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On Matrix Transformations Of Sequnce Spaces Defined
In An Incomplete Space

0. CAKAR

Dept. of Mathematics, Faculty of Science,

Ankara University, Ankara

SUMMARY

The purpose of this note is to characterize the matrices which transform some
sequence spaces into the same or another sequence space in an incomplete space and to
give a new method to prove the necessity of the norm condition f(A) < oo for these

type of transformations.

1. INTRODUCTION

Let A = (a,) be an infinite matrix of complex numbers
a, (n,k = 1,2,....) and v, w be two subsets of the space s of
complex sequences. We say that the matrix A defines a matrix
transformation from v into w and denote it by writing A e (v, w),
it for every sequence x=(x,) € vthe sequence Ax=(A,(x)) € W,

where A (x) = »} A X
k=t

It is known that most of the Toeplitz theory on transforma-
tions of sequence spaces, i.e., characterizetions of the matrices
A e (v, w) seem to have been solved for the case in which x, s are
complex numbers. (See, for example, [11, [2], [4] [5]. [6], [7])-
However it can easily be shown that many of the important re-
sults are still valid in any complete seminormed complex linear
space X.
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In this paper we are going to deal with the Toeplitz theory on
the transformations of sequence spaces defined in an incomplete
seminormed complex linear space X = X(p) with the seminorm
p and zero 9. The main ditficulty for these type of characterizetions
is to prove the necessity of the norm condition which easily comes
out from the Banach-Steinhaus type theorem when X is complete.
Since the Banach-Steinhaus type theorem is not valid in an incom-
plete space, one has to find some other methods. First, Maddox
modified the original argument used by Toeplitz, [3]. This medi-
fication consists of a construction of a special sequence which gives
a contradiction, [6]. Sometimes this procedure is a hard and even
a painstaking job. Therefore, we are going to establish a lemma
which will save us to construct such special sequences for each of
the transformations. (See L.emma 3.3).

2. NOTATIONS

As far as we know, the first paper on the matrix transforma-
tions of the sequence spaces defined in an incomplete space is due
to Maddox [3]. Inthat paper, he has chosen the sequence spaces
L., @ and C, the space of bounded sequences, Cauchy sequences
and convergent sequences, respestively, and characterized the
matrix transformations between any two of these spaces. Now we
shall add the sequence spaces

I' = { x=(x) : £ x, converges and x, € X},

L= {x=(0&):2 [px)] <o (1 <r< ) andx, € X}

Ly = x=(x) : Z[p(xp)]® <o (0 <s = 1) and x, € X}

to the spaces mentioned above to extend the range.

Throughout the paper, S will denote the space of all sequences
defined in X = X (p). V and W will be any subspaces of S. When
X =C, the set of complex numbers, we are going to use the usual

notations I, ¢, v, 1., 1, for the corresponding spaces to L_, (%,
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C, I, L , L, respectively. Of course, the space of Cauchy se-
quences is equal to the space of convergent sequences in the case

of X = C.

® will denote the space of finite sequences of complex num-
bers, 1. e., sequences which have only a finite number of non-zero
coordinates and R denotes the set of row-finite infinite matrices,
i. e., whose rows are in @.

By N we denote the set of natural numbers.

3. LEMMAS

Now, we are going to give some lemmas which will be used
frequently threughout the paper.

Lemma 3.1. If X is incomplete, then L, ¢ C, I, L_and L,

are also incomplete.

To fix the idea, we shall prove the incompleteness of C under
the given seminorm. The others can be shown in a similar way.

Proof. Since X is incomplete seminormed complex linear
space, there exists a sequence (x,;) = (X1, X2, ....) which is
Cauchy but not convergent. Now, let us define

yl: (X[, 6, 6, ...)

Then
~P— (Yn = Ym) = sup P(Xn - Xm) > 0,
since (x,) is Cauchy in X, so (y,) is Cauchy in C.
Now, suppose that
P
Yo — t € C, say,
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where t = (t,, tz, ... ). But (y, - t) = (x, - t1, -ts, -t,...)

17
and

p(yn - t) = sup p(x, - t1) + 0,

since (x,) does not converge to any element of X. So
P(yn-1t =0 as n — oo.

This is a contradiction.

=3
Lemma 3.2. If the sequence (X a; x),.y converges
k=1

for every (x,) €V, where V is a space which has the unit
vector e® = (0, 0,..., 6, u, 0, ...) with u e X (p(u) > 0) in k™
place and 0 otherwise, e. g., L., @, C, T, L, L, then

(ank)neN €c (V k)

Proof. Let (§ ape X)nen € € for each (x,) € V. Then
k=t

taking Xy = e(k), we get
(ank . u)neN e C (V k),
which implies that
(ak - Waen € @ (v k),
i. e.,
p(u)[ank_amklao as n, m — 00

Thus we have that
lag — 8mi| — 0 as n, m —> o0
and therefore
(@nnen € © (v k).

