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On the Generalized Tricomi’s Equation

- A. OKAY CELEBI

Deparimeni of mathematics, Faculty of Science, University of Ankara, Ankara
(Received, 2 february 1968)

The relation between the I - monogenic functions and the solutions of the
elliptic partial differential equation

U U  k  8U
+ b — =0
ox® oy* ¥ oy :

is known {6]; the object of this paper is to investigate the properties - of the

generalized Tricomi’s Equation

I N (. “Yu=o

ot 5
j axj x; 6x].

and its solutions which will be called as X - harmonic. functions, Our study is
composed of three sections,

In section I we have investigated some properties of -the solutions of the
equation (%),

’ In section IT the well -known Lord Kelvin's theorem and Almansi’s expan-
sion theorem have been established for X-harmonic and 3-polyharmonic functions.

In section III we- have proved Brill’s theorem for X - polyharmonic functions
which was previously given for the harmonic functions,

INTRODUCTIUN

Some partial differential equations may have different
properties in the plane. As an example, the equation

U *U
(1) y + = 0
axl ay.l
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is elliptic for y > 0, parabolic for y = 0, and hyperbolic for y < 0.
In the case of elliptic type, putting

2
E = ¥R, =«
3

we transform equation (1) into

U U 1 U
(2) + + ~ 0
o8 on? 3¢ ok

which is known as Tricomi’s equation f[1].

The equation (2) and it’s various general forms have been
the bases of many researches; it will be explained whenever
we will refer to it.

The object of this paper is to investigate the equation

o*U o*tU kE, oU E, oU
I + o —— =0
ox,’ ox*, x, ox, Cox,  ox,
or briefly .
N U E, oU
3) b ( . ) ~ 0
i=1 ox} x;, ox;

which will be called as “Generalized Tricomi’s Equation” and
its solutions, “X — harmonic functions” [2], [3], [4], where U
is U= U (x,x,, .., x,) and k, are the constants which are
called the indices of the equation.

I. SOME PROPERTIES OF THE SOLUTIONS OF EQUATION (3)

a) Correspondence principle: Let us consider the following
transformation.

1-k,
n j
4) U(xyp2,...,x,)=U (x,%,,...,%x,) I]l %
j=
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Differentiating (4) we have

U oU, |, 1-k
— = II x; s 1 <1
ox, - ox, J=l
2Ur PU 1k
= Il =, s Tl
ox’ ox? Jj=l
olU U, 1—k, o 1K,
= ( —+ U, ) 7 x; s i =1
ox, ox; x; j=l
*U eU  2(—k) oU, (1—k)
= [ + -+ 1
ox}? ox;? x; ox; x?
1—k, . 1k
——- U, ] %, s =l
x} j=l !
and so
n Uk aU L1, U kE, U, .
) ()
i=1 A\ ox? x, - ox, i=1\ ox?2 . x, Ox,
. 7 U, 2—k, oU, a1k
X ( 4 )] Il x;
1=l 3xi2 x; 8xi j=l
or
. s U k, oU . U, p; U, . -k
s ) g (2
i=1\ ox? x;, Ox; i=1\ 9x? x; ox/ J=1
' where )
E, 5 i <1
. D, =

2k ;iz=1.

It is obvious that,if the function U (x, x,...,%,) is a
solution of the equation (3), then U, (x, x,,...,x,) is a solution of
the equation with the indices k, , k,,.. ..k, ,2 —k,,...,2 —k,
This property is expressed by .
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xl—kj
i

G) Ulkyhy. kb= U {k,ky. . k_,2kpe 2k}

J

n
1°

The property that will be obtained has been previously used
for very special types of Tricomi’s equation {5], [6],[7]. First

1k,
. r 7.
let us prove the uniqueness of the factor /7 x, in
j=l

the transformation (4). In fact, if we consider

n m;

U (x,x,,...x,) = U, (x, x,,....%, ) ‘Hl x;
]:

instead of (4), then we obtain

., U k, aU L, &0, k, U,
£ )=z (5 )+
i=1 axiz x; axi i=1 6";2 x; 3xi
. ,?U, Kk +2m, aU, . mik,+m—-1) . om
+ 3 (—+ )+ 2 Uil Ml
=l \ gx? x; ox, i=l x? ' j=l

If one requires the proceeding equation to be a Tricomi’s equation
then the condition

m, (k, + m,— 1) =0

must be satisfied. As m; = 0 does not give anything new we
conclude that '

m,=1—Uk

. . 1k
This proves the uniqueness of the factor I7 x, " of (4).
j:l

Conclusion: If some of the indices of the equation (3), for

example k, , k,,..., k_, are equal to zero, (5) can be written in
the form '

