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On The Motion of The Frenet Trihedron of a Space

Curve

H. H. HACISALTHOGLU

Department. of Mathematics, University of Ankara, Turkey*
(Received 3 April 1968)

+ In 1963 Hans Vegler in his paper called “Dje auf einer Torse verlaufenden Linien
konstanten Gratabstandes als duale Seitenstiicke zu den pseudorektifizieren den Torsen
einer Raumkurve” has studied the geometrical varieties formed by the elements of the
moving FRENET trihedron along the curve traced on'a dgvelopable at a constant

distance from ’itst edge of regression. The developable itself is the dual corresponding
of the pseudd-rectifying developable of a space curve. N : :

In this paper we have studied the geometrical varieties of the elements of the mpoving
Frenet trihedron along the parametric curves of the skew surface generated by a straight
line fastened in the rectifying plane, to the moving Frenet trihedron of a space curve.

The parametric curves which are taken into consideration have given more general
results than the curves at a constant distance from the edge of regression. Thus we were
able to deduce the same results of Hans Vogler as special cases of the problem.

L. INTRODUCTION

Let k be any twisted curve, we denote by D the Frenet tri-
hedron at a point X of the curve, and its motion along the curve
by T. And let S denote the instant helicoidal motion which rep-
resent T at the time t. Let a straight line tightly fastened to D
at the origin be d, and the ruled surface generated by this straight
line during the motion T be (d). We denot by P a point on d at a
distance v from the point X. The loci of the points P during the
motion T are the parametric curves C, of the surface (d). -

The ﬁnit vector Eon d referred to the Frenet trihedron is:
Q)  d=dii+ din +dsb

* Mailing adress: A. Ui Fen Fakiil'esi, Cebir-Geometai Kiirsiisii, Ankara, Turkey
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If X is the position vector of the point X and s is the are
length of k, then the ruled surface (d) can be given as:

) X (sp) =x(s) +vd(s)
The parameter of distribution of (d) wille be:
(d? + d?) t—di ds x
d2 (w24 12) + (dix —dat )

(3) Ay =

A necessary and sufficient condition for (d) to be devolopable
1s that:

(d + d?) 1—di d; x=0
or
% d? + d?
4 = = 1g 0 (where § = cte)
T d1 da ’

As an immediate result of this we have:

Theorem Ia: The ruled surface (d) generated by the straight
line d fastened at the origin to the Frenet
trihedron D of a twisted curve k, during its
motion T, is a developable if and only if k is
a general helix satisfying the relation:

% d? + d}
= ="1g0 (where 0 = cte.)
T di ds
The curve traced by P_ of the line d during the motion T
on the ruled surface (d) for v=cte will be the parametric curve
C, with the equation:

G) X (s) = x(s) + vd (s) | (v = cte)
The tangent ;: of the curve C, at the point P, is: °

6) EZ;v):-(l—dex)?+’U(dl%_—d3T);:+'Ud2‘TF; .
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' -
It can immediately be seen from (6) that the tangent ¢, has
components on the three axes of D. Without imposing any rest-
riction - on the twisted curve k, only the third component of

;:: can be zero. Which implies:

@ d =0 _

meaning that the straight line d lie in the rectifying plane Thus
K / .

during the motion T the tangents _t> of the orbits of the points
which arein the rectifying plane are parallel to the osculatmg
plane of k at that instant. By substitution:

—
.t = Cosa= d;

&)

(®)

— > )
d.b = Sina=4d,
|

from (4) we have:
x® © s
8) = gl =
T . d1

:tga

which gives 0 = a. For this special case theorem Ia bébamgs:

Theorem Ib : The ruled surface (d), generated by a straight
line d fastened to the rectifying plane of a
twisted curve k satisfying the relation tga

ds
= ——, during the motion T of its Frenet
d,
trihedron D is a developable if and only if
k is a general helix with an angle of inclination
equal to a.

We denote by (d), the skew surface generated by the straight
line d which is fastened to D at the origin and which lies in the
rectifying plane of the twisted curve k during the motin T and
the parametric curve v == cte of (d)y by C,. The skew surface
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(d) and its parametric curves will be the main topic of our inves-
tigations.

If we include the condition d; = O to (8) then the straight line

d will coincide with the tangent_t) of D and (d), becomes the
torse generated by the tangents of the rtwisted curve k. For this
special case the parametric curves C are the curves at a constant
distance from the edge of regression of the surface generated by
the tangents. Hans VOGLER in his paper [1] has studied the
curves traced on a torse at a constant distance from its edge of
regression, the torse being the dual of the pseudo-rectifying torse
of a space curve [3].

