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Bresse and Inflection Congruences®
H.H. Haecssalihoglu — R. Kaya

Ankara University

ABSTRACT

The well known Bresse circle and inflection circle of planar kinematics are
calculated on the unit dual sphere. Spatial equivalents of these circles are derived using
the Study mapping. Hence two line congruences are obtained. At any time t there are
three common lines of these congruences. These lines are the instantaneous acceleration
axes of one parameter spatial motion which corresponds to the congruences. In general

case and in some special cases, the properties of these congruences are discussed.

L INTRODUCTION

The oriented lines in Euclidean space R3 are in one-to-one
correspondence with the points of the dual unit sphere in dual
space D3 [1]. Using this correspondence, one can derive the pro-
perties of the spatial motion of a line. Because this correspondence
allows the geometry of congruences to be represented by the geo-
metry of the two-parameter motion of a point on the unit dual sp-
bere.

II. BASIC CONCEPTS

a) Pliickerian Coordinates of an Oriented Line.
An orinted lice in R3 may he given by two points on it,

— —>
x and y. If p is any nonzero constant, the parametric equation
of the line can be given in the form

* Research supported by TBTAK (The Scientific and Technical Research Council
of Turkey).
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— —

—
y =x + pa, 2.1
where_a: is the direction vector of the line. If :* denotes the

N
moment of the vector a with respect to the origin O we have

— —

— — —

a* =x Aa =y A a, (2.2)

where A denotes the exterior product of the vectors. This means
. - - . >

that the direction vector a of the line and its moment vector

- - . . : .

a* are independent of the choice of the points of the line. The two

— —
vectors a and a* are not independent of one another; they sa-
tisfy the following equations:

— — — —
<a, a> =1, <a, a*> = 0. (2.3)
— —
The six components a; , a*; (i = 1, 2, 3) of a and a* are

Pliickerian homogeneous line coordinates. Hence the two vectors

— — X
a , a* determine the oriented line.

The set of oriented lines in R3 is one-to-one correspondence
with pairs of vectors in R3 subject to the conditions (2.3), and so we
may expect to represent it as a certain four dimentional set in R6
of six tuples of real numbers; we may take the space D3 of triples
of dual numbers with coordinates

X =x1 + ex*;, X =x5 } ex*,, X;:X3 4 ex*;,e2=0. (2.4)

Each line in R? is represented by the dual vector

A=atlcat A= <a, a>+2 <a, a*> —1 (2.5)
in D3, Thus the following theorem of E. Study can be given [1].
Theorem(2.1): The oriented lines in R3 are in one-to-one cor-

respondence with the points of the dual unit sphere

— =

< A,A > =1in D3
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Inner product: If we carry over the formal definition of the
products of vectors to dual space D3 we may write

A, B>=<a,b>"Lc[<a*,b>+ <a,b*>](26)

—> — —
which denotes the inner products of the dual vectors A = a + ¢ a*

and E :T; + ¢ 1?* If K and ﬁ are unit dual vectors then we
have

- - - — — .
<a, b> =cosp, < a*, b> +< a, b*> =-¢*sing,
where ¢ and ¢* denote the angle, and the shortest distance, res-

pectively, of the two lines A and B [1]. Hence we have the
the following theorem:

Theorem (2. 2): Let ¢ and ¢* denote the angle and the shortest

distance between the lines K and ]? Then

<Z . §> = cosd
where @ = ¢ + c¢* denotes the dual angle between the
two lines.

The taylor polynomial of an analytic dual variable function
has just two terms:

f(t + ch) = f(r) 4 <f’(h),
for example
sin@ = sin (¢ + e¢*) = sing -+ c* cosg ,
cos® = cos (¢ + e9*) = cosp — cp* sing.
The following special cases of inner product are important:

(i) If

— —
<A, B> =0 (2.7
3 — —
then ¢ = —— and ¢* = 0; this means that two lines A and B

meet at a right angle.
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(ii) Tf

—

<A, §> = pure dual, (2.8)
T — —>
then ¢ = —— and ¢* # 0; the lines A and B are orthogo-
2
nal skew lines.
(iii) If
<K . 1_3)> = pure real, (2.9)

o —

then ¢ = —— and ¢* = 0; the lines K and B intersect.
2

(iv) If

— —
<A ,B> = T 1, (2.10)

— —
then ¢ = 0 and ¢* = 0; the lines A and B are coincident (their
senses are the same or opposite).

b} Spaiial Motions:

Since an euclidean motion in R3 leaves unchanged the angle
and the distance between two lines it will leave also unchanged
the dual angle between two lines. Therefore the corresponding trans
formation in D3 will leave the inner product

<A, B> — A BT (2.11)

invariant. It is the action of an orthogonal matrix with dual coef-
ficients. When the center of the dual unit sphere must remain
fixed, the transformation grup in D3, which is the image of the
euclidean motions in R3, does not contain any translations.