1-k :
%

6) U{0,0,....0k,... .k }=U,100,...02Fk,.2%k) _"l
J=
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In addition to this, considering k, =k, = ... =k, = 2 we
get

U {0,0,...,02,...,2}) = Ui {00,....0} IT %
j=1
So ‘the following stétement is established:

If V(x,, x,,...,x,) is a solution of Laplace’s equai‘ion then

n —1 - .
U (%, %,...x,) =V (%, x,,...,x,) ']lej isa solution of
J:
the equation

PU  2U 2U 2 U 2 oU
b b b — — =0

ox? 2% ox?; x, Ox, x, Ox,

1

b) A remarkable solution: Now we look for a solution of
the form
Xy, K,) =1
where

r= (224 x? 4+...+ &)

and m is a constant to be determined. Using the first and second
derivatives of U, we obtain

7 o ki . 0 n m—2

X ( + )U:m(m——2—]—n—i— k) =0.
i=1 axiz xi axi ' =1
In order that r™ to be a solution, neglecting the case m = 0

which gives a constant, we find the condition

m=—(n—2+ Xk) .
i==1
That is, the equation (3) has a solution of the form
— n—24+ %k)
(7 U=r i=1 ;

in other words (7) is a X' — harmonic fanction with n variables.
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The solution (7) of the equation (3) has the following pro-
perties:

1. If all the indices k; are equal to zero, then this solution
is reduced to the solution of the Laplace’s equation with n inde-
pendent variables.

2. Also the solution (7) is the generalized form of the so-
lution of Tricomi’s equation which was given by Weinstein in
the case of two variables [6]. In fact, if we take n = 2
ki &+ 0, k&, = 0 then we obtain U = %, .

3. If the indices k, vary such that the sum

n -
2 k, is constant, the solution (7) does not change at all.
i=1

The last property may take an important part in establis-
hing the generalized potential theory for the equation (3) which
was first studied by Weinstein.

¢) Solutions by the method of separation of variables: Let
the equation (3) be in the form

U U k, 8U K, oU
+ot 4 —— .t =0.

2 2
0x, ox* x, ox

@

x - 0x

] n n

It is clear that choosing the equation in this form we will not
spoil the generality of the problem, and the reason to chose it
so can be easily understood in the following. To find a solution of
the equation (3’).in the form

U= Xi(x) . Xo(22) . ... . X(x,)
replacing U in the equation (3’), we have
X" X E X/ E X,/

o —— —

X1 ‘Kn xl Xl xn Xn

(8)

=0.

In order to find solutions of (3' )} which satisfy (8), we must have
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X"
= }’1
X
X",
Ay
, X,
9) X/ E X/
} X, x, X,
X", k, X',
+ =4,
X, x, X,

the equation (8) and the system (9) are equivalent. So we can not
expect that all of these constants to be positive or negative; sup-
pose that

Ay Ay 5oy by >0

Aity o Py neveg Ay < 0.

A = a]2
we get
X] = ozj2 X]
or '
% X; , %% . .
ijAje +Aje ;1 =710 .
On the other hand if
o= — B
we get
X = — P X,
or

X, = B,cosf,x, + B sinfx; itl =k <11 .

AJ., Aj' ; B, , B’, are arbitrary constants. Also it is necessary to
find the solution of the equation with the index I < v < n of the
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system (9). These equations can only be integrated by using the
power series in a neighbourhood of a point. The solutions will
depend on the variables xy, indices kyand parameters Av. As it
is known the solution Xy is of the form '

Xy =0Cy Yi(xv; Av,kv) + CV Yo (xv; Av, kv )

where the functions Y: and Y, are the solutions of

X”V kv le
+ — Ay =0
Xv Xy Xy

in the form of power series and Cy, C’v are arbitrary constants.

So the required solution using the method of separation
of variables is '
i ax L A
(10) U=1II {A,e**+A'e ). II | B, cos f,x,
s=1 s=i+1

—ax

+ B/sinfx, }.

n
s=

I { CsY;(xs’. ﬂ's * ks)+Cs'Y2(xs; }’s ’ks ) } *

We will not investigate the different forms of the equation
(10) in the view of different indices.