In this paper by investigating the parametric curves C, of
the skew surface (d), we will see that the results Hans Vogler
obtained will also apply to the parametric curves.

I1. The Tangents_t: of the Curves C..

The straight line d satisfying the bcondition (7), during the
motion T generates the skew surface (d), and a point P_ on d traces

a parametric curve C, on (d),. The tangent i: of C, at the
point P_ by (6) and (7) is:

6) ot =1+ v (hx—dir)n

The angle f between _t: and d will be:

Vil + v (dix—dst)r—d?
d

) t8f =

The curves C, being the loci of the fixed points of D during
the motion T, the tangents of these curves at the time t will belong
to the quadratic ray complex Q, of the tangents of the orbits du-
ring the motion T [2]. Thus: - N

Theorem II. At an instant t the tangents of the parametric
curves of the ruled survace (d), are fastened to
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D and belong to the quadratic ray complex for-
med by the torsal lines of the ruled surfaces
generated by the tangents during the motion T.

. LetB= - dix—ds7,as a special case if k is a Bertrand curve -
which means B =cte, by (6°) two following theorems can be given

~ Theorem III. If k is a Bertrand curve then the tangents

-
t, of the parametric curves C, of the skew:
surface (d), are fastened to D.

Theorem IV. If the tahgents ;: of the pararﬁetric curves
' C, of the skew surface ‘(d)’o are fastened toD
then the space curve k is a Bertrand curve.

As an immediate result of (3) and (7) we have:

Theorem V. If k is a Bertrand curve then the par*‘meter
~ of distribution of the skew survace (d),'is
constant ‘and has the wvalue ' j

ds
B

for every gemerator d.

To flnd the enve'ope of the projections of the tangents

t on: the osculatlng plane, at an instant. t:

Let (x, y. z) be any point on the line dlrected by

t? passing through the point P, (vd:, 0,vd;) then its equation
becomes:
z— vd; = 0
(10) ,
= vB (x—vdy)

The envelope of their projection on the osculatmg plane as

v varies will be the parabola \

4d
— Y
B

) ome
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On the basis of this result we can formulate the following
theorems:

- ) ' — ’

Theorem VI. The envelope of the tangents ¢ of the pa-
) ‘rametric curves C, of the rulate surface (d),
‘on the osculating plane at an instant t is the

. parabola .

4 d;

x2 = ; v i

B
referred to the system D. This parabola is
tangent to the curve k and’ its focal distance is

i

1

B
Theorem VII. As a particular case, if the curve k is.a Bert-

- rand curve then the parabola is fastened
to D. [

’ The element of are dsv of the vurves ?\Cv from (6) is:
(12) ds,=+/1 + vz B? ds
If k is a Bertrand curve then from (12)-
12y S, =41+ wBs
is deduced. This property can be given by:
| )

-

Theorem VIII. If the curve k is a Bertrand curve then
the corresponding arc lengths P; P, of k
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~and Q, ’Qz'.o‘f C, are proportional. Their ratio.
- is:

| w=vITvE
III. The normal planes and the polar axes of the curves C..

The equation of the normal plane of a curve C, referred to
D is:

/

14) (X—x—vd).2,=0

Where. X is any point on the normal piane. In virtue of (7)
and (6) the equation above cane be written as:

(14") : X + vBy = wvd,

It follows from (14°) that for every value of v there corres-
ponds a normal plane parallel to the Z axis and all these planes
pass through the intersection line m of the planes,

X=0
(15) &

y=—"
B

This line m passes through the focus of the parabola (11) and
is perpendicular to the osculating plane. Thus we can give the
theorems:

Theorem IX. The normal planes of the parametric. curves
. C, from a pencil, its axis is the straight
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line m which passes through the focus of the

4 d,
parabola 4x2 = ——— 'y and is parallel to

the polar axis of the curve k.

‘Theorein X. Ifkisa Bértrand curve then the normal pla-
‘ nes v, of the curves C, from a pencil of planes
fastened to D. The axis which is fastened to

D passes through the focus of the parabola,

4d,
X2 = —— y, and is parallel to the polar

axis of the curve k.