Theorem (2.3): The euclidean motions in R3 are represented
in D3 by the dual orthogonal martices X = (x;;), XX =

I, x;; dual numbers.

The Lie algebra I.(O,3) of the group of 3x3 orthogonal dual

matrices is the algebra of skew-symmetric 3x3 dual matrices.
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This is seen by differentiaton of XXT = I. Therefore we can easily
entend all known formulas about real spherical motions. But it
is necessary to pay attention to the zero divisors [1].

— —
’ ’

-
The two coordinate systems {O; e, ey, e3} and {0 ; e'y,

— —
e’y ,¢'3} are right-handed orthogonal coordinate systems which

represent the moving space H and the fixed space H', respectively.
Let us express the displacements (H / H’) of H with respect to
H’ in a third orthonormal right-handed system (relative system)

{Nsry, 1, ;:} . Then the corresponding dual orthonormal

coordinate axes are

—>

B, —e +ce* B =o) | ce*s R, =1, + er*, . (i=1,2,3) (2.12)
where
e* =OMA e, e*/=O0O'MA ¢, ;r*, = NMATm;(i=1,23) (2.13)
and M is a fixed origin point in the space. The the correspondence
dual 1- forms are

Qp =w; + ew®, , Q' =w'; + ew’*,, (i=1,2,3). (2.14)

Hence we can write the following formulas for the dual spherical
motions which are equivalent to the real spherical motions [7]:

a) The displacements with respect to H are

dR = QR (2.15)
where
o Q3 —Qz ﬁl
Q=1]-0, 0 and R = | K,|. (2.16)
Qz ~910 f{)3

b) The displacements with respect to H’ are

IR = QR (2.17)

where
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0 Q5 -0
Q' = —Q’; (0] Q' . (2.18)
Q'  -Q 0]
The real and dual parts of (2.15) or (2. 17) correspond to the
pure rotation and the pure translation of the motion H / ', res-
pectively.

¢} Velocity and Acceleration in Spatial Motions:

Velocity: Consider a point X of unit dual sphere such that its
coordinates with respect to the relative system are

X = x; + ex;* i =1, 2.3)
Then
3
X X2 =1 (2.19)
izt
and
X — XTR (2.20)
where
X4
X = X,
X3

Aline X in space corresponds to this dual point X. According

to (2.15), (2.17) and (2.20) the displacements of X with respect
to H and H' are

dX =(dXT + XTQ) R
and

d'X = (@X* + XT Q) R. (2.22)

Therefore if )_5 is fixed in H or H' then dSZ =0 or d’ 32 =)

and we may write
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dXT = XTQT |, (2.23)
d'XT = XTQ'T, (2.24)

Now, suppose that X is fixed in H and let us calculate its

velocity dfi with respect to H' . Then we substitute (2.23) in
(2.22) and obtain

X =XT (Q -Q) R. (2.25)

If we define a new dual vector whose components in the relative
system are

V=0 - Q (2.26)
then (2.26) reduces to

X = ¥ AX (2.27)
where

T o= § et (2.28)

is the dual rotation Pfaffian vector. The real part J and the dual

— —

part §* of W correspond to the rotatation motions and the trans-
lation motions. In order to leave out the pure translation motions
we wil suppose that

y£0
Acceleration :

From (2.27) it follows that the acceleration of X is given by

ot

T -, X = YA@TAX)+ FAX

—

—— Xt <« T X> P4 TA X (229

— —>
where ¥ = d¥ is the instantaneous dual angular acceleration
vector.
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In the equation (2.29) we see that the components of the
- = - .
acceleration J of X are homogeneous linear functions of the

coordinates x; (i = 1,2,3) of X . Equations (2. 27) and (2.29)
can be written in the matrix form:

dX = MX (2.27)
J =M + M) X (2.29)

where M, M and M2 are the matrices

0w, W, *i 0 ¥, ¥,
M=% 0 ¥ |:M=dM=| ¥, 0 -¥,
¥, ¥, O _] ¥, ¥, 0
WEIEL ZH A NARVR
M2 =| ¥V, P2, WL, | MR =W2M.
VIRV WL, 2y,
- _ (2.31)

If we calculate the determinant D of the coefficients of (2.29),
we obtain

D = - ¥2 ¥2 sin2 vy (2.32)
where

Vo=« + zof
is the dual angle between the vectors ? and ‘? If both vectors

— —>
Y and W correspond to the same line of space, this line has no
acceleration, in this special case D = 0. After the discussion of
the general case D -~ 0 we shall return to this special case.

