
M ü h . B i l . v e  A r a ş . D e r g i s i , 2 0 2 1 ; 3 ( 1 )  1 0 2 - 1 1 1  

Sorumlu Yazar/Corresponding Author ORCID: 0000-0002-0906-7768 
 

 

 

 

Application of Intelligent Optimization Techniques to Spectral and Energy 
Efficiencies in Massive MIMO Systems at Different Circuit Power Levels 

Yığın MIMO S൴stemlerde Spektral ve Enerj൴ Ver൴ml൴l൴kler൴ne Farklı Devre Gücü 
Sev൴yeler൴nde Zek൴ Opt൴m൴zasyon Tekn൴kler൴n൴n Uygulanması 

1Burak Kürşat Gül , 1Necmi Taşpınar   
 
1 Department of Electrical and Electronics Engineering, Erciyes University, Kayseri, Turkey  

1burak.gul@erciyes.edu.tr, 2taspinar@erciyes.edu.tr                                                    Araştırma Makalesi/Research Article 

 

A R T I C L E  I N F O   A B S T R A C T  

Article history 

Received : 9 March 2021 
Accepted : 22 March 2021 
 

 In cellular communications, whose usage continues to increase day by day, it 
is seen as a necessity to increase the area throughput in order to avoid data 
traffic density problems. For this, it is aimed to increase spectral efficiency 
by using massive multi-input multi-output systems and also to keep energy 
efficiency high. It is known that spectral and energy efficiencies can increase 
with different number of user equipment served in the cell, number of active 
antennas and values of the transmission power. By using intelligent 
optimization techniques, optimum combinations of these three variables can 
be determined and samples with both high spectral and energy efficiencies at 
the same time can be obtained. In this paper, multi-objective genetic 
algorithm, multi-objective particle swarm optimization and multi-objective 
differential evolution algorithm are applied on three different circuit power 
sets and then results obtained are evaluated. 
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 Kullanımı her geçen gün artamaya devam eden hücresel iletişimlerde, trafik 
yoğunluğu sorunu yaşanmaması adına alan iş çıkarım yeteneğinin artırılması 
gereklilik olarak görülmektedir. Bunun için yığın çok girişli çok çıkışlı 
sistemler kullanılarak spektral verimliliğin artırılması ve beraberinde enerji 
verimliliğin yüksek tutulması hedeflenmektedir. Hücre içerisinde hizmet 
verilen kullanıcı sayısı, kullanılan aktif anten sayısı ve iletim gücünün çeşitli 
değerleri için spektral ve enerji verimliliklerinin artabildiği bilinmektedir. 
Zeki optimizasyon teknikleri kullanılarak bahsi geçen üç değişkene ait 
optimum kombinasyonlar tespit edilerek spektral ve enerji verimliliklerinin 
aynı anda yüksek olduğu örnekler elde edilebilmektedir. Bu çalışmada çok 
amaçlı genetik algoritma, çok amaçlı parçacık sürü optimizasyonu ve çok 
amaçlı diferansiyel gelişim algoritması üç farklı devre gücü seti üzerinde 
uygulanmış ve elde edilen sonuçlar değerlendirilmiştir.     
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1. INTRODUCTION 

