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ONSOZ

Cumhuriyetimizin kurulusunun 50. y1l déniimiinde, Ankara
Universitesi Fen Fakiiltesinin Dekam olarak bulunmam benim
i¢gin ¢ok mutlu bir raslantidir.

Yarmm yiizyll 6nce biiyiik bir azim ile milletini bir biitiin
halinde tovlayan biiyiik kurtaricimiz Atatiirk’iin aziz hatirasi
oniinde memleketimizin biitiin bilim adamlarmmim saygiyla egil-
digine eminim. Insanhk haysiyet ve ozgiirliigiine goz diken,
kiskang ve hirsh ruhlarin aldatmaya ¢ahstigr genglerimiz, iimit
ederimki, Atatiirk’iin kendilerine emanet ettigi bu Cumhuriyet’in,
icine atilmaya c¢ahsildifi durumu aruik anlamislar ve ancak Ata-
tiirk’in kendilerine gosterdigi ¢“hayatta en hakiki miirsit olan
ilim”” yolunda ¢alisarak memleketlerine hizmet edebileceklerinin
bilincine varmaislardir.

Genglerimizin bu teknik ve uzay c¢aginda bir Fen Fakiil-
tesi 0Zrencisi olmanin degerini ¢ok iyi takdir ettiklerine ve fe-
dakéar milletimizin kendilerine sagladigi bu imkam en iyi sekil-
de kullanmaya azimli olduklarna inanmaktayim. Fakiiltemizde
son yillarda 9%, 80’e ¢ikan basar1 durumu da bunun delilidir.

Ogrencilerimizin ve Fakiiltemiz mensuplarimn Tiirkiyenin
gelecegine katkida bulunmak i¢in daba kuvvetle ¢aligacaklarina
bu yil déniimiinde bir kere daha sbz veriyoruz.

DEKAN
Prof. Dr. Seving KAROL
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Proof of Bieberbach’s Conjecture"

C. ULUCAY

De La Faculté Des Sciences De L’Université D’Ankara

SUMMARY

It is shown by the method of 2-dimensional cross-section that for the class S of a-
nalytic and schlicht functions

fGB) =3+ a3 4+ .., izl < L,
the inequality

is always true, with equality for any n, n == 2 if and only if f(z) is a Koebe func-
tion.

Survey. In this paper we prove the famous Bieberbach’s
conjecture, i. e., for the class S of analytic and schlicht functions

fB)=z4+af+ar+ .., |z]<],
the inequality
I a, | =n

is always true, with equality for any n, n = 2, if and only if f(2)
is a Koebe function

(1—:i6z)2 =z + 2¢i0 22 4 320 2° 4 ..., 6 real.

Up to now, the conjecture has only been proved forn = 2, 3,4 (See:
(2}, 3] 4} [3)- |
As usual let V, | be the set of points

a = (as, a5, ..., @, )

belonging to functions

1) This work is dedicated to the 50™ anniversary' of the Turkish Republic.
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f@=z4a2+ .. +a,_ "' 4 az+ ..
of class S. Let 6, = sup | a, |; evidently 6, = n, and it will suffice
to consider only the class S, of so-called extremal functions
o(z) = 2z + 65> + ... + 6,8 + ...

in S with respect to the n-th coefficient. In the sequel the dot
will always refer to such a coefficient for which ¢(z) is extremal.

The main idea, from which the Bieberbach’s conjecture
(Theorem 1l) is easily derived, is formulated in Theorem I. This
idea, i. e., any extremal function o(z) with respect to the n-th
coefficient implies that the point (o, 65, ..., 6,_,) should be a

boundary point of V,_,, is quite intuitive. For, let us associate

to each point;; V,_, the number tn-—_tn@j uniquely defined by
the 2- dimensional cross-section 7w of V, obtained by holding
@, ..., @, fixed and letting @, vary, and such that
£ = (G, Gsperry By, Ty)

is a boundary point of V,, lying on =, in which

t, = Rert, = max Re a,
It is then natural to expect that max 7, must occur at some point
? on the boundary of V,_,. It should be noticed that the above
idea suggets at the same time the method of proof which may be
called the method of 2- dimensional cross-section. This, in turn

involves a certain important inequality due to Teichmiiller ([1],

P- 105). Let
a — (az, very By s an)

be a boundary point of V,. It is known that a or what is the same
thing w = f(z) satisfies a differential equation of the form

(=% ) P(w) = Q)

where
n—1 Av nz—l Bv

V=1 V=-(n-1) zY
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If A,_, 0, then
Re {(bn - n) An—jl} = 0’

where b= (a,, as, ..., a,_,, b,) is any point of V, in 7. The equality
holds if and only if @, = b,. i. e., « = b. From this inequality it
follows that 7 as well as the set of interior points of V, belonging
to w is convex. We shall call the set of interior points of V belon-
ging to 7 the interior of w. Due to its importance, the above ineq-

uality will be called by us the Teichmiiller’s Principle.