II1.a) Bresse Line Congruence (C,)

In this section, we show that the spatial equivalent of the Bres-
se circle of planar kinematics is a line congruence which we call
Bresse line congruence,
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We know that the acceleration of a point in spherical motion
is the sum of three orthogonal components: (i) a component
normal to the sphere, (ii) a component tangent to the path (or tan-
gential acceleration), and (iii) a component normal to the path
but lying in the plane tangent to the sphere (geodesic normal ace-
leration).

Definition (3.1): On the unit dual sphere the locus of points
having zero tangential acceleration is the dual spherical
equivalent of the Bresse circle of planar kinematics.
Following Garnier’s notation we denote this curve as
C,. The spatial equivalent of C, is the spatial equivalent
of the Bresse circle of planar kinematics. This is a locus
of lines each of which corresponds to a point of C,. We
will denote this locus by (C,).

According to this definition, at first we must derive the equa-
tion of C; then the equation and the geometry of (C,) can be obtain
by the Study mapping. From (2. 27) and (2.29) the set of all points
X having zero tangentical acceleration on the unit dual sphere
satisfy the equation

<7, 4X> —o.

If we calculate this equation we have
<(;‘>FA X), (FAX)> =0
or since X2 — 1
<‘—P’>.§>.<‘?‘,§>:<‘?..@>. (3.1)

(3.1.) is the dual spherical equivalent of the Bresse circle. In order
to obtain the spatial equivalent of this circle we choose a relative

~
~ ~

» — — —
system {N; R;, R, , Ry} such that

~

Y —WR,, ¥, =¥, — 0 and ¥; — ¥ . (3.2)
Since ¥; = ¥, = 0O (2.26) gives us that
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Q =07, Q = Q5.
Then we may write that

R = ﬁl cos 9—|—ﬁ2 sin 0

~

R,— ﬁl sin 0 +_f{2 cos 0

R, = R

and for the 1- forms

3

Q = Qpcos 0+ Q, sin 9
Qz :—lein 6+Q2008

Q; =Q, + do

0

(3.3.)

(3.4)

(3.5)

In order to determine the new relative system in a unique way

we choose 6 such that

Q, =0

(3.6)

Thus, in the new relative system instead of (2.16) and (2.18), res-

pectively, we have:

0 Q -0

Q=10 0 o0 s~
~ Q,:
Q, 0 O

0 O -0,
Q, 0 0
o, 0 0

Therefore, instead of (2.15) and (2.17), respectively, we have

dR —OR and &R =QR. (3.8)

In this new system if we differentiate the equation
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¥ — ¥, R,
we have
¥ = ‘F3 I_{3 + \F.%I?s

or from the Eq. (3.8) since

R — R, » dR, — R, Q,
¥ — v, 0, R, + ¥R, . (3.9)
Hence (3.1) reduces to

Py Xy (P30 Xy + W3 Xy) = ¥ X;
or since Y3 = 0

W0, X, Xy 4+ W2 = Wy . (3.10)

If we calculate the real and the dual parts of (3.10) we have
$3 (1 - x%3) — @y Y3 xyx3 =0

U3 (1-x23) 4 (0p $%3 + 05 ¢3) xpx3 + 2§%3 x5 x*3 +
(x1x*3 + x*1x3) @y =0 . (3.11)

Hence the Plickerian coordinates of the lines Xe (C,) satisty
the equations (3.11) and the equations

X21 + X22 —Jr X23 = 1
(3.12)
x; X% 4 xpx% 4 x3x*; =0

Since the equations (3.11) are second degree polynomails of the

Pliickerian coordinates of the lines X , (Cy) is a quadratic cong-
ruence. This congruence is the spatial equivalent of the Bresse circle
and is called the Bresse congruence. Each equation of (3.11) with
the equations (3.12) represent a quadratic line complexes whose
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common lines form the congruence (C;). Hence we have proved
the folowing theorem:

Theorem (3.1): In one parameter spatial motion H /H’, consi-

der all the lines 5() of H, such that a2t the time t each

of them has the zero tangential acceleration. Then. the-

N
se lines X form a quadratic congruence which is inter-
section of two quadratic complexes. This congruence is
the spatial equvalent of the Bresse circle of planer kine-

matics.

b) Bresse Line Congruence (C,), Quadratic Complex (Q),

Tangential Complex.

