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Temperature Field In A Fuel Tube With Speclai
Boundary Conditions

Erdogan CITAKOGLU

ABSTRACT

. Heat transfer from a nuclear reactor solid fuel tube with a constant internal energy
generation to a coolant in shug flow is studied analytically and the temperature fields in
the fuel tube and coolant are determined in the forms of a series solutions. The physical
propertles, heat transfer coefficient and thermal contact conductance are assumed to be
constant.

NOMENCLATURE

:  Cross-sectional area of the coolant channel
Dimensionless numbers
:  Dimensionless coefficients
Dimensionless coefficients
Angle
Dimensionless coefficients
Specific heat of the coolant at constant pressure
Dimensionless coefficients
Thickness of the cladding
: Dimensionless coefficients
Dimensionless coefficients
Dimensionless coefficient
:  Dimensionless coefficients
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Dimensionless coefficients

Dimensionless coordinate in radial direction | )

: Heat transfer coefficient between the cladding and the eoolant

I, I, : Zeroth and First order modified Bessel functions of the first kind
Ky Ky : Zeroth and First order modified Bessel functions of the second kind
. Thermal conductivity

¢ Lenght of the rod, Boundary

:  Characteristic values

s
I

g

=~

B ow

Dimensionless constant
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n Dimensionless constant

P Periphery of the coolant channel

[ Dimensionless temperature

®n Element of the non-orthogonal set of functions
¥ Dimensionless temperature
¥, Element of the orthonormal set of functions

q” "t Internal energy generation per unit time and volume

q’R,?

q’”*=———: Dimensionless internal energy generation

. ksT"

R Radius

r Coordinate in radial direction

[+ Density of the coolant

T Temperature

T—T,
T*= —— : Dimensionless temperature
T,

u Thermal conductance between the fuel rod and the cladding

v Velocity of the coolant .

Y :  Dimensionless temperature

Z Dimensionless temperature

z :  Coordinate in axial direction

{=z/R, : Dimensionless coordinate in axial direction

SUBSCRIPTS ’

© 0 : Inner radius of the cladding, Inlet condition (z = 0) -

1 : Inner radius of the fuel tube.

2 : Outer radius of the fuel tube

s : Solid

¢ : Cladding

f : Fluid

INTRODUCTION

Heat transfer between the pipe or rod and fluid flowing in
axial direction with special boundary conditions has a wide app-
lication in practice. When internal energy is generated in pipe
or rod the problem finds its application in nuclear engineering. -
Many research works have been published dealing with various
aspects of the problem. For instance Fagan and Leipziger [1]
worked with heat generating solid circular cylinder or sphere cooled
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in steady state with arbitarily varying heat transfer coefficient
on the surface and simple approximate solutions have been ob-
tained for the two cases where the heat transfer coefficient differs
greatly from its average value and it does not differ much from its
average value. The author [2, 3] solved the heat transfer problem
from a solid circular rod with internal energy generation into the
fluid flowing parallel to the axis of the rod in steady state. For the
different geometries of the coolant channel we can mention the
work of Schmidt and Newell [4] which dealt with heat transfer
in fully developed laminar flow through rectangular and isosceles
triangle ducts with various aspect ratios under two specific boun-
dary conditions; constant wall temperature and constant heat
flux. Pearson [5] found the temperature distribution for so-called
“inscribable” non circular ducts having constant wall heat flux
and slug flow. In the design of the fuel tubes in nuclear engineering
the axial conduction in the tube usually assumed to be negligible
[6, 7]. The author solved the heat transfer problem from a fuel
tube with uniform internal energy generation to a coolant flowing
‘coax1ally in slug flow taklng into account the conduction in the
axial direction in the tube.

FORMULATION OF THE PROBLEM .

_ The core is made up of a single solid moderator block and fuel
tubes pass through the moderator (Fig. 1). The coolant which
flows upward in fuel tubes removes the internal energy generated
in the fuel tubes.

One typical fuel tube with the coolant is shown in Fig. 2.
Inner and outer radius of the tube are indicated with R, and R,
and the lenght' ‘with L. The inner surface of it is covered with
cladding of thickness § and the thermal contact conductance u
between the tube and cladding is assumed not to be negligible.
The heat transfer coefficient between the cladding and the coolant
is h. The radius, cross sectional area and periphery of the coolant
channel are denoted by Ry, A and P respectively.