‘The method of solution by separation of variables may
imply a method of solution of the following type of generalized
Tricomi’s equation. '

U Kk, oU k., oU

U - : N
(11) 4o+ L RS — —¢U.
ox}? ox ? x, . 0Ox, x, ox,
In fact, in this case we obtain
X, X, kX k, X,
o+ o — =2 A,
X ' X, x X, x, X,

from the system (9). It is evident that the solution of system (9)
with the condition
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i' A =c

i=1
is the general solution of (11).

d) Homogeneous solutions: To find a solution of the. equation
(3) of the form

U = f (),

Where 2 P )
X+ x4,
% =
8

and o is a real number; substituting U in (3) we obtain

(12) o (3202 + 25%) I (%) + [ (6—1) e

-2 p-2

kox, +...+k_, %,

+

%P2 ,
-+ (e+1—k,) 2] 7 (%) = 0.
One of the properties of the last equation is that it can be reduced

to an ordinary differential equation for p = 2 . In fact, putting
¢ = 2 we have

(13) 2 (z2+z22) f” (zz) + [2"0 + (kl + kz +...+ kn—l)
+ (3—k,) 5 1 f () = 0

or

(14) 25 (L4 2) f (=) + [(n—=1) + (b + kst k)
+ (3—k,) m] f (m) = 0 .

(14) is an ordinary differential equation of second-order; for
every solution f of this equation, (3) has a solution of the form

xf—{—...—i—xzn_l )

2
xn

’kU;ch=f<
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Another solution of (14) can be obtained in the case of two
independent variables for ¢ = 1. In order to have an ordinary
differential equation from (12), the indices k , k,,..., k,_,
must necessarily vanish, but in the case of two independent
variables we can have a solution for arbitrary indices when
¢ = 1 ; for,

: X
z =

X2
and we have from (12)

o (1422 f (s) + [k + (2—k) 2] [ (5) = 0 .

It is obvious that the solution which is obtained for ¢ = 2
is also valid in the case of two independent variables.

e) Product of Selutions : Let

U1 = U1 (xl, F % P xn) N U2 = Uz (xl, Xge s oy x")
be the two solutions of the equation (3). The following property
will be proved:

If U, U, are the iwo solutions of the equation (3), the necessary
and sufficient condition that the product V = U, . U, be @ solution
of the same equation is that U, = constant, U, = constant be ort-
hogonal.

In fact substituting the derivatives of 1" in (3) we get

.,V Kk oV . U, k,.‘ U,
(15) 2( +————):2[U2( +————)

i=1\ 9x? x, Ox, i=1 ox} x;, ox,

: 4o 1.

ox, = Ox,

+U(82U2 k, 8U2) oU, oU,
1

2
ox, x, Ox;

Since Ui, U, are solutions by hypothesis, if V is also a solution
we must have

ol U,

n

i=1  ox. ox,

1} 1
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that is, U, = constant, U, = constant are orthogonal. These are
the necessary condition of the proof. The sufficient condition can-
be seen from (15).

IL LORD KELVIN'S THEOREM AND ALMANSI’S EXPANSION FOR
= - HARMONIC FUNCTTONS

a) Lord Kelvin’s theorem: It is known that if U (x, 2,. . .,%,)
is a harmonic function, the function ¥V which is defined as

: : —(n-2) x, %, . x,
(16) V(%122 ..,%,) —r U(-—,v——,..., ) ,
' ” T r

i

P = X x2
i=1

is also a harmonic function [9], [10]. The relation (16) denotes
Lord Kelvin’s theorem. In the following this theorem will be
extended to the X — harmonic functions.

Choosing a function ¥V of the form

Vix ,%,....x,) = r U (§,§,...,&,) -
where :
x;
& =
.
and let
: . ot E, o
A = X ( +— ———)
i ol x, ox;

and U = U (x,, x,,..., x,) be a 2~ harmonic function, then V
must satisfy 4Z V' = 0. Now our problem is reduced to determine
the power m of the function V = rm U. Calculating the derivatives

we obtain
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12
14 s ™ . oU 0¢;
—=mr xU+r { ¥ —— b
o, =1 e o,
an m—4 m—2
=m(m—2)r x*U~+mr U
ox?
s n oU 3§J
+2mr x | X 4
j=1 ij ox;
em ,, ,U o o, . oU &%;
+r 2 + 2 — bos
ik=1 9L of, ox, ox j=1 o0& ox}

+ = z ]
ik=1 9Fof, i=1 ox, o,
j+k
L oU P ko,
+ E—1 8 (—+ ) 1)
j=1 8£J i=1\ ox? - x, x
. oU g
+2mr { XY — [ 2 « 1}
j=1 @, =1 ou,

+m (m—24nt+ Zk )r U=0.
i=1

The derivatives of &, give the following .values:

n g 9 n 0§ 0§, n o&; —
2(' )2= oy —0, Pt =,
l=1 ax t=]. axi axi l=1 8xi

n aZEj k; «aéj n —4 kj —2
2( 4 — ):-2(7;—2—[— .ki>xjr + —r .