REMARK. Let w is one of the sequence spaces I, ¢, y, 1,
and 1, and W be the corresponding sequence spaces L, ¢, C, T,
L, and L, then it is easy to check that (x,) e w if and only if
(yx,)e W for each fixed vectory e X with p(y) > 0 wherex, € C

Then we can give the following lemma:

Lemma 3.3. Let each of v, w be one of the sequence spaces
I,,c,y,1, and 1,and V, W be the corresponding sequence spaces
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L.,? C, I, L, and L Then if a norm-condition f(A) < oo is
necessary for A e (v, w), it is also necessary for A e (V, W).

Proof. Let A ¢ (V, W). Butsuppose that f(A) = oo. Then
there exists a sequence (%;) € v such that (Za, x,) ¢ w. Now
choose y € X with p(y) > 0. Hence (yx,) ¢ V.

If ¥ a,, x, diverges for some n, then X a; y x, diverges for

some n which is a contradiction.

If 2 a,, x, converges for all n then we need (y A (x)) e W.
This implies that (A (x)) € w, which is als¢ a contradiction, whence
f(A) < oo. This completes the poof.

Lemma 3.4. In (X, p), A € (V, I) if and only if G e (V, C)

where the matrix G=(g,,) is given by g, = ) 4.
§=1
For the case in which X = C, this lemma is due to Vermes

[7]. Since the proof is quite similar we omit to give it here.

Lemma 3.5. Let 0 < q < . Then, in (X, p), the neces-

*®
sary and sufficient condition for X a, x, to be convergent
k=1

whenever 3 [p(x)]? < oo is that a=(a,) e Q.
k=1

& . ..
Proof. Since X a, x, reduces to a finite sum, sufficiency
k=1

is trivial.

For the necessity, suppose that a ¢ ®. Then there is a se-
quence of positive integers m; << m, < ... such that lamk [ > 0.

Also there is a sequence y & (@ - C, whence there exist positive in-'
tegers n; << n; < ... such that

P(Yay = Vu) < lag [[K¥9 (k=2,3,...)
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Let us define v
Xm, = ¥yn, /aml s Xmy :(Ynk - ynk—l) /amkv (k = 2),
and x, = 0 (n£m,) so that

8

=

1

w
i

[P(a)1® =[p(yn)/|am |1* + T 1k < oo,
k=2

since q > 0. But

m.
1
EI a, X, = am, Xm, + am, Xm, + ... + am; Xm; = Yn;

Since

T8

—-

a, x, converges, we have that the Cauchy sequence

y has a convergent subsequence (yn). Hence y converges, con-
trary to y e (°-C.

REMARK. The abovelemma is still true if L is replaced by
L(q) where

= q
L@ = f= (it xce X, 2 [p(x)]" < o0, g >0(v k),
It is enough to take

P(yny - yo ) < jam | [ K (k=2 3,...)

in the above proof.

Lemma 3. 6. Let W > L (0 < q < c0). Then the dual
space of W is @, 1. e.,

(W)r = .
Proof.. We have already shown is Lemma 3.5. that
Lyt =@ 0 < q < o).
Now, W o L, implies that (W)* = (L))" = @, i,
1 (W) < @

Let a = (ay) € ®, ie., a = (ay, az,..., an, 0, 0,...) and take
any (x¢) € W. Then
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==} no
2 oa x, = X a x4
k= k=1

-

exists, since it is a finite sum. Therefore
) ® <« (W)
So from (1) and (2), we get

(W)H = &,

Corollary.
(L) = (@ = (€ — (L)* = @, where 0 < q < o.
Lemma 3.7, In (X, p), the necessary and sufficient condition

=° =)
for ¥ a, x, to be convergent whenever X x, converges is that
k=1 k=1

AN ac O, where Na = a, — a,, .

Proof. Sufficiency. /A a e @ implies that a = (a,) is

X, .
ultimately constant. Then, obviously, 2 a, x 1s convergent
k=1

®1
whenever X x, converges.
ket

Necessity. Let (s) = (i x,) be convergent. Then the

ja=

series
2 x = s + (s2-s81) + (83 - 82) +
converges and so

n-]

n
kZl a X, = 8, a, + kZI s A\ ay

tends to a limit as n —» . Hence we can write
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n
kZl b, s — a limit,

So we get
B = (bnk) € (C’ <),
i. e.,

(lim b)) = (A a) € O.

n—aoe

This completes the proof.

4. MATRIX TRANSFORMATIONS OF SOME SEQUENCE SPACES DEFINED
IN AN INCOMPLETE SPACE

In this chapter, we are going to characterize the matrices
which transform the sequence space Vinto L_, 2, C and I'. The
transformations between the spaces L, (2 and C are due to
Maddox [3]. Now we shall give the rest.