The following assumptions are made:

a) The fuel tube has a uniform rate of internal energy gene-
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ration per unit volume, and is insulated at outer surface and at
both ends.

b) The heat transfer through the cladding, which is considered
‘as a thin slab, is in radial direction only.

¢) The coolant has a slug flow with uniform velocity v. The
temperature in the coolant is uniform in radial direction and the.
axial conduction is neglected.

d) The physical properties, heat transfer coefficient and
thermal contact conductance are constant.

The reference frame is chosen as shown in Fig. 2. The origin
is at the center of the lower end of the fuel tube and the coordinate

axis r and z are in the radial and vertical directions respectively.
We then have the following.

Governing equation for the fuel tube :

1 & or, &T
kf— —(—) +
r

or or 0z2

s

1+ q" =0 ~ (Eq)

where k, and T(r, z) are the thermal conductivity and temperature
field of the fuel tube, q'"’ shows the uniform rate of internal energy
generation of the fuel tube per unit volume.

Boundary conditions :

T (R, 2)
kg = u [Ty(Ry, z) — T(Ry, 2)], - (Eq2)

0T (Ry, 2)

_— =0, " (Eq.3)
or ) .

T (r, 0) '

—_— =0 ' (Eq4) -
oz : i

oT(r, L) '

—_— (Eq.5)
o0z '

where T (r, z) is the cladding temperature.
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Heat iransfer through the cladding :

Tc(RI’ z) - Tc(R"’ z)

u [Ts(Rl’ z) —_ Tc<R19 z)] = kc
" — 3

- = h[T(Ro, z) — Te(z)]
where T(z) is the coolant temperature.

Governing equation for the coolant :

dr, |
pcy Av — = Ph[T(Ry, z) — Ty(z)]
. d .

z

27

(Eq‘éf)

(Eq1)

where p is the density and c, is the specific heat of the coolant at

constant pressure., -

Boundary condition :

T(0) =T,

where Ty is the inlet temperature of the coolant.

(Eq.8)

Tc(Ro,'z) ‘and T (R, z) can be expressed in terms kof Te(z)

and T(Ro, z) by the use of (Eq.6) and are obtained:
- TRy, z) = (1—m) Ty(Ry, 2) + m T(z)
T,(Re, 2) = 0 Ty(Rs, 2) + (1—n) Ty(2)

where, .
hk. /3
m =
(htk, /5) uthk, /5
uk, /3
n=
" (bt 8) u-thk, /3

. The coefficients m and n are dimensionless numbers.

(Eq9) -
(Eq.10)

(Eq.11)

(Eq.12)
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Substitution of (Eq. 9) into (Eq. 2) yields,

oTy(Ry, 2)
k, —————— + um T (R, z) = um Ty(z) (Eq.13)
or

This change reduces the problem to solving one partial dif-
ferential equation (Eq.1) and one ordinary differential equation
(Eq.7) with the boundary conditions (Eq.13, 3, 4, 5) and (Eq.8).
The equation (Eq.13) stands for the boundary condition (Eq.2)
and the heat transfer equation through the cladding (Eq.6).

The problem can be formulated in the following dimension-
less form:

1 & oT* &T>*

+qr=0 (Eq.14) |

— —M—)+
n om0 g2
with, ,
3Ts*(1, C) Rlum Rlum '
+ - T*(1, %) = T*®) - (Eql5)
o k, k, .
3TS(R2 /Rl, C) ) :
—_— 0, (Eq.16)
o . .
o1, (n, 0)
— = (Eq.17)
ot :
9T *(n, LR,
L0 LR 0, (Eq.18)
78
and from (Eq.2)
aT*(2) Pk, dT,*L,% |
= i (Eq.19)
g . P% Av o

with :
T *(0) = 0. « - (Eq.20)
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The associated dimensionless variables are defined as follows:

T Te—To Z
o =— T* = Y C‘E——~—,
R, T Ry
o qR2 _ Ty—T,
q’* = and T* =
ks To ‘ ; TO

SOLUTION OF THE PROBLEM

We now separate non-homogeneous partlal differential equa-
tion (Eq. 14) into " one homogeneous partial differential €quation
. which will form a characteristic value problem with two homo-
geneous and one homogeneous and one non-homogeneous boun--
dary conditions obtainable from (Eq. 15, 16, 17) and (18), and one
second order ordinary differential ‘equation. We assume a tem-
perature field in the following form,