Let us investi_ght_e the polar axis of the curves C,:

By differentiating the equation (14) of the normal planes
with respect to the arc length s of k and from (6’) we have:
(16) —vxBx + (x + wB’) y + vtBz = 1

The polar axis of C has to satisfy both the equations (14)
and (16), therefore it has the direction of

(17)  b,=vit Bt — viBn + (x + vB' + vxBYjb

Here To: is the binormal of the curve C,. The intersection
point of the line m and the consecutive normal plane (16) is a point
on m, . The coordinates of this point from (15) and (16) is:

x="0
: di
y=-—
(18) B d v + d B
Z = p = _‘;

vrB?
E being a point on the ruled surface ‘va generated by the
.polar axis m (fig. 3) we have: ' :
v . dl i . ‘ X A’ o E
E—-E(u,v)_———-———n—}-pb—i—ub R
B TR
or by :replacmg
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'VCv‘=n-'i—‘vB'+v2x‘BZ" »
o & . dgtdwB

(19) E = wtBit +* (——— uer)——r)z' +[—— +uClb
\ B , vrB2 ‘ k

is deduced, the equation (19)

referred to the system D has the parametric form:

x = uvz TB2
o d
(199 ¥ = —— ~— uvtB
B .
dsv + dyvB - - :
z = — e b uwC

vT B2

By elimiriétin’g u and v from (199 we have as the equation of
the surface Wm,: s

: d T - JI - L. A
W) =t m=— i —— ()]
B " © B
T B'K Cds d; :
% Bz Bx B
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The intersection of this surface with the plane which is
parallel to (x, z) plane and which passes through the focus of the
parabola (11), are the lines given by

1
® x2 = 128 — dy .( ) &
or ,
l' T dl 1
x =0 , x = 2 — — (—)
*® *® B
(20) d; and‘
Ly = — ‘
B o dy
y = -
B

- The first of these lines is the axis of the pencil of normal |
planes v, , and the secong is parallel to the DARBOUX vector

— — —
® = 1t - % b of the curve k and also is the limit position of m,

for v— oo . Because, from the first ‘equation of the system (19')
we have:

x
v ¢ B®

If this'is replace& in the second and third equations we have:

dl x
y = — \
B vB
dst + di Bv C
3 = — . + x
v 7 B2 v2 1t B2
and for v— oo
S A
y_——__.__.._
B
T dl 1
£ = — s — — (—)
* % B

are dedyced.
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For this property this line is called/the seperating generator.

If k is a\‘\Bgrtrand curve thén (19”") becomes:

d; ) T 1ds d;
P ow = i —— (y — —)
B % % B B

(21) (y —

Again the intersection of this surface with the plane

y=—
B

we have the lines given by:

T
x2 = X ¢
»
or
..[x——-O CHx = TZ
(22). - ' and .
d; dy
y=-— y= —-
. B B

the first being the axis m-and the other a generator parallel to
the vector 8 = 7t + b (the;’ seperating generator). »
The parameter of distribution of the ruled surface ¥m, along

the generator m, is:

(23) 2 Vd3 . {vz—ngz (14v2B?) + [x(l~f\*’—sz2)—’-:‘.'vB’]2’}

B.{o*2B* + % (14-02B2) + v* B:B/(dtvB),

~ This shows that ¥Ym, is a skew surface. If k is a Bertrand
curve, as (23) remains unchanged, the surface is still a scroll, For
the surface ¥m, to be a developable d; = 0. The special case
for d; = 0 has been investigated by Hans ‘Vog'lef [1]. These pro-
perties can be gives as a theorem.

Theorem XI. The polar axis m_, of the parametric curve
C, of the surface (d), passing through the
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point P, of the generator d generates a quad-
ric skew surface at an instant t. The inter- -
section of this surface with the plane are the

d,
straight lines: (i) x = 0, y = —— paral-
« B .

lel to the polar axis of k, and the other: (ii)

1 d :
%% =271 —d (—),y=—parallel to

-the DARBOUX vector VV = ; + ;Z
IV. The Osculating Planes of the Curves C..