2 o i=
ox, x; 0x; 7
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Substituting these in the above equation we have

n~(62V -k, 6V) . PU K 8U
- LA )

2 -4 — — X —
i=1 \ 9x? x, Ox j=1\ o2 & 0
N N oU n 8U
—2(n—2+ 2k) [ 2o,—]—2m[ Zux 1}
i— i=1" o i=1" g, ,

+m (m—24nt Sk )r  U=0
. i=1

or )
7 n m-—2 n aU
(A7) ASV =(m—2+n+ S k)r {mU—223 & —}=0.
=1 ’ i=1" o

As we can not impose further conditions on U,

m = — (n—2+ 3 k)

i=1

is deduced. So we have established Lord Kelvin’s theorem for

2 — harmonic functions in the form

T g T e v e
2 r2

V (%1, %2, . .0 %8,) =T i=1
' 2

—(n—2-+ > k) x, X, xn.
= y( )

r r

It is obvious that in the case where all k, are equal to zero, then

Lord Kelvin’s theorem (16) for the harmonic functions is obtained.

b) Lord Kelvin’s theorem for X —polyharmonic functions:
Lord Kelvin’s theorem has been extended for polyharmonic
functions of order p [9]. The same method which we used to
extend this theorem to the - harmonic functions can be applied
here to extend it to 2- polyharmonic functions of order p. When
U=U (x1, ;..., x,) is a X — polyharmonic- function,
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x? . x,  ox;

or P
Ax U =0

where p is a positive integer. Appling A% to both sides of (17)
p—1 times successively we can only get a result in the form of (17)

| i E
if we can prove that { m—2 X & —— (U is a

i=1 oF.

J

2 — harmonic function. For this purpose the following lemma is
given. :

LEMMA:

» n O\m , n o \m
4z ( 2.x; ———-) = (2p + 2 % ) Yih>
j=1" ox, j

Proof: First let p = 1, m = 1.

(18) Az(‘x%)={'£‘( & +_’ii)}(x,- ‘ a)

i=1\ gx? x;, ox; ox;
A 8 ., ® k@ * kK 0 2
A D D6
8xj i=1 \ ox? x, ox, ox; x; 6xj ‘8xj

i%j

We obtain with an easy calculation

o , @ 2 # 2 ® . o
—_— (x——) =—+ x; H (x]. ) =2 — 4%, —

o, ! ox; o asz asz ox; 6xj2 ox .}
and

T2 kj 7} 0 0? o kJ. 0

L
ox? x, Ox ox ox? . ox}? x, Ox,
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& 2* kj 0 0 kj &
+kj 222 2+_ +xj( 3+_._ z)
6xj . Bx]. x; 3xj 8xj x; 6xj
On the other hand, we can write
- "2
9 ( kj 0 ) B kj N kj 3
O x; O x ox? xj2 Ox;
or ‘
k. &? 0 k. 0 k. 0
i j i
e
X asz 8x] x; O sz ox
that is
- k z * 0 0? k 7 ki 2
8xj3 %; 8sz ” ox; 6xj2 x; O %; ox;
orT.
? kJ ? 0 2 kJ 2
() E) =)
8xlz x;  ox; axj ox? %; @xJ
0 0* kj o
vy ()
ox 8xj2 x; O

Substituting this in (18) we get

2 o\ . ,® ko
()= (s M E (Fr o)
ox; . Ox; i=1 \ gx2 x;, Ox,

& kj 0 0 0 kj 7
e )

2 A 2
8xj x; axj 8xj 6xj x; 8x].

If we take the summation on j we obtain

i o L B8 @
Az( 5 ———)=2 b ( +— —)4( b5 xj__) As

ja=1 j=1 2 . j=1 :
J 6xj J 6xj x; 8x] J 6xJ
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or
. 2 ) . 2
Az( ij—)=(2+ 3% )Az

J 6xj J axj

which proves our lemma for p = 1, m = 1.