To ) = 4w O + o). B

The characteristic value problem becomes now

1 2 aq) Sy , , ‘
— — )+ —=0, (Eq.22)
n 8 . on T

with the boundary conditions

(1,0 Rum Rum do(l)  Ryum
+ LY = T Q) ——————0(1)
37_) ks l'is d"l ks o
; ' (Eq.23)
o¢(R2 /Ry, ) ,
_ = (Eq.24)
- on
a(x, 0
b(n )= , (Eq.25)

¢
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a4(n, L [Ry) ‘
—_—=0. ' (Eq.26)
ot ‘
The other ordinary differential equation aésumes,
1 d do i
— — M)+ q"* =0, | (Eq.27)
n dn dy '
with the boundary condition \
dn(R: /R1) L
TR (Eq.28)
dy .
 We can readily integrate (Eq.27) twice and obtain
. 111 )
o(n) = — 7+ Ailnn+ A, (Eq.29)
» | q/n* Rz )
The boundary condition (Eq.28) yields A; = (—-) and the

other integration constant is taken arbitrarily zero, thus A,=0.
Therefore (Eq.29) reads

rrek

‘ ‘ q///* R2 ) p
() = — 7+ (—) In . (Eq.30)
4 2 R ;

We now apply the separation of variables for the solution of.
(Eq.22) and assume a solution in the following form,

b(n, ) = Y(x) 2(3)- (Eq-31)

The differential equation, when separated, becomes,

1 d Y 1 &z

7Y dy dy Z Vdcz

~ where A is the separation constant and the sign of A2 is chosen
positive in order to make the homogeneous direction { a charac-
teristic direction, ' )
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The differential equation associated with the non-homo-
geneous direction. 7 is, ’

d dy \

— () —¥9Y =0, (Eq.33)

d dny

" and the boundary condition (Eq.24) reduces to

dY(R:/Ry) :
=0 (Eq.34)

dy ,
We leave the ‘non-hqmogeneous boundary condition (Eq.23) to
the end. The general solution of (Eq.33) then is :

Y(ﬂ)': Bilo(An) + B:Ko(An), (E(I35)

where I, and’ K, are the zeroth order modified Bessel funections
of the first and second kind respectively and B, and B, are arbit-
rary constants.

From the boundary condition (Eq.34) we find,
- L(AR2/Ry)
= B

2 1o

" Ki(AR:/Ry)

where I, and K, are first order modified Bessel funqﬁons of the
first and second kind respectively. The general solution (Eq.35)
then becomes:

L(R:/Ry)
Y(n) = Bi[Lo(kn) + —————Ko(An)]. (Eq.36)
, Ki(AR:/R:)
The differential equation associated with the characte;'istic
direction is ’ '
dzz
— +NZ =0, ’ (Eq.37)
4 ~

with the following boundary conditions obtained from (Eq.25-26),
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dZ(0) .
— =0 (Eq.38)
dt ' v
and
dZ(L/R))
_— = (Eq.39)
daz ’

The general solution of (Eq.37) is .
Z(c) = Cicos A + Cpsin AE, ' (Eq.40)

where C; and C; are arbitrary constants to be determined from the
boundary conditions (Eq.38-39). From the (Eq.38) we obtain
C; =0 and the other one (Eq.39) yields sin (AL /Rl) == 0 which
‘is satisfied for the set of values of 2,

™
)‘n — . (Eq.41)
L/R; -
The associated characteristic functions are
‘ - -
Z (%) = cos . : (Eq.42)
L 1 ’

Therefore, the general solution of the characteristic value problem,
in the form of infinite series, is,

W=Dt D, +
mn
L (—) ,
L/R; mn 7 :
- Kof )] cos ( 0 (Eq.43)
T L/R, L/R, :
Ki( ) '
LR,

where D, are arbitrary constants to be determined from the dif-
ferential equation (Eq.19) and the boundary, conditions (Eq.20)
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and (23). While taking the first constant Do out of the summa-

: (@) '
tion symbol in which n = 0, the property lim Ko() = 0

is used. a=0 Kl(oz)

The temperature field in the fuel tube is obtained >fr01vn (Eq.21,
- 30) and (43),