The usage of cellular communication is also becoming widespread with the widespread usage of wireless 
communication systems, which have managed to become an indispensable part of our daily life thanks to the 
facilities they provide. The increase in both the number of cellular network users and the amount of data 
interacted through these communication systems is very rapid. This increase in data usage is so high that the area 
throughput (TR) may need to increase hundreds of times in order to avoid density problems in cellular network 
data traffic [1].  
Increasing spectral efficiency (SE) in cellular communications is one of the actions to increase area throughput. 
This term, which expresses the usage efficiency of the unit transmission band, means the number of bits 
successfully transmitted with each complex valued information sample. Spectral efficiency can increase by 
increasing some parameters such as the number of active antennas, but these situations generally cause 
extremely high energy consumption [1]. Nowadays, high energy efficiency (EE) is desired because high energy 
consumption is not an acceptable situation due to both being harmful to the environment and economic reasons 
[2]. Expressing the number of successful bits transmitted with unit energy, energy efficiency generally decreases 
at the points where SE increases, and there is a trade-off between these two values.  
It is known that high SE [3-6] and high EE [7-11] levels can be seen using massive multi-input multi-output 
(massive MIMO) systems, which are known to serve a large number of users by using a large number of 
antennas. Improvement studies can be made on the trade-off between SE-EE by using Massive MIMO systems 
[12-13]. There are studies in which some factors (beamforming vector, power allocation etc.) are tried to be 
optimized in massive MIMO systems [14-17]. Studies to improve the SE-EE trade-off through intelligent 
optimizations are known [18-20]. There are studies in which the most appropriate values of SE-EE trade-off are 
determined by accepting some parameters as independent variables for intelligent optimization techniques [21-
22]. In these studies, SE-EE trade-off is optimized with respect to the transmit power and number of active 
antennas. In [21] two new methods have been developed from particle swarm optimization (PSO), which are 
weighted-sum PSO and normal-boundary-intersection PSO, to solve the multi-objective optimization (MOO) 
problem. In the study linear zero forcing, maximum ratio transmission precoding and random transmit antenna 
selection are used. In [22] a multi-objective adaptive genetic algorithm (MAGA) is developed in which fitness 
assignment and mating selection stages have been improved. This algorithm, which relies only on non-
dominated SE-EE values in the gene pool, has been found to be more successful compared to some other 
algorithms.  
In the rest of the paper, detailed information about the system modelling and the working principle are given in 
Section 2. Simulation results and evaluation of the obtained results are given in Section 3. Finally inferences 
made from the results are given in Section 4. 
   

2. SYSTEM MODEL 

The basic mentality of massive MIMO systems is that the number of active users (K) and the number of active 
antennas in the cell (M) increases considerably, and consequently, more successful cellular communication is 
provided. In these systems, it is known that the cellular system can be used in a much more resistant way against 
intra-cell interference, inter-cell interference and noise by providing the M >> 1 and M > K conditions [1]. In 
standard massive MIMO systems, time-division duplex (TDD) is used because this technique requires fewer 
pilot bits due to its reciprocal nature. Figure 1 shows an example of TDD and an example of a coherence block. 
Each coherence block contains as many complex-valued samples as multiplied of coherence time (TC) and 
coherence bandwidth (BC). 

 
Figure 1. TDD multicarrier modulation scheme [1]. 

 
 
The first step of the calculations of the study is the creation of the arbitrary cells. At this stage, arbitrary cells and 
correlated Rayleigh fading channels are created according to the instantaneous values of K, M and transmission 
power (p) independent variables as represented in (1): 
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 , ( , , )SE EE Calculate K M p                                                                                  (1) 

 
Then the spatial correlation matrices (R) of these channels are created and the average channel gains are 
calculated. After these processes, the realization and channel estimations of the channels are made. These data 
obtained are used in the calculation of spectral efficiency and energy efficiency values. While calculating the 
instant spectral efficiency, certain ratios of SE values on the uplink (UL) and on the downlink (DL) directions 
are collected as represented in (2). SE in UL direction represents detecting information signal with a linear 
acquisition combination whereas SE in DL direction is determined by choosing the larger of the hardening 
bound or the estimation bound [1]. 

K
DLUL DL

1

SE SE max(SE ,SE )( )
j

jkj jk jk
k

  m n                                                                                                           (2) 

where j is the number of cells and k is the number of users.  SEDL represents hardening bound of SE in DL 
direction and SEDL represents estimation bound of SE in DL direction.  
When the SE calculation is complete, the EE value is calculated for the same combination of input parameters. 
This calculation is as in (3): 

TR
EE

ETP CPj  
j

j j

                                                    (3) 