4. 1. Transformations of the form (V, L_).
Theorem 4. 1.1. In (X, p), A e (I, L) if and only if
(3) AAeR,i e, Aa, = 0 for k >k, (n),

® N
(Aay| < oo,
k=1

(1) sup

and

(5) sup lay, | < .
Since the proof of this theorem is quite similar to the one in
the case in which X is complete, we omit to giving it.

Theorem 4.1.2. Let 1<r < . Then, in (X, p), A e(L,, L)
if and only if

(6) AeRie,ay = 0fork > k; (n),

) M = sup b ]anklr, < o0, where 1/r 4 11’ =1
D k=1
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Proof. Sufficiency. Suppose that the conditions hold.
Then using the Holder’s inequality, we get

Y
3 o
P(2E ayg x) = p( 2 ag x)
k=1 k=1

(&%
kon

p> lankl P(Xk)

k=1

A

Y ko(u)

S[2 el LE [pIIT

< 0,
whenever (x,) € L,.

Necessity. According to Lemma 3.6. A € R and by Lemma
3.3. (7) is necessary.

Theorem 4.1.3. Let 0 < s < 1. Thenin (X,p),Ae(L,, L)
if and omly if

(6) AeR i e, ay = 0 for k > k; (n),
8) M = sup |a,| < oo.
nk
Proof. Sufficiency. If the conditions hold and x € L,
then we can easily get

k ()

= o
P (2 ayx)=7p (I ayx
k=1 k=1
ko(n)

= I fand vl

= M(E [p()])

< oo,
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Necessity. According to Lemma 3.5. we have A ¢ R, and
Lemma 3.3. gives the necessity of (8).

4.2. Transformations of the form (V, ()

Theorem 4.2.1. In (X, p), A ¢ (I', () if and enly if
(3) AAceR i e, Aay = 0 for k > k(n),

==}

(4) Sllp Z I}Aankg < 007

n k=1

and

9) lim a, = oy exists for each fixed k.
n->oo

Proof. Sufficiency. We may mnotice that these conditions
are sufficient for A ¢ (1", C) (See, Theorem 4.3.1.), and we also
have the inclusion

(10) (I, €) < (I, @ < (I, L).
So, the conditions are sufficient for A ¢ (I', ), too.

Necessity. Since the conditions (3) and (4) are necessary
for A e (I, L), (10) implies that they are also necessary for
A e (T, @). Finally, Lemma 3.2. gives the necessity of (9).

Theorem 4. 2. 2. Let 1 < r < . Then, in (X, p),
A ¢ (L., @) if and only if

(6) AeR, i e,a, = 0fork > k(n),

(7) M = sup E rank "’U < ®© (]‘ /}’.‘ ‘%_ ]-/II/ = 1).
n kel

and
(9) lim a, = o exists for each fixed k.
n-—»o0

Proof. Sufficiency. Let (x,) € L, and the conditions hold.
Then choose and fix an m, == 1 such that
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1jer

1) < eam

(

k=

2 M8

+1

o

where ¢ is a given positive number. So we write

m

A - An(®) ) = X oy - au] plu) +

Z |2 ] plx) + z lan | P(x)
k:m0+l k=m 11

rr 1 jrs o

< (E o= ol EID 4+ el

1

Now, (9) implies that (a ), .y i8 Cauchy for each k, i. e., there

is an N, such that

‘a'nk - amkl < s/2 T molll/ (nv m 2 No)y
where

Mo a0
T (X &)
Therefore we get

P(ALX) — An(x) = < i e, (A,00) € €

Necessity. Let (Au(x) ) € @ whenever (x;) € L,. Then,
by Lemma 3. 6. we have A € R and accordingz to Lemma 3.3.
(7) is necessary. Finally, Lemma 3.2. gives the necessity of (9),

Theorem 4.2.3. In (X, p), A € (L, @) if and only if
6) AceR,ie,ay = 0fork >k, (n),
(8) M = sup |am| < oo,

and

9 lim a , = o exists for each fixed- k.
n-»oo
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Proof. Sufficiency. Let (x,) € L. Then

p(An(X) - Am(X) ) == k§1 |a'nk - amkl p(Xk) + 2M k:mz “ p(Xk)

where m, = 1. Now, choose m, sufficiently large such that for

a given ¢ > 0, s p(x) < ¢/ 4M. Then

k=mg +1

PA) - An() ) = E fawe - am- plx) + </2

and using (9) we get

lage — am| < ¢/2H  for each k, (n, m = N,),
where H = E‘: p(x;) < 0. Therefore we get

PA,(x) - Ap(x) ) = ¢ forn, m = N

0°

Necessity. According to Lemma 3.6. we have A € R; Lem-
ma 3.3. and Lemma 3.2. give the necessity of (8) and (9), respec-
tively.

