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On The Cdnstant a

C. ULUCAY

De La Faculté Des Sciences De I’Université D’ Ankara

SUMMARY

Let S be the class of functions
» w=f(z)‘=z+a2.z2—|—asz3-|—...
analyticland schlicht in the unit disc | 2] <1 Let T, denote the least upper bouﬁd of

the radii of all open discs contained in the map of w = f(z) that is schlicht for Is] <1
and has f” (0) = 1. Then .

a= min rf
fes

is the Landau constant. It is shown that a, =0. As an immediate cbnsequence a >. 629

\Let S be the class of functions
w = fzx) = 2 + a2 + a2 - ..,

- analytic and schlicht in the unit dise | 2 | < 1. For the purpose
of obtaining a lower bound on a (defined below), Landau [1] con-
sidered a subclass T for which- Lf7(2) | (I— 1z]?) < 1. He showed
that @, = 0, |a,|<1/3. In the present paper we reobtain Landau’s
results by using the definition of a Bloch function of the third
kind introduced by R. M. Robinson [2] and Marty’s variation [3],
while @, = 0 follows from geometric considerations and an interior
variation due to Schiffer [4,5]. a, :: 0 has been conjectured ear-
lier by the author. It simplifies and yields at the same time a cor-
rect proof of the lower bound. In the opinion of this writer it is ho-
peless to obtain the bound under consideration without first pro-
ving that a, = 0. In addition to this, the important symmetry
condition F = 0 (Theorem 4) is also derived. Namely, we conclude

~ with the remarkable characterization that there is a schlicht- disc
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of radius a, lying in the map of a Bloch function of the third kind,
centered at the origin, and such that its size is determined by a |
unique triplet of boundary points which lie at the vertices of an
equilateral triangle inscribed in the circle.

Definition. Let r; denote the least upper bound of the radii
" of all open discs contained in the map of w = f(z) that is schlicht
for | z| < 1 and has f’(0) = 1. Then
e = min T¢,
feS
is the Landau constant.
Definition. If the map of w = f(z) contains no schlicht open

disc of radius greater than a, then fis called a Bloch function of
the third kind. ‘

In the following we shall use the abbreviation B. F. for a
Bloch function of the third kind.

Theorem 1. Let w = f(z) be a B. F. Thena, = 0, | a; | = 1‘/3. ‘
Proof. Following Marty [3], set ‘
fle + /1 + @) —fl) =f@E©A—le]) 2+ .

Here the variation used is the translation w* = w — fi (c), and the
corresponding mapping function is

‘ f*(z)': fE 0—1eP) s + ..
We have ,
fi©) A— e P) = 1 + 2a:= + ofe).
Since in the translation the least upper bound is preserved and that
arg ¢ is arbitrary, it follows that a, =

Next, calculating higher terms, i.e.,
' fl(s) 1—1P) =1+ 3ae® — [e]* + 0(33)?
it follows from the same argument that | a; | <1 /3.

Lemma 1. Let w,, w., w;, be three distinct points on the comp-
lex w plane. Let A4, be the area of the disc C whose  circumference
" ¢ contains these three points. Then A, is given by the formula



ON THE CONSTANT @ 79

T | w—w, |

2—2 Re W W W W

W— W, wW—w,

Proof. Let r,, be the radius of the disc C. Then by elementary
geometry

| W—Ws; l

' ~ Then

"~ T2sm
Here .
b = ¢ (ww, ww,), 0 < 6 < =.
" Hence ’ ’
. 2
n _ T Jw,—aw; |
1) S ‘ A 4 sinz
Now, put
W ‘2 W, —1W,
w,—w,
w, —w; ) wl—w,:’W /—W.
w, —w; | W— W,
But
6 = arg W,
and so
5 W/W = €20 — (o520 4 isin20
Hence,

w; w—w,

cos 20 = Re(W /’W‘) — Re 2—

Wi— W,  W,— W,
Carrying the value of cos 26 in formula (1) we obtam the desu'ed
. résult.
Lemma 2. Consider the btransformation
() w* = w + cfw

where ¢ is real and sufficiently small. Let w;* be the image of
w,t=1,2,3. Let C.* be the disc whose cu‘cumference c*, con-
tains the points w;*, i = 1, 2, 3, and 4, * its area. Then
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A* = A4, 1 + 2 cImF) + 0(=),

where

cot 0 cot0 i
F — - - .
w, Ws w, W, W, Ws

Proof. The area A,* of the disc C,* whose circumference
¢,* contains the points w;*, i = 1, 2, 3 is given by the formula
of Lemma 1, i.e.,

*|2

: Ll
3) A* — T | w,*—w,
v owr—wt g *
9__9Re YW wF—w,

* * ® *
w,"——w,; w,"—w,

Setting (2) into (3), we obtain

A¢ = A, — 2me (Im (L — ) Re i(W /W)
w, W, . w,w,
4 (1—Re W /W) Re — ) lw—ws P o),
wav,) (1—Re W Wy

from which the formula follows.