Here TR is obtained by multiplying SE with bandwidth (B) and then it is divided by the sum of effective transmit 
power (ETP) and circuit power (CP) [1]. Circuit power consists the sum of fixed power, transceiver chains 
power, channel estimation power, coding/decoding power, load-dependent backhaul power and signal processing 
power. 
A databank is created by making calculations for all permutations of independent variables in the specified 
ranges, and the true Pareto optimal front (POF) of these data is determined. An example of this operations is 
given in Figure 2. Here, SE and EE pairs calculated for all input values in specified ranges are shown with green 
curves, while true Pareto optimal front, which is the combination of all non-dominated points, is shown in red. 
When POF is examined, it is seen that this curve is neither concave nor convex type and whether it increases or 
decreases in a certain order. It is one of the preferred methods to estimate the Pareto curve by obtaining sample 
points close to this curve with successful intelligent optimization techniques, instead of complex and long-time 
determination of this curve, which cannot be obtained with a simple formula. 
 

 
Figure 2. SE-EE values in cases where various independent variables are used. 

 
With usage of intelligent optimizations, without determining all possibilities of the SE-EE trade-off, successful 
combinations are found so non-dominated SE-EE values are able to be determined in a much shorter time. In this 
paper, some multi-objective optimizations have been used since SE and EE are tried to be found at the same 
time. These are the multi-objective genetic algorithm (MOGA), multi-objective particle swarm optimization 
(MOPSO), and multi-objective differential evolution algorithm (MODEA). 
The two basic stages of MOGA are crossover and mutation stages, and these operations are applied with certain 
probabilities to random elements. In the crossover stage, a new member is tried to be created by hybridizing the 
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characteristics of two population members, and then small changes can be made in the mutation stage. After 
these stages, the detected non-dominated elements are replaced by randomly selected elements from the old 
population [23]. 
MOPSO is a herd-inspired optimization that updates all population members at each iteration. Each member 
finds its next speed, influenced by its previous speed and the speed of the swarm leader. If new solutions that 
mutate with a certain probability not dominated by the old solutions, they are saved [24]. 
MODEA updates all members of the population in each iteration. It is based on replacing a random parameter of 
instant member with the parameter obtained after differential operations applied to three random population 
members [25]. 

3. RESULTS AND DISCUSSION 

The parameters used in the simulations and their values are given in Table 1. As stated in Table 1, the layout of 
the cells is square pattern so 16 cells are placed in 4x4 way. The layout of the cells and the arbitrary cell structure 
are shown in Figure 3. 

 Table 1. Simulation parameters 
Parameter Value 

Network layout Square pattern (wrap-around) 
Number of cells L = 16

Cell area 0.25 km x 0.25 km 
Channel gain at 1 km ϒ = -148.1 dB

Pathloss exponent α = 3.76
Shadow fading (standard deviation) σsf = 10

Bandwidth B = 20 MHz
Receiver noise power -94 dBm

Samples per coherence block 𝜏c = 200 
Pilot reuse factor f = 1

 
Figure 3. Illustration of cell layouts and an arbitrary cell [1]. 

 
Each cell consists of squares with a side length of 0.25 km and the users are randomly distributed within the cell. 
After all users are placed within more than 35 meters of each other and the base station (BS), the calculation 
process is started. The boundaries of K and M are defined as 10-100 and boundaries of p are defined as 50-200 
mW.  Proportions of SE for uplink direction and for downlink direction were chosen as 1/3 and 2/3, respectively. 
In order to examine the effects of circuit power parameters on energy efficiency, three power sets given in Table 
2 were used.  
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Table 2. Values of circuit power sets 
Parameter Set 1 Set 2 Set 3 

Fixed power: PFIX 10 W 5 W 5 W 
Power for BS local oscillator: PLO 0.2 W 0.1 W 0.1 W 

Power per BS antennas: PBS  0.4 W 0.2 W 0.2 W 
Power per user equipment: PUE 0.2 W 0.1 W 0.1 W 
Power for data encoding: PCOD 0.1 W/(Gbit/s) 0.01 W/(Gbit/s) 0.03 W/(Gbit/s) 
Power for data decoding: PDEC 0.8 W/(Gbit/s) 0.08 W/(Gbit/s) 0.24 W/(Gbit/s) 

BS computational efficiency: LBS 75 Gflops/W 250 Gflops/W 150 Gflops/W 
Power for backhaul traffic: PBT 0.25 W/(Gbit/s) 0.025 W/(Gbit/s) 0.075 W/(Gbit/s)