Now, in the light of this theorem and the fact that L, < L,
(0 < s = 1), we can give the following

Theorem 4. 2. 4. Let 0 < s < 1. Then, in (X, p),
A e (L, @) if and only if A € (Li, @).

4.3. Transformations of the fornﬁi(V,C)

Theorem 4.3.1. In (X, p), A ¢ (I', C) if and only if
3) AAeR, ie, Aay =0 for k > k, (n),
4) sup gj [Aay | < oo,
n =1
and

9) lim a, = o exists for each fixed k.
n—>oo
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Proof. Sufficiency part is trivial. Then, by Lemma 3.7. we
have A A € R; Lemma 3.3. and Lemma 3.2. give the necessity
of (4) and (9), respectively.

Theorem 4. 3. 2, Let 1 < r < o. Then, in (X, p),
A e (L., C) if and only if

(6) AeR i e,ay, =0 for k > kin),

(M M=supS Jau]” < o, (1fr + 1/r' = 1),

k=1

9) lim a, = o exists for each fixed k,
n-»o0

and

(12) a = (o) € .
Proof. Sufficiency. Let (x.)} € L.. Then obviously, A ¢ R

=3
implies that 2 a, x; exist3 for each n and for each
k=t

=)

(x4) € L, and o« € @ implies that X ox, exists for each
k=t

- . . r

(x4) € L,, finite sums in fact. Now we are going to show that

2 : 2 :

(2 ay X )neny converges to X o X, . For a given = > 0,

k=1 k=1

let us choose and fix an m;, > 0 such that

(£ eI =e/am”

ke=m g 41 -

==}
We may note that we also have that X || < M. So
k=t i

we write

m

P2 ay x — 3 o xy) =p(x (Bnx = o) x) + /2.
k=1 k=1 k=1

where m, > 1. Letting n — o0, we get

I, b8

=N

x®
A, Xy — k}:1 o X)) < €

<

=

v

2

10(k
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Necessity. According to Lemma 3.6. A € R; by Lemma 3.3.
we get that (7) is necessary, Lemma 3.2. gives the necessity of (9).
Finally, since (12)is necessary for (L, C), it is also necessary for

(Lr7 c)'
Theorem 4. 3. 3. Let 0 <<s =< 1. Then in (X, p). A e (L,.C)

if and Only i
(6) AeR, i e, a, — 0 for k > k. (n).

() M= supay] < o,

9) llm a,, = &, exists for each fixed k
n —> o0

and

(12) o = (m) € D,

Proof. Sufficiency. It can easily be shown that the condi-
tions above are sufficient for A € (L, C). Since (L, C) > (L;, C),
it is easy tosay that the conditions are sufficient for A € (L, C),
too.

Necessity. According to Lemma 3.7., Lemma 3.3. and Lem-
ma 3.2. we get the necessityof (6), (8) and (9), respectively. Now,
we shall prove that condition (12) is necessary for A < (L, C).
A similar proof can be given for A € (L, C). Since A € R, we have
that a, = 0 for k > k, {(n). Consider two cases : (i) k, (n)
bounded. Then a, = 0 (k > max k (n)), whence a = (%) € ®.
(ii) Suppose that k (n) is unbounded, but o ¢ ®. We are then
assuming that (A, (x)) € € whenever (x;) € L; and since
A e R n (1 ¢), it follows that the sequence

k (o

(1 3) ( z Oy Xk)neN

k=1

converges whenever (x,) € L;. Using the proof of Lemma 3.5.
with « in place of a we constract a sequence x in terms of the Ca-
uchy sequence y, then extract from (13) a subsequence of y which
will eonverge, since (13) converges. This contradits the fact that
v € (- C€) and so completes the proof of the theorem.
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4.4. Transformations of the form (V, I')

By Lemma 3.4. we have reduced the problem of finding the
matrices A € (V, T') to the problem of finding the matrices

n
G e (V, C), where the matrix G = (g,,) is given by g, = -Llajk'
i-

Since we have already characterized the transformations of
the form (V, €) in paragraph 4.3., we can directly get the matrices
A € (V, T) just writing the matrix G instead of the matrix A in
those transformations.

The author wishes to express his warmest thanks to Prof. I. J.
Maddox, who, by his acute sense of direction led him on to this
new and stimulating path in his mathematical career.
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OZET

Bu makalede, tam ohr;ayan bir uzay iizerinde tanunlanmis dizi uzaylarim kendileri
veya bir diger dizi uzaymin i¢ine déniigtiiren matrisler karakterize edilmekte ve bu tip
déniigiimler i¢in f(A) ‘<Z 00 norm-gsartimn gereklilifini ispat etmek i¢in yeni bir metot
verilmektedir.
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