In connection with (2) we recall the following variational for-
mula due to Schiffer [4]. Let R be the map of fcS. Denote by I
the boundary of R. Let w, be a fixed point in R and consider the
transformation ‘
(4) w* = w -+ L

w —w,
: ;T
where ¢ is a complex number. If |¢| is sufficiently small, then

w* (w) is univalent on I" and maps it into I'* that is the boun-
dary of a new simply connected region [4,5]. The function f*(2)
which maps the unit disc | z | < 1, conformally onto R* is given
by

*(z) = z \‘s zf’(z) . f,(z)
f*@ = fl» + %zoff(z(,y(zﬂ_z) oM f(zo)g

A 6] o
s F'(20)2 BT ole), 2o 1.
3 Zof '(20)? (1—202) f(zo) - g + ofe), | | <
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The leading coefficient dl* in the‘expansion of f * about the ori-
gin is obtained by calculating '

lim fiﬂ) R
: Namely, e . ’ ’

21 1-2a, f(z,) ofc)
B RN Teh S

Putting in (5), a, — 0and letting z, — 0, we find

" (5) a* =1+ ¢

) - ' al*'= 1 — 4a, ¢ + O(E)

From here on we shall assume ¢ > 0, and unless stated other-
wise f Wlll denote a B. F.

Further, we introduce through the one-parameter famlly
- of B.F.,i.e., el? f(e7i?2), a real parameter ¢, 0 < ¢ < 27, corres-
ponding to the rotations ¢ of the complex w-plane. Then R*,
f* ‘al* should read respectively R*(¢), f*(z, ¢).a,*(p) with

a*(e) = 1 — da;g % 4 ofe),
where o(e) is uniform with respect to P For each ¢

r (<p) B
ri*(e), rgyt = L2
*(®), re*(e) Ta () |
w1ll denote the 1. u. b. of the radii of all schhcht dlscs contamed :
in R*(¢) and in the map of ;
F*(z,9) = f* (Z»@)/a*(@)
respectively.

Lemma 3. If fis a B. F., then rf*(cp) — a has a constant s1gn
for all ¢, as ¢ — 0.

Proof. We observe that for fixed o, ¢ determines uniquely
R* and the map of F*, and thereby r* and r;* respectively.
Hence for fixed ¢ there is a one to one continuous correspondence
between r* and r* and for ¢ = 0

*

—_ ¥ __ o
‘T =Ty =4

 Further, for convenience we set



82 c. ULUGAY

-and let ,
*(e) = se*(e) — s*(9)

since s;* = 0 for all g, then for sufficiently small values of s;*,
the representative curve g of the pairs (s;*, s;*), resulting from
the one to one continuous correspondence, for each fixed %, bet-
ween rp* and r*, lies in the right half-plane s;* = 0. Now, t*(¢p),
for € = 0, vanishes only on the half-line defined by s;* = s;* in
which case I'p may reduce to a point, namely, the origin. Hence,
outside of this line, for ¢ > 0; t*(¢) < 0 with I'p lying in the angle
determined by the half-lines s* = 0, s* = s;*, and 1*(¢) > 0
" with T'g lying in the suplementary angle defined by the half-lines
s* = sp*, s, < 0. Next, if there exists a curve ' lying in an
angle arbitrarily small with vertex at the origin and containing
the s * - axis, then f* (%, ¢) being compact and therefore I'g con-
tinuous, it follows that for ¢ > 0, there exists I'p lying on the s;*
axis. This is impossible, since for this I'g, s;* = 0, while in view
of t* (p)> 0, sg* > 0. Same contradiction is reached for a curve
T lying on the s;* - axis. Hence, in view of the continuity of
e with respect to ¢, it follows that the curves I'p for all ¢, either
lie in a subangle of the angle defined by the s;* > 0 axis and s;*
axis, or in a subangle of the angle defined by the s;* < 0-axis and
sg*-axis. -

* Lemma 4. Let fcS. Suppose that a is the 1. u. b. of all schlicht
discs contained in the map of f. Then f assumes the interior of at
least one schlicht circle of radius a lying at finite distance.