Introduction. To make the paper self-contained, we recall once
more some known facts about the n- th coefficient region V, in
(2n—2) - dimensional real Euclidean space whose points (a., @,
...y @,) correspond to functions of class S. For details, the reader
is referred to [1], Chapter 1. The topological structure of V, is
almost evident. First of all, V
|a, | < en and S is compact. Moreover the function f(z) = z
being in S and bounded it readily follows that the origin
is an interior point of V,. Finally, it can be shown that
V, is connected and topologically equivalent to the closed

is bounded and closed since

n

(2n—2) - dimensional full sphere. For example, the coefficient-re-
gion V, of points (a,) is simply the disc |a, | < 2. For, any
function f(z)eS such that |a,] < 2, @, is an interior point of
V. , and to each boundary point @, = 2e0 corresponds

a unique function in S, ie., f(z) = —. It is conve-

z
(1—eit 2)
nient to introduce at this moment the following terminology.
We say that the point (a. , @, ..., a,) belongs to a function

f&) = z + bz 4 ... + b + ..
of class S and that f(z) belongs to the point (a,, as, ..., a,) if
a, = by, v=2,3,.,n
If a = (a,, a,, ..., a,) belongs to f(z) and is an interior point

of V, then there is an £> 0 such that all points ¢ = (¢;, ¢, ..., €y)
satisfying the inequality

[T

| a—cll= ( 2 cv—fa;lz) <
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are interior points of V,, and so there is at least one function of
class S which belongs to (c,, ¢, ..., ¢,). In particular, the point
(p@zy %4y vovy 0
It follows readily that there is a hounded function of class S which
belongs to (a., as, ..., a,). Conversely, if f(z) is a bounded function
of class S and belongs to (a,, ..., ,) then the latter is an interior
point of V.. The boundary and interior points of V, can be cha-

"~1 g ) is an interior point of V, for some p > 1.

racterized as follows : If (a., a,, ..., ¢,) is a boundary point of V_,
then there is only one function of class S belonging to it, whereas
if it is an interior point of V, then there is more than one function
of class S belonging to it.

Lemma I. (i) Let p == (5,, ..., 6, ;5 6,). Then p satisfies a
differential equation 9, of the form

s dw

where ( w dz

) o) = Q@ 121 < 1w = ofa),

n-1 A n-i B
P = S A o= T D

9
V= V=—(n-1) Fad

B, = ﬁva Q(eie) = 0and Ay, = B, , = L

Here Q (z) has on | z| = 1, at least one zero, which must be of
even order.

(if) Let p, be a boundary point of V,, near p. Then p, satis-
fies a differential equation 9,° of the same type

2

z dw
(FE_) Py(w)=Q,(3), lz] <1
where
_ng A n-1 B,°
PO(W) - \El W, Qo(z) o v:r(zlhl) _zv_ ’
Bo—v = Evoo QO (eiﬂ) =0

and A% | - 1 as p, — p through boundary points.

Proof. To show the first part of the lemma, we use the Schae-
ffer Spencer variational formula [1]. We see that p satisfies the
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differential equation %, of the form
vGy

26" (%)? 1 N S _
) — —— 2 n—y
T S () = evn B B E e

where S is defined by
o(2) = OEO S, (———-1 ) 2"
;5% n— o(%0)
"~ o(%0)
9, is of the required type. We see immediately that B, | = 1,

while an easy calculation shows that A, = 1. Thus A, | =
B, , as it should be.

As to the second part of the lemma, let p, be a boundary point
of V.. We know from the general theory of the coefficients of
schlicht functions ([1], pp. 36-43), that p, satisfies a differential

equation 9,° of the form described in the lemma, i. e.,

(i ZZ ) Pyw) = Qufz), 12 | <1

where w
n-1 A0
P() (w) s Vél w .
The boundary B’ in the w- plane corresponding to |z | = 1

in the mapping o, (z) belonging to p, consists of loci defined by
1
Re [ (P (w))® %Li] = constant.

