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General Dual Motion of n Moving Reference Frames*

by
H. HILMI HACISALIHOGLU**

Ankara University

I. Abstract:

We consider a kinematical system of n Euclidean 3-dimen-
sional spaces S;(i = 1,2,3,...,n) moving with respect to each other
and containing a differentiable line-system of one dual parameter
T =1+ ¢t* The case of t* = 0 is considered as a special case.
In sections II and III, for the analysis of the relative motion of
the system we derive the properties of general dual motions in
matrix algebra over the ring of dual numbers. In section IV, this
procedure enables us to obtain, more elegantly, the generalizations
for the expressions obtained by Blaschke and Miiller [t], 121,
[3], Sherby and Chmielewski [4] and Janik [8]. Our resulting
expressions involve only the components of the pfaffian vector
and their local derivatives. Hence in section V we give them a
geometrical interpretation and finally we generalize the configura-
tion of the instantaneous pole points (centros) and pole lines
(polgeraden) of a planar system to the configuration of instan-
taneous helicoidal axes of a spatial kinematical system of n moving
reference frames.

II. General Dual Motion.

In the Euclidean 3-dimensional space R3, lines combined
with one of their two directions can be represented by unit dual
vectors over the ring of dual numbers. The important properties
of real vector analysis are valid for the dual vectors. The oriented

* Presented at the “IV iéme Congrés Balkanique des Mathématiciens” Istanbul,
September 1971.
** Lecturer in the science faculty.
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lines in R3 are in one-to-one correspondence with the points of a
dual unit sphere D3 [5]. A dual point on D3 corresponds to a line
in R3, two different points on D3, in general, respresent two skew-
lines in R3. A differentiable curve on D3 represents a ruled surface
(regulus) in R3; i.e. a ruled surface is determined by a dual unit
vector, a function of one real variable:

A=A@),A =1 , 1)

The lines K(t) are the generators of the ruled surface. This kind
of definition of surfaces, in some sense, is more general than that
based on points, since quite regular curves on the dual sphere may
represent ruled surfaces with complicated point singularities in R3.

In general, a dual unit vector, a function of one dual variable
t=1t+ et*, 2=0:

- — s — s dX
K =KW +et* K@), K =1, A = e @)
t

is a differentiable line-system* (synektisches Strahlensystem) of

one dual variable “related to” the regulus (ruled surface) ﬁt).Ho-
wever, ruled surfaces are not the line-systems with the closest
analogy to spherical curves. A better analogy can be obtained from
differentiable line-systems of one dual parameter [6]- A differen-
tiable function of a dual variable can be defined by analogy with
a complex variable. A differentiable function of a dual variable has
the form

dF(z)
t=t4et*,2=0. (3)
t

F(z) — F(t) + & t* F(t), F(t)=

e.g. cos T = cost— ¢t* sint. Formulas for differentiation and
integration of F(r) are '

* A differentiable line-system is a very particular line-congruence with two real

parameters t and t*.



GENERAL DUAL MOAION OF N MOVING REFERENCE FRAMES 13

dF(z) . . B
p = F(r) = F(t) + et* F(t)
(in particular, for T =1t + £0: F(T) = F(t)) (4)
T t :
J F (Y)dY — j F(y) dy + e (t* F (t) — to* F(t))
To to

)
where Y =y 4+ & y*, o=t + ¢ to*.

The Euclidean 3-dimensional line-geometry, expressed with
the help of dual unit vectors, is therefore closely analogous to the
spherical geometry, expressed with the help of real unit vectors.
Properties of elementary spherical geometry can be carried over

to line-geometry by some simple translation rules [6]. Distance,

angle and orientation of two directed lines A and B (Xz —B =1)

are determined by the inner product

Cos ® :K.E, ® = 0+ £0* = angle | ¢ distance,
006

Since a Euclidean motion in R3 leaves the angle and the dis-
tance between two lines unchanged it will also leave the dual
angle between two lines unchanged. Therefore the corresponding
transformation in D3 will leave the inner product