-
Now, consider a fixed line X of the moving space H. Du-

. . . - .

ring the motion H/H’ the line X generate an orbit surface

in the fixed space H'. The displacement of X with respect to
H’ can be determined from (2.27). On the other hand in the new

relative system (2.27) reduces to the equation

~ ~

4 X = ¥, (R AX) = 5 (R:X, - R,yXo) . (3.13)

-
On the fixed unit dual sphere the unit dual vector X draws a cur-
ve whose dual arc lenght is

dd = dp 4 edo* .
For this arc lenght we have
d02 = (4, X)? = (X2, + X2,) W2 = (1-X2) W2,  3.14)

And calculating the real and dual parts of (3.14) we obtain
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do? = (1 - x23) {2,
dode* = (1 — x23) 3 0%y — x3x3* §23 : (3.15)

Then th drall of the orbit surface of )—i, in H' is
1 do de* (I-x23) P33 — x3 x*3 42

d de? (1 —x23) ¢23

or denoting the pitch of H/H’ (instantaneous helical motion) by

Y3
k = ——
b3
we have
1 X3 X*3
e Sl . (3.16)
d ]. — X23

Now, during the motion H [/ H’ consider the lines EEGH
which generates a ruled surface whose drall is zero. From the equa-
tions (3. 12) and (3. 16) we have

1
(k — —) (x2; + x2)) = x3x*; = 0 (3.17)
d

which represent; a quadratic line complex Q. Hence we have the
following theorem.

Theorem (3.2): At the instant t, consider all of the lines

>
Xe H having zero tangential acceleration and that each
of these lines generates a ruled surface with the same

drall. Then these lines X are the common lines of (Cy)

and Q.

As a special case, if the lines )?e H, at the time t, generate
1

the developable ruled surfaces then —— = 0 and (3. 17) re-
d

duces



102 H. H. HACISALIHOGLU —R. KAYA

k(le + X22) - X3 X*3 =0 (3.18)

which represents Q, quadratic complex. Q, is a special case of
Q. The Q, quadratic complex and the tangential complex of
tangent lines, at the time t, of the curves which are the
orbits of the o3 points of H are the same. Hence we have the
following theorem:

Theorem (3.3): At the instant t, in the motion consider the
. gl . . .
lines X € H having zero tangential acceleration and

that each of these lines )_i» generaf,es a developable ru-
led surface. Then these lines are the common lines of
(C,) and the tangential complex.

IV. The Spatial Equivalent of The Inflection Circle.

In this section we derive that the spatial equivalent of the
inflection circle of planar kinematics is a line congruence which
we call “inflection line congruence’’.

Definition (4.1): On the unit dual sphere the locus of points
having zero geodesic normal acceleration is the sphe-
rical equivalent of the inflection circle of the planar ki-
nematics. Following Garnier’s notation we dencte this
spherical curve as C;. In R3 the correspondence of C;
is the spatial equivalent of the inflection circle of pla-
nar kinematics and is denoted by (C;).

According this definition the equhtions and the geometry of
(C3) can be obtained. The normal vector to the path of a point

—

X on the unit dual sphere but lying in the plane tangent to the
sphere is

—> —
X A dX .
According to the definition (4.1) from Equation (2.27) the locus

of points having zero geodesic normal acceleration satisfy the
equation
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T, X, dX) =o, (4.1)

where the left hand side is a 3 x 3 determinant. If we replace
(2.27) in (4.1) we have

— —

<J,XAdX> =0

or
FAFAX) - FAX, XA (TA X)> =0,
<@,§> [‘f”)~ <TI7,3)(>2] = <TI)”A @,§>. (4.2)

Using the new relative system (4.2) reduces to

Py X; (X2 + X)) + Xy =0 (4.3)

which is the dual spherical equivalent of the inflection circle of
planar kinematics. As we see from (4.3) this spherical equivalent
of the inflection circle is a dual spherical curve of third degree.

If we calculate the real and dual parts of (4.3) we have

g3 x*3 (x2) + xB) + wyx; =0

~ ~ (4.4.)
$3 x*3 4 U*3 x3 + 3%y 4+ 02* xp = ($*3 x3+3¢3x%3)

Since the Pliickerian coordinates x;, x*; satisfy (3.12) and

(4.4) the lines X having zero geodesic normal acceleration form
a line congruence (C;). Since the equations are third degree equa-
tions this line congruence consist of all the common lines of two
cubic line complexes. We call (C3) the inflection congruence. Hence
we may express the following theorem:

Theorem (4.1): At the instant t all of the lines XecH having
zero geodesic normal acceleration form the inflection
congruence (C3) as a congruence consisting of the com.
mon lines of two cubic line complexes. (C3) is the spatial
equivament of the inflection circle of planar kinematies.
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b) Inflection Congruence (C3), Quadratic Complex Q and
Tangential Complex.