T 9 =Dot S D) +
i -
™
Li(——) ‘
L/R, C T 7n q'’* q"* Rz,

+ Ko (: m)]cos( 0 - 7 + (—) Inn.

o L/R1 L/R1 4 2 'Rl
Ky ( ) ' ‘

L/R: i ‘ _ (Eq.44)

To determine the coefficients D, in (Eq. 43) and (44), we first
differentiate the boundary condition (Eq.23) with respect to.{,

PP, %)  Raum o)L, Rum dT*() o
+ - (Eq.45)

E L Tk, &

Differentiating T *(x, C) with respect to v) in (Eq 21) and usmg
(Eq.30) we obtain for v =1,

MeY A g R,
n i =11 (Eq.46)
o : 8'()

From (Eq. 19) and (46) we can write
dT:*(%) Pk, o¢(1,9) Pkq'”* R,

S— + [——1]. (Eq47)
dg pe,Av oy 20 c,Av R,

Ehmmatmg dT (C) /d§ between (Eq.45) and (47) and rearranging
we obtain,
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#2Y(1,%)  Rum a(1, Q) ‘RlumP (1, )
— 4
o om kg ot pc, Av on
Rium Pq"''* R,

— (=1 ' (Eqa8)
2pC Av i :

The partial derivatives of {(x, {) are obtained from (Eq.43)
a¢(n, T)

n T

= £ D) M=) —

87, i 1 L/R1 L/Rl
L (—) v
L/Ry nn 7
- —* Ki( n)] cos(——1),
m L/R L/R,
Ki(—) :
L/R;
a(x, 0) - - B 1 1 '
H )=-—2Dn( ) [T ( - n) +
ot =t L/R, L/R,
. , ,
L ( )
L/R, T n
F K. ( y7)] sin( 4B
) L/R; - - LR, _
Kiy( ) ‘
L/R: ;
324*(?%@ o T F131)
—— = — % Dy( )[Il( n) —
o¢ o =l LR, LR,
L( )
L/R; T T
— Ki ( n)] sin %)
Tn L/R, L /R,
Ki(—)
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Subtituting these partial derivatives for ‘71 = 1 into (Eq.48) we
obtain, : : : : :

o B 51} : 7
2 D, [a, cos( 0 +bysin(—-0]=—E  (Eq49)
n=1 1 ) L Rl ’ /
where,
7n
o L ( -) ,
"RiumP 7R 7on L/R. 7n
ay = —— (—) [ ( ) — Ki ( )],
pcpAv L/R1 ' L/R] ‘ K( ™ L/R1
L IR, (Eq.50)
7n
L( )
T T 7o L/R, TN
b, = L ( ) — 1( )1+
L/Rl L/Rl L/R1 n L/R1
1(_1,71;)
7
I ( ) )
Rum T L/R, i} )
+ s (—) + ——— Ko (—) 1},
k, L/R, mm - LR,
Ki( )
L/R, (Eq.51)
R; um P (i"’* - Ry,

E= — —11. (Eq52)
| -

2p¢,Av
We now define an angle B, as,

a,

tan B, = — . - (Eq.53)
\ b, ' S

Carrying (Eq.53) into (Eq.49) and rearranging we obtain
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. b, nn } :
2D, sin ( {4+ Ba)=—1. (Eq.54)

n=l. Ecos B, L/R;

In (Eq.54) b, ‘and B, are known parameters as defined by the
relations (Eq.50.51) and (53). To determine D, we have to
find the expansion of the constant (—1) in terms of the functions

nk ’

@ = sin ( + Bx) which forms a non-orthogonal infinite

1 .
set of functions. However, we can form an orthonormal set of

. functions {{,} from the non-orthogonal set of functions {p,}.
The nth element of the set is,

kr

=

C + Bk)e (Eq.55)

b= 2 % sin
L

1

where the values of the coefficients o, *> are given in App (Eq.
A5).