——
A.B=A BT
invariant, where A and B are column matrices. Hence the dual
spherical motion, expressed with the help of dual unit vectors, is
closely analogous to the real spherical motion [2], expressed with
the help of real unit vectors. When the center of the dual unit
sphere must remain fixed the transformation group in D3, the
image of the Euclidean motions in R3, does not contain any trans-
lations. Hence the following theorem is known [5]:
Theorem 1. The Euclidean motions in R3 are represented in D?
by the dual 3Xx3 orthogonal matrices A = (A)):
AAT = E, A;; dual numbers and E 3 X 3 unit matrix.
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The Lie algebra L(0,3) of the group of 33 orthogonal dual
matrices is the algebra of skew-symmetric 33 dual matrices.
This is seen by differentiation of AAT = E with respect to 7.
Therefore, we can easily extend all known formulas about real
spherical motions. But it is necessary to pay attention to the
zero divisors, because no number et*, of the dual number r=t-}et¥,
has an inverse in the algebra; but the other laws of the algebra
of dual numbers are the same as the laws of the algebra of complex
numbers (t-it*, i = —1).

Since the oriented lines in R® are in one-to-one correspon-
dence with the points on a dual unit sphere D3, we take one dual
unit sphere for each one of n rigid bodies Sy, Sz, ... , Sp3 such that
oriented lines in S; are in one-to-one correspondence with the
points on the dual unit sphere D¢ (f=1,2,3,...,n). These dual unit
spheres have a common center 0 and are in motion relative to each
other. In this paper, this motion is considered as one-dual para-
meter spherical motion.

3 - - - - . .
The coordinate system |0;; Ty, Iy, T3 |, (i=1,2,...,n) is right-
handed orthonormal system which represents the space S;. The
corresponding dual orthonormal coordinate axes are

— — —
Ry=r1;+e¢r*; (i=12,..n and j=1,2,3)
— —
i.e. R%; =1, r;; represents the direction of the axis, and r;* is -
the moment of a unit vector in the directed axis, with respect to
a fixed origin point 0’ in the space, that is

;i)j* = 6,_61 X ]:: .
Hence the corresponding dual pfaffian forms are
Q

Then, for a dual spherical motion, we may write formulas which
are analogous to those for a real spherical motion [2]- A dual
spherical motion of D’ relative to D, denoted by D /D¢, is
generated by the transformation

X, = AX,

J— . *
= w5t e o
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where X, and X, are 3 X1 dual matrices which correspond to the
position vectors of the same dual point with respect to the ortho-
normal coordinate systems of D*, and D¢’ respectively. A; is a
proper orthogonal 33 dual matrix such that if the transpose
of A; is denoted by A,T and the inverse by A;~! then

AAT=AA'=E . %)
Thus, if we denote the column matrices R, and R, by

Rnl Rf 1
Rn = Enz » Rf = 1_{f 2
Rn3 Rf 3

then the dual motion D3, /D% may be expressed by
R, = AR, or R= AR, . (6)

The elements of A; will be regarded as differentiable functions
of the dual single parameter T = t + £ t* for line-systems and of
T=1-+ &0 for ruled surfaces. We will write A; = A(7) to in-
dicate that we restrict the discussion to one-parameter spatial
motions in 3-dimensional line-space. In order to use the termino-
logy of kinematic the dual parameter © will be called “time”. The
value of v are ordered [6] as follows:

t2 >t in case t:Ft,

=1t + et* >t =1, + ety* =
t2*>t1* in case tr=—1;.

III. The Pfaffian Vector-Instantaneous Helicoidal Axis.

Equation (5), by differentiation with respect to the dual
q Yy P
parameter <, yields

dA; AT LA dAT=0 o
which shows that the dual matrix

D = dA; A" = dA; A, Dp = o + 595 Vi (8)
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is skew-symmetric, so we may write

0 Q, -9

3
Q= | —Q, O Q, . 9)
Q, —L O

Differentiation of the first equation of (6), supposing that D3,
is in instantaneous motion relative to D, furnishes

4R, = R, (10)
where the subscript f in d; means that the motion is to be relative

to the f'i-sphere D.