In order to complete the proof it is sufficient to apply the

n 0
operators Ax p-1 times and X x;—— m—1 times; indeed

=1
J 6xj

P n n 9 P
4z ( Z x ————) = (2p+ 2 x —) Vb
J j=1" ox,

and

AE( z xj———) =(2p+ le——) 4% .

j=1 . jez1 .
J 8x] J= 3x]

When U is a X — harmonic function with necessary conti-
nuity conditions '
n 0
{m—2 Y ¢&— U
j=l " 0

is also 2 — harmonic since
i n 0 n 8
4y {m—2 Z'Ej—————} U=mdx U—2A2(_Z' Ej———) U
=1 %

i=1" o

Y

= m Az U—2(2+ te
. j=1 a&]
is an identity

Now the operator A2 can be applied successively to (17)
in order to obtain a X' — polyharmonic function of order p.

. ] - ] ,
A5 [ U] = (m—2—|—n—|— ij) As [r {m-2 2§ —)U]
i=1 j=1 3§j
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= (m—34nt 5 k) (m—dtnt Fk)r | (m—2)
i=1 ju=1

n a\ n 2
—2 X5 —4 {m—2 Y —1) U.
=t g =t g,

It is evident by the lemma that
n 7 ' o 0
{(m—2)—2 2 §— {m—2 2 §—— U
j=1"2; j=1 o

is 2’ — harmonic. Proceeding in” this manner, one obtains

19) A% [ Ul=r © | T (m—2itnt - 3) L 9 (U)
i=1 i=1
where
P a 2
S(U)=[1 {m-2(p—i)—226— )1 U
‘ i=1 ji=1 65

J

If V = m U is required to be a 2'— harmonic function we must
have ‘

P n
I (m—2itnt+ Zk)=0
i=1 i==1

or

m—2itnt Sk =0.

i=1

So if the power m is chosen as
m=—(n—2%+ k) i<p
i=1]

then ¥ is a X — polyharmonic function of order p. Here the most
important term is

m=—(n—2p+ z k) .
i=1
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Hence it is proved that Lord Kelvin’s theorem for X — poly-
harmonic functions with n independent variables has the form

V:r i=1

e 1y
2

—(n—2p+ X k)  x %,
; U( )

2

r r

¢) Almansi’s expansion for X — polyharmonic funetions: It
is well-known that E. Almansi had given an expansion of poly-
harmonic functions in terms of harmonic functions [11]. In
this paragraph a similar expansion for X — polyharmonic functions
will be given.

Let U=U (x,, x,,...,x,) be a 2-harmonic function, that is
Az U = 0 ;
and let
(20) V (x, 2p...x8)=1r" U (x, %,,..., %)

be a function which satisfies the equation

(21) AE V=45 (™ U) =0 .

Thus the problem is reduced to find a number m which fits the
condition (21). Using derivatives of (20) we have from (21) for
p = 1 and p =.2 respectively

- n n a
As [ Ul =mr {(m—2+4n+32k)+25x—}U
. i=1 < i=1 ax'.
and

A% U] = m(m—2)r " {(m—4+n+ 5k )
) i=1

» 0 . m 2 9
+2 32—} {(m—24n+ T k) +2 X x,—} U.
i=1" o, i=1 i=1 " ox,

Proceeding in this manner and after necessary simplifications
one obtains
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. 2 m—2p k p-1 1 '
(@) ASUL= | T (me2i)) (T (e (pi)

7

+nt X k+2 Zx—1) U=0.
i=1 i=1 8xi
This relation gives
p-1
HH(m—2i)=0
i=0

or
m=2i; i=01, ..,p—1.

Thus, the equation (21) is satisfied for m = 0,2,..., 2p — 2;
that is a 2~ polyharmonic function V of order p can be expressed

in the form

(23)  V=U+ U +...4 -2 Up—1
or briefly '
p-1
V= X U,
i=1

where Us, U, ,..., U,_, are 2 — harmonic functions.

The expansion (23) which was established for X- polyhar-
monic functions is Almansi’s expansion for the polyharmonic

func';ions when U, (i = 0,1,..., p—1) are harmonic.

1. THE EXTENSION OF BATEMAN’S AND BRILL’'S THEOREMS TO
¥ - HARMONIC FUNCTIGNS

a) Bateman’s theorem: H. Bateman had given the following
transformation for the harmonic functions in n independent
variables in his book [4] which will be referred here as Bateman’s
theorem.
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1—n/2 r2—a? r2 |- a2
(24) (%1 + ix2) F , ~
2 (%1 + ix2) 21 (%1 + ixy)
ax, ax,
—— e ]
x + iz x1 -+ ix,

is @ harmonic function if F (x,, x, ,..., x,) is harmonic

n —————
(r2 = .lejz, t = v/ -1, a = real constant).
J=

In this paragraph we want to determine m such that

r2— a2 r2 -+ a2

2

@5) V= (m+in)m U [— )
2(x1+ix2) 2l(x1+lx2)

3 a’xn

]

X1 -+ 12 X1+ ix2

ax

be a solution of generalized Tricomi’s equation with ky = k, = 0,
when U is a solution of the same equation.