If A° designates the (n—1)-tuple (A° AL ...,A°% ) then
B, = B°, (A4°) is a function of A4° as p, varies on the boundary
of V,. Let

A= (A, Ay oy A,)

be the vector associated with 9,. In view of the extremal property
of p, B,, = B, (A) is a single analytic arc extending to infinity,
without critical points and of mapping radius unity. It is known
then that By, (4) is a continuous function of A (cf. pp. 44-87, Lem-
ma XXII). Finally, it follows from a known argument (loc. cit.
pp. 40-41 and p. 111-112) that there is a one to one continuous cor-
respondence between the boundary points of V, in the neighbor-
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hood of p and a set of vectors containing A. Hence if p is suffi-
ciently near p it follows from the foregoing continuity argument
that p, satifies a differential equation &,° in which A4° is arbitrarily
close to A, i. e.
n—t %
la—aip = (" 1A A, 1) s 0asp, o

In particular A% _, — A _ as p, - p through boundary points.

Theorem I. Let o(z) ¢ S,. Then (., o3, ..., 6,_,) is a boundary
point of V.

Proof. Consider the 2- dimensional cross-section of V, obtained
by holding o, ..., 5, | fixed and varying the last coordinate in

P = (62 Guy woey Gy gy Gp)e
Suppose on the contrary that (s,, 6,, ..., 6,_,) is an interior

point of V,_, . Then the following properties hold [6]:

Property 1. let p = (6., 65, ..., Gy_y» Gy). Suppose that b =
(629 Gy veey Gy_ys by) is an interior point of V. Then each point of
the segment bp, save p, is an interior point of V,.

Indeed , let © denote the 2- dimensional cross-section of V,
obtained by holding o., ..., o, , fixed. Owing tec the fact that =
is convex, the segment bp lies in =. Suppose that r 2= p is the first
boundary point of V on the line segment bp. Since the interior
of  is also convex it follows that every point on rp is a boundary
point of V. Let p, be any boundary point of V, lying on rp and
sufficiently near p. Applying Teichmiiller’s Principle to p,, we have
o)) Re {(o6, — %) A%} <0, &, 7= %,
where 7, is the last coordinate in p; = (., 63, .1, G4y, 7). By Lem-
ma I, (ii), A%_, - 1 as p; - p. Recalling that <% lies on the
segment b, &, which is fixed and non perpendicular to the real axis
since b, lies in the interior of the disc G, centre at the origin and
radius G, it is readily seen that for p, sufficiently near p, this
inequality is impossible. One can also see this by calculation. In
fact, (1) can be written as

(2) Gy — u’, < — % tan 0
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where 7% = u°, + i’ arg A° |, = 6 with 6 - 0 as p; — p. Set-
ting | 7% — 6, | = ¢ and assuming b, not real, then 6, — u’,
and ¢°, are of precise order . Hence (2) is impossible even if
0 < 0, for the right hand side of (2) is of higher order than c.
This contradiction implies r = p.

Property II. Let p = (63 61y weoy Gy, » Op) Suppose that

b = (6 63y oy Gy, , b,) is an interior point of V,. Let
~ ~ ..
p = (6. Gy, 6,) be a boundary point of V, sufficiently near

p- Then each point of b;; save;is an interior point of V_.

indeed, let fr\: % and f;‘;}n be as before. Applying Teichmiiller’s
Principle to ’I\)Jo, we obtain

(3) Re {(Zl - fT\o‘n) X'(’)11‘1} < O?Zl 7= ;(;n‘

As in property I, the result is geometrically evident. For, by assu-
mption

f\a’ 1~
Re <, < Re o,
. NN ~ . R
and the line segment <° o, lying on b, o, is never perpendicular

r~
to the real axis as 6, > 6, The latter property and thereby the

sense of the inequality in Re %, — Reos, < 0 will be preser-
~
ved after application of the infinitesimal rotation Arg A°_ =-6-

~ ~ . B
to 7% and o, respectively. Namely,

4) Ret, e — Re o, 60 = Re { (1 — o,)e0) < 0.

However (4) contradicts (3) and the assertion follows.

We also conclude that if,; is sufficently near p, then ;: is the

only boundary point on b ’;
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Let us consider the 2- dimensional cross-section 7. It is clear
that as the point

@ = (61, G35 ey Gy g0 @) |Gy | = 6,

describes m, the last coordinate @, will describe in the complex pla-
ne a set of points II lying in the disc G, centre at the origin and
radius &,, and which is convex. We shall say that a, is the projection
of @ and IT is the projection of w. a,{a) is said to be an interior or
a boundary point of II (x) if ¢ is an interior or a boundary point
of V, respectively. We recall that the interior of I as well as the
interior of 7 is convex. In view of property I and property IT the
set 9 of boundary points of 7 containing p and sufficiently near p,
is a continuous arc containing p. Let IT' be the projection of y
in II. ' passes through 6., and a, which is the projection of acy,
describes I'. It follows that every point on the line segment b, a,,
save @, is an interior point of I, and that 1" is a continuous arc.