—> —
The position vector X, of a dual point X, on D3, represents
a line-system (in the particular case of t =t + ¢ 0 the line-system
reduces to a regulus) in space S, and may be expressed as

'—»nT
3 (11)
X ;

and its differential velocity, with respect to the unit dual sphere
D3 which represents the space S, is

dX, = 4,X," R, + X,T 4R, 12)

or according to (10)

—

X, = (d X, T+ X, Td) R, . (13)

>
If the point X, is fixed on D*,, then its relative differential velocity
(the velocity with respect to D?)) vanishes,

dX; R, =0,
and (13) becomes

4X, = X,T OR,. (14)
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Defining a new dual vector by

Q= Q1) = Q (t) +et* Q or Q= o+ ¢ o*
whose components €y, Q, Q. are, in general, the nonzero ele-
ments of the matrix @;, Equation (14) may be written as

aX, = O x X, (15)

where the cross denotes the vector product and ﬁf is the in-
stantaneous Pfaffian (differential) dual vector of the motion
D3, /D%, closely analogous to the real spherical case |[2], pp. 6].

— —
At any given instant T = t -}- ¢ t* of the motion, Q; = Q(7) is

the analogue of the Darboux Vector in the differential geometry

of space curves [7], and the direction of af('r)- passes through the
dual spherical poles (instantaneous dual spherical centros of rota-

tion) P, and P; on D3, and D¢, respectively. Thus we have
Q(z) = Qz) Peln) or  Qylr) = Qur) Py(s)

where Qi(7) = | 5_2:('\:)] = Qt) + & t* € (t) and ?2f(~r) is the
instantaneous dual angular differential wvelocity of the motion
D’, /D¢, and its real part w(t) and dual part o:*(t) correspond to

the pure rotaion and the pure translation of the motion, respect-
ively. In S, a unit dual vector X (v} = X(t) + & t* X(t) cor-

. —
responds to a line-system and the unit dual vector Pg(r)  corres-

ponds to a line which is the axis of the line-system, at instant .

This line I_’;(‘r) is called the instantaneous helicoidal axis of the
spatial motion S, /S; which corresponds to the dual motion D?_ /D.

Thus the real and dual parts of d;R, = @ {r) R, represent
the pure differential rotational velocity and the pure differential
translational velocity of the motion S, /S;, respectively. These two
parts, from (8) and (10) are
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dfrn = cPf("'-) Tho dfrn* = (Pf(T) rn* + ‘Pf*(T) The
This separation is based on the following property of the theory
of groups [3].
Theorem 2. The 6-parameter group of motions is the commuta-

tive product of the 3-parameter group of rotations
and the 3-parameter group of translations.

Hence a system of n unit dual spheres represents a system of n
reference frames, as one sees in Figure-1 where the reference frame
of S, is performing combined translation and rotation relative to
the reference frame of S,_;, which in turn is performing combined
motion relative to reference frame S, », etc., and finally the refe-
rence frame of S; is performing combined motion relative to refe-
rence frame S;.

Iv. Highér-Order Differentials for Systems with Multiple
Relative Motion.

The dual matrix equation for the first-order differential of

a dual point in on D3 which is moving relative to D3, according
to (13), is

X, = d. X, — OX, (16)
and the second-order differential is
df2 Xn = dzn Xn - ((Dan)(l) (17)

where (X)) is the differential of (®;X,) with respect to 7.
The Equations (16) and (17) can be generalized for k'"-order dif-
ferential as:

de* X, = d* X, — (9X,) D (18)
where for @, from (9), we have

_sz"l‘ erl Qn sz Qﬂgfs
q)zf = Qﬁsz _sz+ szz Qf2Qf3 >
Qans Qf2Qf3 '—-QZf_l— szs

and
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B = — Q%D (19)

and therefore, for the higher degrees of ®; and its higher-order
differentials ® ®); we may write the recursion formulas

(Df2m+1 — (__l)m Qme (Df; q)fzm+2 — (_l)m Qme (sz l

(k) (k) (k) (k) (k) (k)
Q2m+1 — (—1)m Q2™ O Q2mi2 = (—])m Q2m 0% J

where

Bpmst = ()m Dm by bpmr — (1) e b o

. (k) -
O =dd;, O —dkd;, and Q = |Q;

. (k)
Q=dQ, O =dQ,

are differential with respect to the dual variable T = t - & t*.