If ¢ is the angle between the tangent plane of the surface (d),
at the point P, and the osculating plane of the parametric curve
C, passing through P, taking A = d; v 4 d; » we have:

{

ds (x + vB’) + v2 B> 4
(24) igp = V14 v B
vB (B + v B® + d vB’)

| If k is 2 Bertrand curve then B’ = 0 and the a;,bove formula
is reduced to:

(24) 8o =

dy % + v2 B> 4

)
vB? 4/ 1 4 v B2
s . - ’ g
As it is given by theorem II, the tangents ¢, of the curves
C, atinstant t are the torsal lines of the surfaces generated by the

straiéht lines fastened to D. Therefore the tangents —t: belong
to the quadratic ray complex Q, formed by the tangents of the

orbit. The tangent tj at an instant t is the generator of the torse
(T). The angle ¢* between the tangent planes of the developable
(T) and the surface (d)o at the point P_ is:

ds » -+ v2 B2 4

@) ot = u _
vB 4/ 1+ v B2
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at the instant t both % and 7 can be taken as constants so B’ = O.
(25) is the same of (24'). The relation between the angles ¢ and ¢*
found in (24) and (25) is:

d v BB’
(26) Cotg ¢ — Cotg ¢* =

[ds (¢ + vB’) + v2B24 11/ 1 +v2B2
Thus we can give the following theorems:

Theorem XII. The oéculating pléne of the parametric
curve C traced on the surfaces (d), coincides
with the torsal plane which corresponds to

—_
‘the torsal line ¢ of C, if and only if » and 7
are stationary. ‘ ‘

Theorem XIII. If k is a Bertrand curve then the osculating
plane of the parametric curve C, of the sur-
face (d), coincides with the torsal plane cor-

. —
responding to the torsal'lines ¢, of C..

Theorem XIV. The osculating plane of the parametric curves
C,, traced on the surface (d), generated by

—_
. the binormals b of a space curve k, coin-
cides with the torsal plane corresponding to

—_—
the torsal line ¢, of C..

ff the space curve k, is taken such that the osculating plane
of the parametric curve C,. at the point P_ is tightly fastened

- s . -
to the Frenet trihedron D of the curve k than as the vectors 1,

and };: will be tightly fastened to D, from (6') and (17) the first
and second curvatures x and 7 of the curve k shall be constant.
“We have the following theorem: \ '

i Theorem XV, If the space curve k is a circular helix then
the osculating planes of the parametric
curve C, of the survface (d),, is tightly -
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fastened to the Frenet trihedron D of the
curve k.

Now consider the set of the osculating planes of the curves C,
traced by the points of a generator d of the surface (d)o. If co

denotes the osculating plane of the curve C_, its equation referred
to the system D will be )

27 v Brx—vBry+ez=d v’ BP7 4 vds ¢

Uy, Uy, Uz, U3 being the homogeneous coordinates of oo we have:

(28) wo usiuzius = — {dl vB*t - vdsc} w2 B2t : — 9Bt ¢

In the particular case when k is a Bertrand curve then B’ = 0
and from (28) we have:

(29) ‘uo w1 :uz :us = — {div* B2r+-vdsn(1+v2B2)} :w2Bev :vBr o (14
vz B?)
Thus:

Theorem XVI. The osculating developable at the points
P, of the curves G, passing through the po-
. ints P, of a generator d of the surface (d),
is a surface generated by the tangents of a
cubic parabola.

In view of theorem XII, the tangent planes oo of (T), which

correspond to the generators ¢, will coincide with the osculating
planes oo at the points where » and 7 of k are stationary, so the
v : i i

envelope of &5 will also be the surface generated by the tangents
of cubic parabola. N

Consider the transformation which will transform the oscu-
lating planes oo to the torsal planes &5: The equation of cv is
v - v N v

(27). The equation of o5 is:
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(30) »2 B2t px —vB1py + (1 4 v2B?) 3=d, v’ B2 vp + d p(14-v*B?)

@y, Gy, Uy 8 being the plane homogeneous  coordinates, the
connection between u; and @, will be ‘

| 4 T
Uy = o] (uo — d; 23] )
B2t .
ﬁl T e esesssescscnas [*] uy
(31

Uy == ot eeevenedannvens p Uz
B

U3 =2 ciiiiivenenenann p-»(-‘— ux - u3)
Bz

x; and X; being the homogeneous coordinates of the points of oo
N . v

and &5 respectively, from (31) we have:

( Xo = e Xo
o d B
X = — p Xo + o Xu
(31) ) . T B2 ; .
X2 == ceerrenireraneneaene p Xo — p - X;
, +B
‘ X3 T= ceeriedecssanee e e DR pXS

N

The caracteristic equation which gives the double points of
this Transfrormation is (p — 1)* = 0, which has four equal real
roots. This shows that we have four different cases, either one
double point or all the points of a line or all the points of a plane
or all the points of the space will cerrespond for each root [4].
For the planes c©o and &5 the second case is valid. The center of

v v

this transformation is the ‘point
(x) = (0, 0, 1,0)

This infinitely distant point is at the same time on the constant.
plane ‘
(w) = (0,0, 0,1),
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Thus the planes oo and &G correspond by an affine perspective.
' V. The Principal Normals ni and The Binormals b, of The
* Curves C,. ‘ : :

In this paragraph we will try to investigate closely the principal

normals r:: and the binormals 7): of the curves C, at the
points P_ of a generator d of the surface (d).