We can now represent (—1) in terms of {, in infinite series as,

8

Foda(®)=—1, (Eq.56)

N=

4
kN

where the coefficient F,, are given as follows.

e ) L /Rl
F, = — X 20, %+>—— ¢os By, (Eq.57)
ko (2k+ 1)

when n is odd.

when n is even.

| 2
Carrying the values of ¢, ({) from (Eq 55) into' (Eq. 56) and

rearranging we obtain,
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=] o T - - 27w
[ XFia ] sin ( C+Bi) + [ 2 Fy ;2] sin( = C+82) +
= 1 . =4 1 -
co - Tn . ‘
+ .ot [ ZF 0] sin(——{+B,) +...=—1.  (Eq58)
i=n L/R: : .
n

When the coefficients of sin( + B,) are compared between
, .

the (Eq.58) and (54) we obtain the values of Dn for n > 1 as

. E cos Bn (==} :
D, = — S Fyo®. (Eq.59)
b, = ="

We use the boundary condition (Eq. 15) and (20) and the defini-
“tion (Eq.51) for the determination of the coefficient Do and
obtain, ‘

R,
Ryum—[ (—-) —1] 2k,

R, ko  LJR
Dy = - q*— - XD,b, (—) .
4 R; um ; Rjum "= pio
(Eq.60)

Finally suhstituting the (Eq. 51,57) and (59) inte (Eq.44) we
obtain the temperature field Ty(, {) in the fuel tube,

R,
Ryum— [ (—) —1] 2k,
. 1 .
T*(, §) = —q 2 +
. 4 Ryum 4

qn/* ‘ R22
+—- (—Jln+
2 R’

\

LumPq* R,, o  L/R
T )11 =

=1
7p ¢, Av 1 i

) cos Py X -
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A.H@ .vaV — AI.MNv_S N a=u~8 W
T x«@, 500 9 =
| g/ /T 4
( B . '
/1T w Y[ E /T L T R T |
[ ) °d + (—)1l +H—) — )1l —
uu /1 uu wnlyy ux ay/1 ux uy
(—) 1 )
uL uu wnlyy
X . —_—
: 2 s A Y
| (—)'%
il /1 e /1
2 509 [(U ———) oy + (& )1l
ua uw . g/ uL
)
un
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i—1 :

——— ‘when i is odd
2 :

i—2 .

when 1 is even.

2

We obtain the temperature field Ty(%) in the coolant by substi-
tuting -the (Eq. 61) into (15),

k,PLq""'* R,, o L/R:. : T
T* ()= —— [(—) —1] 2 (—) cosPy(l—cos——- ) X
mpe,AvR, 1 t=l"gm TR
© Ce c0s 2y 41
X Z aidl) 2 o(i(2k+1) —_— (Eq.62)
i=n k=0 2k + 1 .
where ‘
i—1
. when i is odd
2
e —
’ i—2
—— when 1 is even.
- 2
|
DISCUSSION.

It is seen that the temperature functions obtained (Eq.60,61)
satisfy the differential equations (Eq. 14) and (19) and the ap-
propriate boundary conditions (Eq.15,16,17,18) and (19). The

solution can also be checked by assigning special values to:the -

parameters involved. If we assume that the heat generation q'”
is zero we have to have the uniform temperature T, in the solid
and in the fluid because of the physics of the problem. Indeed
when we make q’’ =0 in the equation (Eq. 61,62) we obtain the

.



40 E. GITAKOSLU

constant temperature T, for the solid and fluid. If we assume that
the coolant velocity v is infinite (or the heat capacity pe, is infinite)
then the coolant temperature from (Eq. 62) is obtained to be T,
throughout the coolant, and the fuel temperature from (Eq.61), »

R:,
R]'l.lm—[ (—]—3*‘-) —1] 2ks vrw e R
‘ 1 q i
T*n) = — q*— '+ (—) Inn.
4 Rlum 4 2 ’ R1

Indeed if we solve the boundary-value problem  for the same
geometry and boundary conditions except the boundary condition
on the inside surface of the cladding replaced by the uniform
temperature To, we obtain the above temperature distribution.

If we now assume R, = R;, that corresponds to the reduc- -
tion of the fuel tube to the circular cylindrical surface through
which a constant internal energy generated with the same boun-
dary conditions. In this case we obtain for the coolant temperature
T; to be equal to T, throughout the coolant. For the same condi-
tion we obtain for the fuel temperature from (Eq.k61),

Ryum + 2k, ¢ q™ R
T* () = qg"*— 4 —— (—)nq

Rium 4 2 R,

This conclusion looks absurd, because in this case the temperature

T cannot depend on . The fact is hidden in the solution of this
' problem. In other words, the circular cylindrical internal energy
generating surface and the existing boundary conditions lead to
q’"”" = 0. Therefore the condition R; = R, in this problem results
in q"" = 0, which makes T, = T; = T,. A similar reasoning for
L = 0 leads again to q""’ = 0./