Let &, &,. .., &, denote the variables in the brackets in (25):
(26) V= (24 ix)m U (&1, &,..., &) .

Replacing V in the equation Ax U = 0 and dividing into two
parts as follows

vV >*V
A (V) = -+
ox* ox,}
% )
A (V) = F ( n )
j=3 6xj2 %; ox;

then we can write

AT V = A4 (V) + A (V)



ON THE GENERALIZED TRICOMI'S EQUATION 21

Applying the Bateman’s transformation first to the pért A (V)
and caleulating the derivatives

ov eV a2V v

i 2 °

ox, ox, ox* ox,?

from (26) with respect to &, &,..., & and substituting these
‘in 4; (V), we obtain

Al(V): (3 4 imogm | 3 i [( % )2+( % )2]

L

j=1-9& jz ox, ox,
. - eu a¢, ok, %, ¢, n 6U
+ 2 [ + 1+.2 —
s il=1 65165, aX1 0x1 0%x> O%> j=1 851
jEl - -
82§j 62§j - m—1-l u o, 851 oU’
-+ -1} -+2m (x: + ixz) z ( + i )
ox2 o} ST =1\ oy o | g
. axXy
Taking into notice that & = ———— ;v = 3 and deriving
' x1 + ix .
- it with respect to x; and x, we get \
3§v - a Xy 85\) 1axy
= — N = = L] (1’23)
0%, (%4 ix2)*  ox? (21 +ix2)?
and
325\; 2 a Xy 825&\; 2 a xy
. = ’ - ? ("’23)
axl'z (xl -+ ixz)z 8x22 (xl -+ ix2)2
Using these derivatives we have
2, BE.\ oE, OF,  0F, OF
(=) (=) =0tz — —+ = — =oitzy)
6x1 8x2 6x1 axl 3.’)62 6x2
20 . , ]
s s , % % .
+ —=0,(j=3); —+1i = 0,(j =3).
ox? ox)? ox, ox,
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These equations simplify the form of A; (V).

& and & are the form of

r—a? rz + a2 i (r2'—|— a?)
= ————— 5 = = — - H
2(x1 + lxz) 21(x1+lxz} 2(x1 + lxz)
we get ’
ok, 1 x4 4 2% —a? PE x4 .. 4% -a?
ox; 2 2(x + ixz)? ox,* (%1 + ixz)?
0&; i f(xf—f— wtx?, — @) ¢, x4+ .o -d?
6x2 2 2(x1 + ixz )2 ’ 8x22 (x1+ix2)3
08, i i(x2+ ... +a%, — a?) P& (x4 4-47 -0
6x1 N 2 2 (x1 —}—sz )2 ’ 3x12 (x1 —l— ix2)3
08, 1 x2 ..t —a D6 (2422 ~a%)
%, 2 2 (%1 + ixz)? ’ ox,’ (% + ix2)?

The above derivatives give the following results:

( 851 )2+ ( 661 )— . x32+...—|—x2n\—a2 )
2% 0%, (%1 + ix2)?
( 0&2 )2 o9& \, x2 4. ..+ 2%+ @
(Y- a
0x; 0x, (%1 + ix2)?
ox1  Ox x;, 0% X2 4. 4 %,
(28) +— =1
35\‘:1 b‘x1 6x2 8x2 (x1 + ixz)z
0%, 0%, o2&, &,
ox ox )} ox,” ox}?
081 o0& o0&, 08>
+ i =1 + 1 = — 7 .
6x1 0%2 3:\:1 ox:
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By (27) and (28) A, (V) takes the form

¥4 4A —a 22U
A (V)= (2 + im)™ {— '

(xl —l— ixz)z 8512
x4+t U

(%1 + ix)? 08,

Y x? + ...+ 22 or U
i

(x1 + ixz)z , 851652

-y ou oU
—|—‘ 2 m (x+ix,) (

—_—

o0& o0&, ) -

Applying the transformation on A, (V) and substituting the
derivatives of the function ¥ we obtain ‘

| aU -, , #U .\,
(29) A5 (V) = (xi + ixo)m | [ ( ‘ ) ]