Proof. Suppose- that in the‘map R of f, there are no schlicht
discs of radius @ lying at finite distance. There are two possible
cases. (i) R is the whele plane such that every point of the plane
is either an interior point or a boundary point of R. Then there is
at least one end point e of a boundary continuum y. By suppres-
sing a subcontinuum containing e, one may increase the inner ra-
dius of R without increasing the value of a. (ii) In the alternative
case, there is a boundary are y, such that it is possible to replace
‘a part of y by an arc lying outside of R so as to increase the inner
radius of R without increasing the value of a. These contradic-
tions establish the lemma, '

4
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Corollary. If fis a B. F., then the map of f contains at least’
one schlicht dis¢ of radius « lying at finite distance.

Lemma 5. Let f be a B. F. For each fixed ®, F'* (z,-p) assumes
univalently the interior of at least one circle Cp* of radius rp*,
lying at finite distance.

Proof. Assuming the contrary, F* (z,0) for ¢ fixed, assumes
. univalently the interior of a circle C% of radius r* lying at
infinite distance. This implies the existence of a circle Cen- of
radius a lying at infinite distance in R and such that C% — Cq
as € - 0. But since (2) preserves the size of a circle lying at infinity,
it follows that r;* = g, Then by the one to one continuous corres-
pondence, for a fixed ¢, between r;* and ff* we have r;* = a,
and the conclusion is reached in view of Lemma 4.

Lemma 6. Let f be a B. F., and R* the map of f*. Let C;*
denote a schlicht disc of radius r;* lying in R* at finite distance.
Then formula of Lemma 2 holds, up to an error term of higher
order. ‘ '

Proof. Suppose that on the circumference c* of C.* lie three
boundary points (omitted values) w;*,7 =1, 2, 3. Since, as ¢ - 0,
the circumference c.* tends to the circumference ¢ of C with radius
a, then w;* - w; lying on ¢. Let ¢* be the image of ¢ under (2).
¢;* intersects ¢* at the neighboring pointé 1'4;\;* of w;* (it is possible
that some or all of the points ;;* coincide with w;*). Consequently,
the images;: of ’J;* under (2) being on ¢, the formula of Lemma
2 is applicable‘\to the disc C¢* whose circumference c,* contains
the points :;i*, and whose area is 4.*. On the other hand, since
as ¢ — (), the points ’12 - w;, we‘ may‘WI;ite . |

§ ~ . -
wi:wi_l_sio l=1927.37

where ¢;— 0 as ¢ > 0. Hence formula of Lemma 2 holds, up to
an error term of higher order. Namely,

0 A* = ma® (1 4+ 2 Im F) + ofe).
It is possible that the size of C;* may be fixed by only two boun-
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dary points w,*, w3*, such will be the case, e. g., of C;* rolling
along and between two parallel arcs which are parts of the boun-
dary of R*, then the foregoing argument is still applicable, and
formula (7) is valid, except that w, (7 w,, w,) is any fixed point
on c.

Lemma 7. Introducing the parameter ¢, we may write for

a fixed F,’

(8): r*o) = a (1 + ¢ Tm e%9 F) + ofe)
and : ' -
9) re*(p) = a (1 + ¢ Im 7% (F + 4ia,)) + o(c)

Proof. Indeed, assuming, say, r* (p) = @ (lemma 3) we
know (lemma 5) that to each ¢ it can be associated in R*(¢) a
disc C;*(p) with radius r* (¢) given by the formula

r*e) = a (1 + ¢ Im %% Fo) + ,é(s)

where Fg is the symmetric function associated with the disc Co
in R, with radius a, and such that C*(¢) —~ Cp as ¢~ 0. For the
purpose of identifying Co with Fo, it is important to think of Fg
as a form rather than as a number. Accordingly, for the identifi-
cation purpose it is then preferable to write Fo in the equivalent
symmetric form )

w; tan 0;