CONCLUSION

From the temperature distribution function (Eq. 61) we can
readily see that the increasing values of dimensional parameters
To, "', Rz, and L cause the temperature to increase and again the
increasing values of Ry, u, h, kg, peps v, and k, /8 cause the tem-
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perature to decrease. When it is compared with the solution of the
fuel rod in [2] it is also seen that the increases in Ty, ¢’ and L cause
the temperature to decrease and the increases in pCy v, u, kg, and
k. /3 cause the temperature to decrease. Further, increase in z
and in r cause the fuel tube temperature to increase but, in the case
of the fuel rod, increase in r causes the temperature to decrase.

We can also see a similar tendency for the temperature distri-
bution function (Eq'.62) in the coolant. Indeed, increasing values
of kg, ¢'”’, L and T, cause the temperatui_‘e to increase. On the other
hand, when we compare the above results with those of the fuel -
rod [2], we ﬁnd out that the temperature increases with increasing
values of To, "/, and L, and decreases with the increasing values of
pCy, and v. Further in. the inereasing direction of the axis z the
temperature of the coolant in the fuel tube increases as it is in the
case of the fuel rod.

APPENDIX

An orthonormal set of functions {{,} which form a complete
set can be derived from a given complete non-orthogonal set of -
functions {g}, [8]. The nth element of the orthonormal set may
‘be written as,

b =2 «® a@® . (BqAD

or in terms of ), as

bar(@) = 2 a:: $i(0) + OL::'“cpn_h(C). (Eq. A2)"

k=1
The 61@honormality condition
_ R 0 when n-14k | ‘
J Ynsa(0) dl®) T = (Eq. A3)
L 1 when n4+1=k ,

is used to determine the unknown coefficients in (Eq. A2). When
these coefficients are carried into (Eq. A2) we obtain the recur-
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rence relation to get the term {,,; in terms of ‘§, for 1 <k <n,
and ¢, . This relation may be written in symbolic form as

P = E, (s b 80 ()

Ypss(O) = ' ~ (Eq.A4)
U [@aen@— 2 ([ @nus e 40) (1AL 2
L k=t L

When the values of {,, thus obtained, are carried into (Eq.A2)
we obtain ¢, ,; in terms of @, for 1 <k <n + 1, as shown in
(Eq. Al). Unfortunately there seems no general term.to exist.

The recurrence relation for the coefficients a,<™> obtained
from equation (A4) follows

1
o, Q3 — . ) (Eq. A4')
(L[2Ro)" 2 SR
o, <™ is defined as the ratio for the sake of simplicity in writing as
) snvtm: : .
o M = — (Eq. A6)
An

for n > 2 and equation (A.5) forn = 1.

The nominator §,<™> and denominator A, are given

n-1 k L/RO ) .
=- 2 o™X 4 | ¢, df, for 2€m<n—1
k=m i=1 0 . '
3, (Eq.A7)
\ =1 for m =n-
and,
L n—1 k L/R0 : B
Ay =[—— 2 (2 P |  @a0,dg)]'" (Eq.A8)
9R, k=t i=1 0 7

for n > 2, where
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L/R, ’ L/R,  sin[(n—i)r—(8,—B;)]+sin(B,—B;)
fo Pupidl = — —

b1 . n—i

sin [(n+-i)—(8,+B1) 1 +-sin(B, +8)
n-+i ‘

(Eq.A9)
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Fig. 1 — Sketch of fuel elements with solid moderator and
coolant in a core (Calandria type).
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E. GITAKOGLU
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Fig. 2 — One fuel tube with cladding and ‘coolant.
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0 ZET

OZEL SINIR SARTLARI ALTINDA BIR YAKIT TUBU
ICERISINDEKI SICAKLIK DAGILIMI

Kat niikleer reaktér yakit tiibii iginden uniform hizla akan sogutucu akiskana 1s1
gegimi, yakit icerisinde uniform bir i¢ énerji iiretimi oldugu halde analitik olarak incelen-
mig ve yakit tiibii ve sogutucu i¢indeki sicaklik alanlari serisel olarak bulanmugtur. Fi-
ziksel 6zellikler, 151 gecimi katsayisi ve 1s1l temas katsayis: sabit varsayilmigtir.
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