The intelligent optimization techniques, which are used to identify suitable solutions on SE and EE trade-offs, 
have a population of 100 elements and make 50 iterations. For power set 1, the energy efficiency versus spectral 
efficiency for MOGA, MOPSO and MODEA is given in Figure 4a, Figure 4b and Figure 4c, respectively. For 
power set 2, the energy efficiency versus spectral efficiency for MOGA, MOPSO and MODEA is given in 
Figure 5a, Figure 5b and Figure 5c, respectively. For power set 3, the energy efficiency versus spectral efficiency 
for MOGA, MOPSO and MODEA is given in Figure 6a, Figure 6b and Figure 6c, respectively. In order to be a 
reference point for optimization results, the calculated curves for all independent variable permutations are 
shown in green, and the ideal true POF for these values is shown in red. Non-dominated values determined 
through intelligent optimizations are marked with black asterisks.       

 
Figure 4a. Comparing true POF and performance of MOGA on power set 1. 

 
Figure 4b. Comparing true POF and performance of MOPSO on power set 1. 
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Figure 4c. Comparing true POF and performance of MODEA on power set 1. 

 
Figure 5a. Comparing true POF and performance of MOGA on power set 2. 

 
Figure 5b. Comparing true POF and performance of MOPSO on power set 2. 
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Figure 5c. Comparing true POF and performance of MODEA on power set 2. 

 
Figure 6a. Comparing true POF and performance of MOGA on power set 3. 

 
Figure 6b. Comparing true POF and performance of MOPSO on power set 3. 
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Figure 6c. Comparing true POF and performance of MODEA on power set 3. 

When Figures 4, 5 and 6 are examined, it is seen that some SE-EE values can be detected around the true POF 
via intelligent optimizations. When the figures are examined in detail, it is seen that each algorithm can find the 
solutions with different characteristics (balanced distribution on true POF, etc.) by different success. 
Performance metrics were calculated in inverted generational distance (IGD), maximum spread (MS) and 
spacing metric (S) criteria to examine the success of algorithms in different areas. IGD represents the distance of 
the predicted Pareto curves to the true Pareto curves, MS means the overlap between the predicted Pareto and 
true POF, and S means the distances of the two consecutive solutions to each other. While IGD and S are 
expected to be low, MS is desired to be high. Table 3 shows the performance metrics of the algorithms on 
different circuit power sets.  
 

Table 3. Comparison of the performance metrics 
               Algorithm IGD MS S 

S
E

T
 1

 MOGA 7,78*105 0,77 4,12*105 
MOPSO 1,50*105 0,94 4,30*105 
MODEA 3,85*105 0,91 2,83*105 

S
E

T
 2

 MOGA 1,53*106 0,81 1,45*106 
MOPSO 1,25*106 0,85 3,47*105 
MODEA 1,12*106 0,87 6,46*105 

S
E

T
 3

 MOGA 2,31*106 0,78 6,25*105 
MOPSO 6,38*105 0,87 6,47*105 
MODEA 9,96*105 0,75 9,78*105 

 
 
Figure 7 shows the variations of the numbers of non-dominated solutions versus the number of iterations on 
power set 1 for algorithms used in simulations. When the figure is examined, it is seen that the algorithms' 
tendencies to find non-dominated solutions differ. For example, it is seen that while MOGA shows a fluctuating 
trend, MOPSO generally increases at the same rate. 
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Figure 7. The variations of the numbers of non-dominated solutions versus the number of iterations for 

algorithms used in simulations. 
 

4. CONCLUSION 

Compared to finding all spectral and energy efficiency values and then determining true POF, simulating Pareto 
curve with intelligent optimizations involves very little operation. With a sufficient number of samples, an 
acceptable level of successful Pareto curve could be obtained. When the simulation results are examined, the 
most successful results are obtained on power set 1. When the algorithms are compared, it is seen that MOPSO 
has generally obtained more successful results in the three criteria mentioned and found a greater number of non-
dominated SE-EE values. 
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