.. .. - > = '
The explicit expressions for the vectors ¢, n, b, are:

v? v v

— - -
t, = t + Bvn

3) n=—vBCi+C ntBrv(l+o B)b
i;—)vz B:rv: t—Bwn + Ch

~ By the following stage by stage operations the Frenet trihedron D
of the curve k and D, of the curve C, can be put on each other:

a) The vertex P of D will be moved along the generator d of

the surface (d), to a distance v,

b) The tangent vector z of D will be rotated around the
new vertex P_ at an angle ¥, where tg ¥ = B v.

c) The osculafing plane of D “will be rotated about Z
at angle ¢ where i

Brva/1 + o B

g 6 =
: ¥ + B v + Bz v x

The generators ;:V of the ruled ¥, and the axis m of the
theorem IX are in the same normal plane v, of C, as they are
not parallel, they intersect at a point R, (fig. 4)  The lines

-
n, also intersect the line d at the points P . The generator d of

the surface (d), and the line m parallel to the polar axis of the
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curve k are the directrix lines (directrix curves) of the ryled sur-
face ¥, . Thus ¥ is a net of rays of the hyperbolic type [2].

The generator d of the surface (d)o in terms of the parameter

visy .. , -
(33) - (x) = (d1 v, 0, ds v)
‘And the line m in terms of parameter w is:
i :
B4 (=) = (0, e w)‘

so the relation between the directrix lines d and m because of

PR, =in,
is given by: ’
)  dro(l-+eB)=(w—dv)C

Here to every value of v there corresponds a value of w and
to every value of w there are three different corresponding values
of v. Thus the generator d of the surface (d)o is a simple directrix
of ¥, and the line m is a multiple directrix of order three (flg 5)
The equation of the surface W, referred to the system D.is: .
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(36) z(di — By) [(di— By)2 % + (d — By) B'x - B2 2 x] =
=dsx [(di—By )2x+ (di—By ) B'x+ B2x2x |+ xy Bt [ (di—By)* +
+ B’}

thus we have the theorem:

Fig. 5

Theorem XVII. The principal normals ;: of the curves C,
passing through the points P_ of the gene-
rator d of the surface (d), are on a surface
of rays ¥, of the degree four. The multiple
tangent planes of order three of the surface
¥, pass through the generator d of the sur-
face (d), and the line m is the multiple direct-

" rix line of order three.

If k'is' a Bertrand curve then the equation (36) can be fac
torized as: ‘

(36") [(di — By)? + B2x2].[x(diz — dsx) — By(xz + x)] = 0
From thé/ first factor we have:

d
(37) ——y =t ix
\ B

which means that the surface ¥ is degenerated into two pencil

of rays by isotropic planes. The vertex of the pencil being

ds
» 0)
B

(38) (£ i

corresponding to the value of the parameter:
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BT . dy
(39) v = £ i
B
From the second factor ,
(40) (dz—dsx) x— B (xz + v x) y = 0

it can- he deduced that the surface ¥, is transfomed into a hyper- '
bolic paraboloid :

In this particular case B’ = O therefore (35) becomas:
3) = Av=xw ‘

Thus for the partlcular case of B’ = O the pomts of the directrix

lines d and m are mapped by the gene\rators n, bi-univocally.

Let ¥, denote the ray surface generated by the hinorm‘als

l:: of the curves C_. From (fig. 4) it is easily seen that this surface
too has the generator d of the surface (d), and the line m parallel
to the polar axis of the curve k as directrix lines. These two direct-
rix lines are expressed in terms of the parameters v and w by
(33) and (34), this shows that the points of these lines correspond

through the genérators?V of the surface ¥, by:

(41) B + (4B + B rw)v + dix=0
- so that the generator d of the surface (d), is a simple directrix
line of ¥, and the line is a multiple directrix line of order two.
(41) gives for every value of w two values of v. Generally these
two values of v are different. For some values of w the values

of v be equal; the points corresponding to these value are the
cuspidal points For the cuspidal points from (41) we have

4B tA/Tdx B

(412) Wiy =
Bz

and the values of v corresponding to these values of w are:

dl x
(43) V2 = +
. B

Voo
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The values of w given by (42) are the distances between the
surface ¥, and the cuspidal points of the tangent planes co of
the surface (d), (43) shows that the cuspidal points are real.