If we repeat the discussion in the paragraph (b) of the section
III for the (C;) instead of (C,) we have the following theorem which
is analogous to the Theorem (3.2).

s
Theorem (4.2): At th: instant t, consider the lines XeH having
zero geodesic normal acceleration and that each of
these lines generates a ruled surface with the same

drall. Then these lines X are the common lines of (C3)
and Q.

The analogous theorem to the Theorem (3.3) is as foollows:
Theorem (4.3): At the instant t, in the motion H /H’ consider

—_—
all of the lines XeH having zero geodesic normal ac-
celerationand that each of these lines generates a deve-

lopable orbit surface. Then these lines )_E are the com-
mon lines of (C;) and the tangential complex.

¢) The Common Lines of (Cy) end (Cs)

(Acceleration Axes).

Let denote the mowing and fixed unit dual spheres by K and
K’, respectively. K and K’ correspond to the spaces H and H’,
respectively. Then the dual spherical motion K /K’ corresponds to
the spatial motions H /H’. At every instant t, in the motion K /K’
there are some points of K having neither a tangential acceleration

nor a geodesic normal acceleration: their acceleration. fis purely
normal to the sphere and they are the acceleration centers. These
points are the intersections of the curves C, and C;. These points
are three points and located as the vertics of a spherical triangle

on K |7,8].

The corresponding lines of these points, in general, are the
three skew lines [7]. Thus the common lines of (C;) and (Cj),
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in general, are the three skew acceleration axes of the motion
H’ [/ H at that instant t. If the motion H /H’is, as a special case,
a spherical motion then these three common lines intersect each
other at the center of the spheres [7], These three lines discussed
as the acceleration axes |7, 8].

V. Special Cases.
a) The case of D = O :

In this case ‘F and ¥ are linearly dependent. There are
two cases: (i) ¥ and W are coincident, and (ii) ¥ and @ are pa-

rallel.

(i) If the lines ¥ and @ are coincident with a line [/, then
the accelerations of all the points of I are zero. Therefore the line
1 is a common line of (C,) and (C;). The geometry of this line 1
has been discussed [7, p: 34].

(ii) If the lines ‘—I? and ‘I_F are parallel then the points of

these parallel lines the acceleration f is zero. Thus these two
lines are alsa the common lines in (C;) and (C;). The set of all the

lines intersecting the both linesTff' and_ll)”, form a hyperbolic cong-
ruence [7]. Then the lines ¥ and ¥ are the principal  direc-
tions of this congruence [9].

b) The case of <¥ , ‘_I>’°> = 0:

In this case from the equation (3.1) we have

<@,)_()>:0 or <@,§>:0.

Therefore, in this case, {C;) consist of all lines of two linear
line complexes whose axes intersects each other. Thus (C,), in this
special case, is linear. In order to obtain the equations of (Cp) it
is enough to calculate (3.10) and (3.11) for this case.
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¢) Spherical Motion:

If the motion H [ H' has a fixed point, then the motion is
called a pure rotation or a spherical motion. In this case in order to

have the equations of (C,) and (C;) it is enogh to replace

¢* =0 and ¢* = 0 in their equations obtained in the sections
*
11T and IV, Since the pitch of H /H"” is k = —— , in this case
¢

k becomes zero and therefore H /| H’ reduces to a spherical mo-
tion. In a spherical motion (C,) and (C;3) has three common lines
(acceleration axes of the motion) form a pencil of straight lines

whose vertex is the center of the spheres [8].
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OZET

Diizlemsel Kinematigin iyi bilinen Bresse ¢emberi ve Doéniim ¢emberi birim
dual kiire iizerinde hesaplandi. Bu iki cemberin uzaydaki karsiliklarn Study dénii-
slimiinti kullanarak elde edildi, Boylece iki dogru kongritanst tamimlandi. Hare-
ketin herhangi bir t aninda bu kongriianslarin ii¢ ortak dogrusu vardir. Bu ii¢
dogru iki kongruansa kargihk gelen bir parametreli uzay hareketnin ani ivme ek-
senleridirler. Genel halde ve bazi 6zel hallerde bu kongruanslarin 6zelikleri ince-
lendi.
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