Fo = —1i

j=3

W, W05 Z tan 0,

j=1

Next, we note that for each ¢ the disc Co, and thereby C* (¢),
is uniquely determined within the totality of the discs of radius
" ain R, as soon as Im e%? Fg is minimum, with | Re e %? Fo |
minimum, and, say, Re e-%® Fo > 0, whenever there are two
Fo’s with the above specifications. Hence, under these specifi-
cations for Fo, we conclude that there is a one to one correspon-
dence between C* (¢) and Cp as ¢ — 0, and that C*(p), now
uniquely defined by r;* (9) is continuous in ¢ , so is Co. In conc-
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lusion, as ¢ varies from 0 to 2r, Co-(or Fg) either remains fixed
(or constant), or else, rolls continuously along two non intersec-
ting parallel boundary continua lying at finite distance. The simple
closed ¢urve described by the centér of Co and lying in the interior
of R, contains one of the two continua which smay consist of a
single point. This contradicts however, the simply‘ connectivity
“of R.:So Fo must be constant. SR :

Theorem 2. If fis a B. F., then F — 0.
Proof. From relation (8) we can write
’ s = aclm e F L of).

Sinee by Lemma 3, s5,* (¢) has a constant sign for all ¢, it is clear
that

(10) |  F=o.

Theorem 3. If f is a B. F., then a, — 0.

Proof. From relation (9) we can write

s5*@) = ac Im e (F 4 dia)) + ofc)
Since sp* (cp) = 0 for all ¢, it follows that
" F 4 4id3 =0
In VieW of rI“heorem‘ 2, we have
| a, = 0

One verifies at once that (10) holds for w,, w,, w, lying at
the vertices of an equilateral triangle, centre at the origin. In fact
we can state the following remarkable theorem. '

~ Theorem 4. F = 0 holds i_f and only if w,, w;, W, lie at the ver-
tices of an equilateral triangle, centre at the origin.

_Proof. First we remark that F'= 0 is not affected when the
w plane undergoes an homothetic transformation or a rotation
or both. Now, F = 0 can be written as

(11) tan 0 = o (ws — w,).
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We recall that 6 is the angle at the vertex w,. Applying the fore-
going transformations so that w, goes over into i, then w., w; will
go respectively over, say, ., w;. Accordingly (11) takes.the form

tan 0 = w; — W,

This last equation implies that the vector .w; must be parallel
to the real axis. Similarly, should we have defined 0 to be the ang-
le at the other vertices, we would end up with the same conclusion..
But the only triangle whose sides are successively parallel to the
real axis when the w plane undergoes the foregoing transformations
so as to take respectively the vertices into i, is evidently the eq-
uilateral triangle with centre at ‘the origin.

. As an immediate consequence of Theorem 3 we have

Theorem 5. a >. 629.

Prooﬁ Suppose that f(z) is a B. F. and omits the value ec.
The function -

F(z) = c—i(Tz-)(;j =z 4 b2 + b7 + ..

wheré b,=1/¢, b, =1] ¢, is analytic and schlicht for |z | < 1.
Goluzin’s inequality
' —2a
| b, — ab2 | <27 41,

for all 0 << a« < 1, takes the form

« —2a
11 = 2ol 4 1.
For the particular value « =. 45, we obtain
| j ¢ | >.629 '

If ¢ is nearest to the origin then ¢ = | ¢ |. Hence a >. 629,
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Remark. It should be noticed that a,=0 and the lower bo-
und thereof would follow at once from a known property of
a B.F., [6]; i.e., R is the whole plane such that every point
of the plane is either an interior or a boundary point of R.
Indeed, since (2) preserves the size of a schlicht disc of radi-
us @ lying at infinity in R, the corresponding radius of the
disc at infinity in the map of F* (z,¢) is a/|a* (¢)]|. But
re*(p)=a, and A fortiori |a* (¢)| <1, or Re ¢2? a, >0, i e.,
@, = 0. This follows also from (9) where F=0asw —» co.
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OZET

2

| = I < 1 dairesinde
w=f@) =z + a2 + a2 4 ..

analitik ve schlicht fonksiyonlannm S 51mf1m gozoniine alahm. w = f (z) tasvirinin ihti-
va ettigi biitiin schlicht agk dairelerin yan(;aplanmn en kiigiik iist s 7y jle gos-
terelim.
¢ = min r;
fes
Landau sabitidir. Gosteriliyor kl, fes i¢iincii nevi bir Bloch fonksiyonu i 1se, bu takdirde
a; = 0. Bunun bir netlce51 olarak a > . 629.
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