The angular and translational differential velocities of S,

— —
relative to S,_; are specified by the vectors w,(r) and w,*(r) wh-

ich are the real and dual parts of the instantaneous pfaffian vec-

) —

tor Q,(r), the angular and translational differential velocities
) - —

of S,_; relative to S, , by the vectors w, 1(z) and w*,_{ (1), ete.

-
The dual position vector of a point X, on D*,, representing the
line space S,, may be expressed relative to D%, representing the

line space S;, as follows:

X, = XT AR, . (21)

If S; is considered as the first body S; and S, as the n'™ body in
the system, then there are (n—2) more bodies to pass from S, to
S; and we may write

Ar = AyAy. A, . (22)
Hence from Equation (6)
R,=AA;.. A ;| AR (23)

and (21) reduces to
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X, = XT, Ay Ay ... A, A, Ry (24)

so that the displacement of S, with respect to S is given by the
dual differential (taking f = 1)

4 X, = 4.X,T R,AX,T [dAA; ... Ay AyFA; dAs Ay ..
Ay A4...Ay A;... dA,] Ry

From (23), since we have

Ry= A,TAT, | ... A" R,,

we obtain

dlin =d, X,T R, + X,T(dA; A7) +A, (dA3A3T) AT 4. ..
+Ay Ay .(dAL AT). . AT AT] R,

or according to (8)

X, = [4,X,T + X, T [(D; +As O3 AT +Ay Ay O4AT AT ...
1A, Ayl D, AT AT R,
Since ®,(i=1,2,3,...) are skew-symmetric matrices we eventually

have

dIXn = ann_ [(D2+A2T ©3A2+A2T A3T (I)4 A3 A2+ e+
LA AT D, A A X, (25)

Comparing (16) and (25) we obtain

By — Dy-AyT Dy Ayt-(Az As)T Dy (A3 Ay)f ...+
F(Ap1- A3 A)T O (A .. A5 A)

and if we denote the similar matrices of skew-symmetric matrices
®, by H,, respectively, the last equation reduces to

;= @+ H3+ Hy+...+H, - (29)
where H; also are 3 X 3 skew-symmetric matrices.
Hence (25) becomes .
04X, = d,X, — (Ot Hyt .. +H]X, . (27)

The k'-order differential of a point X, on D3, moving relative
to sphere D3y, is

drX, = a5 X, — {[Oy+Hz+ ... +H] X, } 6D (28)
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where for the skew-symmetric matrices H, there exist recursion
formulas similar to those for @; in (20).

The real and dual parts of (28) are equivalent to the expres-
sions of Sherby and Chmielewski [4] for the k™-order differential
angular and translational velocities of a moving reference frame
as seen by an observer in any arbitrary reference frame in the
system with multiple relative motion.

V. Geometrical Interpreiations of Differeniial Expressions for a
System of n Moving Reference Frames.

In Section III we see that the matrix ®; in Equation (14)

corresponds to the instantaneous pfaffian dual vector El: in Equ-
ation (15). Similarly, matrices ®;, @,,..., ®, correspond to pfaf-

- - —
fian vectors Qq, (..., Q, respectively. Thus these similar mat-

rices Hj, Hy,..., H, correspond to the transposed pfaffian vectors

l_f’}, ‘?4,..., ‘?n, respectively. If we premultiply (26) by X, T and
postmultiply by R, then according to (14) and (15) the result is

Qi(7) = Op(r)+ o)+ . . . +F () (29)

— — - — — —
where Q; = w; 4 c0;* and ¥, = {; + ef;*

In particular, for a kinematical system with three relative
motions, Equation. (29) furnishes

Q= O+ Y . (30)

In the special case of 1 = t 4 ¢ 0, (30) is the same combination
which is given in the book by Miiller [3]. In order to see the geo-
metrical interpretaion of (30) we write it in the form

—

¥, Py= 0, B, — Q, B, Pz:f_’}zl—izzl

1

and define a new unit dual vector N = _N)(T) by

-

N=P x P, . | (31)
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— —

Then, because of ﬁi’: = N.P,= N. 5 = 0, any line of the cor-
responding line-system ﬁ(‘r) = ﬁ(t) + & t* N(t) orthogonally
intersects each line of the line (axis)-Systems 13)1(’5), I_;z(‘l.') and

1_3)3(7) Hence we have the following theorem:

Theorem 3. In general motion of 3-dimensional Euclidean spaces
Si, 82,83, with respect to each other, their three
instantaneous helicoidal axis-systems have a common
perpendicular line-system.