X
o8} j=3 Ox;
.U n 0&; ) n a2U n 351 2
+—1 5 (—)1+ 21 2( )1 -
. 3522 j=3 6xj =3 351"‘ j=3 ax].
oU " o8,
+ o2 > ]
o506 i=3 ox ox,
. 2U .o - ek,
3 [ 3 1
=3 o of, =3 ox,  om
I+h "
U, P ko ok
b1 % ( + ) ]
o6 i=3 \ ox? o
L Y
+ [ 3 (—+ )
&, j=3 6ij x; ox
L eU N P k, o
v+ B3 ( + ) 1)
=3 2 1=3 ox? x; ox
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On the other hand we get the following results with the deri-

vatives of EJ with respect to x;,

keeping in view that

ax;
E] = 7j 2. 3 .
X1 + ixz
3, (8_51)22 xsz—{—...xzn’ :\:, (8_51)2 _ 2.l
j=3\ ox; (2, 4ix,)* j=3 \ ox; (x,+ix,)
n 2 2
5 3_5:) — Y (=3
j=3\ 0x; (x,Fix)?
. 0& 0& 2+ A o0&, 0F,
yo— = ——_0 (Lh=3);
j=3 ox; ox; (% 4+ r,xz)l j=3 ox; oOx;
(30) n—2 + z k;
a /0% k, & n 11k =3
Bty T
j=3 3x x; . ox; i=3 x+ix, x1 + ix2
n—2 + hy k;
n 6252 kj 352 n 1 —l— kj j=3
2z ( — —) =—i 2 =—
j=3 3x x; 0x; J=3 x;+ix; x + ix2
n P, kj 0§, k, a
2 ).
i=3 0% x; 0%; x, x1 + ix2
Using (30), A2 (V) takes the form
a2 n U k; oU
o (V) = (mt iz { ———— % ( RN
(%1 + ix2)* i=3 6§j2 x; &
x4 AP > U
(31 + i) ok,
x4+ 4, U ' +... 42, U
— : —21
(x1 —I— ixz)z 3522 (xl —|— ixz)z ) 651352
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n—2 -+ i'kj

_.}_

x1 -+ ix; 0& 08>

and after necessary simplifications we find for the suin

ATV = A (V) + A (V)

a2
Bl) As V=(xi+ixy)» { — — — Az U
’ . (x1 + ix2)2

2m—24n+4 Zn'kj

j=3 oU oU
(=)
%1+ ix; o0& . 0&>

It is obvious that, if U is a solution of generalized Tricomi’s equ-
ation (with &k, = k; = 0) and if V is required to be a solution of
the same equation we have

(32) Az V =4z [(x —|— ix))o U}~

: i S @ P
j=3 &1 06,

which gives us the condition

2m—2+n+ Sk =0
j=3

or
j=3 ’

m=1—

2

So, Bateman’s theorem for X~ harmonic functions (with the
condition k; = k; = 0) takes the form
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n + i’k}
j=3

1- —— r2—a?

V=(x1—|—ix2) 2 U [———————,
2(x1+1x2)
r2 - az - ax, ax,
s e en ]
2l(x1+lx2) x1+ixz x;—}—ixz

b) Bateman’s theorem for 2- polyharmonic functions: The
function :

0 0
U = (_ — ) U
o6, 8,

in (32) is also a 2 harmonic function; for it is evident that

0 0 0 7
ay (——i ) = (——i—) 4=,

I3 , 05, o0&, o0&,
Then applying the operator 4x p — 1 times successively to the
left hand side of (32) we get

A5 [(n+imm U] = { A [2 (m — )

v=

a ’ . m—p 0 . 0 (p)
+n—|~ ij]}(x1+zx2) (——*—‘—-l ) U.
i=3 o8, 0k,
This expression must be zero if the function (%, - i x2)= U is
required to be a X-polyharmonic function of order p, that is

{ ]}} [2(m—y)+n

V=1

n . m—p a 0 (p)
+ 2B (ntin) (——i ) U=0.
j=3 26, 2k
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So we get the. result

P " m .

II [2(m—vy)+n+ 2k ]=0
v=1 j=3

or
n -+ i'kj
=3
m=y—————, p=12,...,p.
‘ 2

A X polyharmonic function of order ¢ is always a X — poly-
harmonic - function of order ¢ 4 1 ; so the power in the
2- polyharmonic function (x; + x)= U which plays the most .
important part is :

n 4 :‘.7 kj‘\

j=3

m=p—
‘ 2

That is, Bateman’s theorem for Y- polyharmonic functions of

order p has the following form:

n + Zu’kl
P___. 72— g2
— ) . 2\(x1—l—ixz) )
12 4 a2 ax, ax,
] Ae"'*a ) ]
2z(x1—|—ix2) x1+ix2 . x1+ix2

Remark: It is clear that in the case of p = 1 and k, =k,
= ... =kn =0 (33) is Bateman’s theorem for harmonic func-
tions; and in the case of p =1 we have the same theorem for
Z — harmonic functions. If all the indices vanish, then we get the !
Bateman’s theorem for polyharmonic functions.