The equation of the surface ¥, refrred to the system D

(44) (di—By)[xy(d,—By) + B'xy + Brxz]+ Bxy = 0

is a surface of degree three. Thus we have the theorem:

Theorem XVIII.The binormals b_: of the curves C, passing
through the points P, of a generator d of
the surface (d), are on a surface of rays ¥,
of the degree three. The line d is a simple

. directrix and the line m is a,;multiple directrix
of order two. ‘ "

In the particular case k being a Bertrand curve the distance
between ¥, and the cuspidal points of the tangent planes co of
the surface (d), from (42) is:

I

N 2 d1 o
(42 ’) Wi, — :I-_- - \/
T B

In this particular case the intersection of the surface of rays
with the infinitely distant plane (infinitely distant curve) is in-
teresting to study. In order to do it in (44) substituting B'=0
and using the homogeneous coordinates for the surface of rays
¥, we have:

(44" (dix—Bx,) (dvexyxg—xBxr+ Braxs) + Brxux, = O

The infinitely distant curve (the intersection by the plane
%y = 0) is given by:

(44" Bx; [x(x21+x2 )—rxix] = O
From which we have: -

Xy — 0
(45)
Xy = 0
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X1 X3

l X2 + X2 =
= "

The first one is the infinitely distant line of the rectifyiﬁg
plane of the curve k; and the second is the mfmltely distant conic
of the nght cone glven by the equatlon

.T -
2 2
+x2= X1 X3
»®

VI. The rectifying planes of the curves C,.

In this paragraph we shall investigate the rectifying planes
p, of the curves C, at points P of a generator d. of the surface

(d)o-
The equatlon of one of the rectlfymg planes Pv refer:red to the
system D is:

(47) —Bvex+-cy+ Brv(14+ BZvl)z=d3B‘wZ(1—i—Ble)‘—'dl‘ Bv2 .C |

The rectifying planes o, being tamily of one parameter v
their envelope is a torse. Because of the degree of the parameter
v is four the envelope of the planes o is a torse of degree four.

If the curve k is a Bertrand curve (47) becomes:
(47") (1—!—0232\) (—Bxvx+xy—+ Brvz+ Bw?) = 0
From ‘the first factor we have

1

(48) v= 41
B

which shows that the rectifying planes of the two curves C, cor-

responding to these values of the parameter are indefinite. One

the other hand the points P, corresponding to the values

1

B
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d; d;
» 0, £ i

are Pv (£ ¢ }; the projections of these points

on the plane z = O being the same as (38), the rectlfymg planes

¢, corresponding to the parameter values v = + { —— un-
B

der the condition z = o verify the 1sotroplc planes of the surface

¥ under the particular condition B’ = O.

The envelopes of the rectifying planes corresponding to the

1
values of v other than the values v = + i

are:

B

P
(49) y = —— (— ux 4+ 73
4

which is obtained by eliminating vin between the second factor
of (47’) and its derivative with respect to v. It is a parabolic
cylinder whose geneators arer parallel to the vector

8= + #b the DARBOUX vector of the surface (d)o.
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OZET

Hans Vogler’in 1963 yihnda yaymnladif: “Die auf einer Torse Verlaufenden Linien
konstanten Gratabstandes als duale Seitenstiicke zu den pseudorektifizieren den Torsen
einer Raumkurve” isimli makalesinde, bir uzay egrisinin pseudo rektifiyan torslarma
dual kargihk olan, bir torzs iizerine ¢izilmis sabit sirt uzaklik egrilerinin Frenet ﬁqyiizlﬁ~
lexinin elementleri tarafindan tegkil edilen geometrik: varyeteler tetkik edilmigtir.

Bu caliymada bir uzay egrisinin, Frenet iigyiizliistiniin egri boyunca hareketi es- -
nasinda, rektifiyan diizlemine siki surette bagh bir dogrunun tevlid ettigi agilamyan -
bir yiizey iizerine ¢izilmiy parametre egrilerinin (sabit sirt uzaklik egrilerinden daha
genel) FRENET iigyiizliilerinin elementleri tarafindan tevlid edilen varyeteler incelen-
mistir. Bu surq‘tle Hans Vogler’in buldugu sonuglarm daha genel hallerde de miimkiin
olabilecegi gosterilmigtir, )
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