In other words, all lines of these three (axis) line-systems
belong to a normal net, i.e. they belong to the set of o2 straight
lines which orthogonally intersect the straight line N(t). This net

—
is a linear congruence whose directrices are the lines N(z) and

N)oo (v), where —N)C,o () is the infinite-line of the plane whose normal
is N)(T)

On the other hand, in 3-dimensional Euclidean space there
is a one-to-one correspondence between the instantaneous helicoidal
motions and the linear cbmplexes whose axes and piiches are the
axes and pitches of the corresponding instaneous helicoidal
motions {[3], pp. 245-247}. All lines of any complex are normals
of the helicoidal orbit of a point of moving space, and vice versa.

Therefore in moving space S; if we consider all line-systems
— — — .
X(t)=x+ex* which orthogonally intersect each one of the axes

l_):('r), 1—3)2(7) and I_’)a('r), then there are three linear complexes at

each instant 7

a0 }
Xt 4+ ofx = 0 (32)
Fx* - Pt x — 0,



GENERAB DUAL MOTION OF N MOVING REFERENCE FRAMES 83

which correspond to S_Sl('r), 52(1), l_I"':(‘r), respectively. Joining (30)
and (32) we have

- - - —> - > > —- >
Uy x* + §* x = (0,.x*+ 0, *.x) — (02.x*+*.x) = 0 (33)
which shows that these three linear complexes form a pencil of

linear complexes.

If we restrict the dual variable, time t, to

dt(u)
T = t(u) = t(u) + et* (u), (—— =+ 0)

du

then u can be considered as an ordinary time-variable with respect
to which an ordinary motion is determined. In this special case
the previous results are also valid. For example in the book by
Miiller [3] we see that these results hold in the special case of
T=t-+¢ 0andn=3.

Now we can generalize these results to kinematical systems
with n elements. In general, if we have n rigid bodies in motion
relative to each other, and these motions depend on a dual para-
meter 1, then at each instant v we have (%) relative instantaneous

helicoidal axes. Any three of these axes have a common perpen-

dicular line N_)(T), and the number of these lines N(‘r) is (% )at that

—_
instant 7. The set of (}) axes and corresponding (3) lines N(t)
comprise a configuration which is the spatial generalization of the
configuration of pole points in one-real parameter planar kinema-

tical systems with multiple relative motion [[1], pp. 22]. The

line ﬁ(r) corresponds to the pole line (polgerade) of the planar
case.

In the general motion of the system, there are (%) linear

complexes of lines of the space S,; n successive complexes corres-

pond to 51(1), 52(‘;), ‘?3(‘:),..., I—I;n('r), respectively, and their

equations are
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- — - —

w.x* + o*.x =0

— — — -

w.x* + w*.x = 0

e . . (34)

In order to find the relation involving these linear complexes

—

" we write the real and dual parts of ((7) in (29) and we have
w = w2+ $ F g,

or* = o* + U5t b Gt

Then we substitute these two parts into the first equation of (34)
and obtain

P e - > > e
1. x*+to*.x = (0. x*F 0% . x)+ (s x*+ds*.x)4 ...
EE— — . —
F@ax 43D =0 (35)
which is the generalization of (33) to a kinematical system of n
reference frames. Hence we have the following theorem as a result.
Theorem 4. A kinematical system of n reference frames in one-dual
parameter motion relative to each other has (})
helicoidal axis (line)-systems and () corresponding

linear complexes. n successive linear complexes which

correspond to ?21(7), Q: (7). ‘_I;g (T)seees ‘I—":, (r) form a

pencil of linear complexes.
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