¢) Brill’s theorem for X ‘—‘harmonic functions: H. Bateman
has used the theorem which we dealt with in the last paragraph
to prove the following property, called Brill’s theorem.
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Replacing x; + ix, = t, x; — ix, = s then the Laplace’s
equation which is satisfied by F = F (x, x,,,..,x,) takes the
the form

o2 F o F ol

(34) 4 + RS _ =0 .

Os ot ox, ox *

If R=x>4+x>4+...+xend if F (s, 1, x,,.. ., x,) is a so-
lution of (34) then by Bateman’s theorem '

I—n/2 st 4 R? a2 ax, ax,
(35) F (—————— )
t t t t

is a solution of the equation (34). Now we will extend this property
to 2 — harmonic functions with a different point of view.

Let U (x1, x2,. .., x,) be a solution ‘of generalized Tricomi’s
equation with any two indices (for example k; and k,) are zere:

n azU n—2 kj+2 oU
(@6) AsU= £ ——+ 'F _o.
j=1 8x].2 .]'=1 E 8xj+2

Putting x; + ix; = t , x; — ix2 = s this equation becomes

(37) 4z U =4 + +

§ — 2
osot J=1\ ox? Xty ox; 1,

U ., , #U  k;, oU
¥ (= ~ )=o.

It is required to find a convinient value for m in

- 3
V=th( , — . ye ey
t t t t

st + R* a2 ax ax, )

or

V=eeU(, &, .., &)

such that if U (%1, %2,...,%,) is a solution of (37) then V be a
solution of the same equation, where R* = x? + x>+ ... 4 «7.
Substituting the derivatives in (37), we obtain
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- eU ., , U ki, oU
As V=t {a*[4 + X ( 4 ]
08108, ~ J=1 N o0&, &y, O,
oU ou oU
+2m—=2)t—fdm—+2( X k)t —} =0
o o0&, ok, j=3 73
or K
o . aU
Az V =1t 2(2m—2+n+ 2 k) - =0 .
. j=3 o0&,
So we find ~
n 4 i'k].
j=3
m=1—
2

Thus the extension of Brill’s theorem to 2 — harmonic functions
can be expressed as follows:

If U(s, t, x; ,..., x,) is a solution of (37) then

n + b k;
j=1

V=t 2

is also a solution.

The extension of this property to the X- polyharmonic
functions is quite clear by using the preceding method. We will
only give the result:

If U (s, t, x,,..., x,) is a solution of (37) then -

n -+ i'kjk
j=3
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is a solution of »
As V=0 .

Application : Let us look for a solution of (37) in the form of

—s [4x )
(38) V=e ud@ x, ,..., x)

If the derivatives of (38) are substituted in the differential equ-

ation, we have

39) 2 + -

4 5
J @xj x; ax],

N ( U k.  oU > 1 oU

x ot
That is, if U (1, x,,...,%,) is a solution of the heat equation (39),
then (38) is a solution of (37). '

In conclusion I wish to express my thanks to Prof. S. Siiray
for his great help in preparing this paper.
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OZET
2 -~ monojenik fonksiyonlar ve
#U  #U kU
b — — =0
ox? oy* ¥y oy

eliptik diferensiyel denkleminin ¢jziimleri arasindaki bagmu agikardir. Bu makalede
yaptifmiz gey -

*) 2( Ll a)U:O

P 1 "2
J 8x1 x; 8x].

genellegtirilmig Tricomi denkleminin ve onun X - harmonik fonksiyonlar diyecegimiz
¢bziimlerinin dzelliklerinin arastinlmasindan ibarettir. Caligma ii¢ kistmdan meydana
gelnﬁgtir. ‘

I inci kisimda (*) denkleminin zellikleri incelenmis, I inci kisimda 3 —harmonic
ve X — poliharmonik fonksiyonlar i¢in taninms Lord Kelvin teoremi ve Almansi agllimi
tesis edilmig ve III iincii kisimda evvelce yine harmonik fonksiyonlar i¢in elde edilmis
olan Brill teoremi X - polibarmonik fonksiyonlar igin ispatlanmstir.
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