/(1−α)

≤C
(
‖u‖s

p +‖ut‖2
2

)
.

Hence, Lemma 2.4 gives∣∣∣∣∫
Ω

uutdx
∣∣∣∣1/(1−α)

≤C
[
‖∇u‖m

m +‖ut‖2 +‖u‖p
p

]
. (3.14)

Therefore,

L1/(1−α) (t) =

(
H1−α (t)+ ε

∫
Ω

uutdx+
µ1ε

2

∫
Ω

u2dx
)1/(1−α)

≤ C

[
H (t)+

∣∣∣∣∫
Ω

uutdx
∣∣∣∣1/(1−α)

+‖u‖2/(1−α)
2

]

≤ C

[
H (t)+

∣∣∣∣∫
Ω

uutdx
∣∣∣∣1/(1−α)

+‖u‖2/(1−α)
p

]
≤ C

[
H (t)+‖∇u‖m

m +‖ut‖2 +‖u‖p
p

]
, t ≥ 0. (3.15)

Combining (3.11) and (3.15), we obtain

L′ (t)≥ ΛL1/(1−α) (t) , t ≥ 0, (3.16)

where Λ is a positive constant. An integration of (3.16) over (0, t) yields

Lα/(1−α) (t)≥ 1
L−α/(1−α) (0)−Λαt/(1−α)

.

Hence, L(t) blows up in time

T ≤ T ∗ =
1−α

ΛαLα/(1−α) (0)
.

As a result, the solution of problem (1.1) blows up in finite time T ∗.

4. Conclusions

In recent years, there has been published much work concerning the wave equations (Kirchhoff, Petrovsky, Bessel,... etc.) with different
state of delay time (constant delay, time-varying delay,... etc.). We have been obtained the nonexistence of solutions for the logarithmic
m-Laplacian type equation with delay term in a finite time for negative initial energy.
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