Let us show that I' can have no point in common with the
circumference of G, save ¢, as a, approaches 6,. If a, = &, e!? is
such a point, then the point

Py = (02 G4y wooy Op_y» Gpel®)
would lie on the boundary of =. Using the notation of Lemma I,
it is easily seen that B, has the representation

B, = — min ) 5 ( E E@”) [,
[2]=1 ? v=1 zY S
where B, = (n—1)6,, B, = (n—v) 6,_,. Through rotation
— ¢/ (n—1), the point py takes the form
p—cpl(n—l) = (62*9 63*’ ooy G*n—w 6n)
and
n—1 B.* —
(5) B, = — min % p> (—% 4+ By* ZV)% s
21 =1 v=1 z
where y (n—-1) .
B = (n_\') v s Oy = Oy y e et

which is impossible. Indeed, we recall that
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n—t B,

Q(z) vy
and that Q(z) = 0 on |z | = 1 with at least one zero there, which

must be of even order. Similarly for each ¢ we have

rE="3

ve—(a-1y &

with the same properties on | z | = 1. Namely Q* (z) = 0 on
| 2] = 1. with at least one zero there, which must be of even or-
der. We write '

- i (- 2
Q*(z) = nZI (n—v) o, ye

v=—(n-1) zv

+ B2, B* = B,

0

and consider the expression

") = % _(mli_[_]go*,c: (7] el®
V=—(n-1) v
1~ n-1
4 CA
which concides with Q*(z) on | | = 1. If |z, | = lis a zero of

order m of Q (z), then in wiew of a fundamental theorem, in a suf-

ficiently small neigborhood of z‘o,’(j*(z) has m distinct roots which

are analytic functions of { and tending to z, as T — 1 (¢ — 0).
It follows that for | { | = 1 and ¢ sufficiently small, Q*(z) has
on | z|=1, zeros of order at most 1, thus contradicting the property
of Q* (z) having on |z| = 1 at least one zero of even order.

Next , we consider neighboring c¢ross-sections ©* as follows.
By hypothesis (6., 63, ..., 6,_;) being an interior point of V,, _, there
exists a function

f&) =2+ b7+ ... + bn,; 22 L bt L
of class S such that

oy = by, v =2, .., n-l,
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and which is bounded. Hence the point
6) b = (02 63, wep 04, by)

is an interior point of V, and lies in &. It follows that |b,| < &,.
Let us consider the neighboring function

f*(z) = e flez) = 240, 22 + o 4 6% T bF L
1

which is also of class S for ¢ real, and belongs to the interior po-
int

(6,%, 0,%, s 0% B,%)

where

oy* = oyel-le |y = 2 .., n—1; b* = b,el®-VE |

If ¢ is sufficiently small, then the point
b* = (¢,*, 5,%, ..., ¥, ,, b))

will be also an interior point of V, .

Property III. Let p = (0., o3, ..., 64_,, ). Suppose that b=
(825 G35 wuey G4y, by) is an interior point of V. Let p* = (c,* ,

6,*,..., 6%,_, 6,) be any boundary point of V, sufficiently near

p. Then each point of b* p*, save p*, is an interior point of V.

Indeed, b being an interior point of V, if p* is sufficiently
near p and therefore = sufficiently small, then b* = (o,%, o,*, ...,
o*,_;» by) is interior point of V, . The conclusion follows by appl-
ying the argument as in property II to the segment b*p* lying
in the 2-dimensional cross-section w*, obtained by holding ¢,*,

~ ~ ~
6,*,..., 6%,_, fixed. Namely, assuming Re <% < Re ¢,, where 1%

o~ ~
is the last coordinate in p* = (s,*, 6,%,..., 6%, _,, %) on b,c,, near
p*, we see, repeating word for word the argument at the end of
the proof of property Il that each point of b* p*, save p*, is an

interior point of V,.

We also conclude that if p* is sufficiently near p, then p*
is the only boundary peint on b* p*.
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It should be noticed however that property III is an imme-
diate consequence of property II. In fact, let in general a ¢ II.
To a, will correspond in =, the point

a = (6,, 65, -, G}n_l, a,)
If ¢ is real , the point !

a* = (5,*% 6%, .., 6%, a,%)
where

oy = oyelvE vy =2 .., n—1; a* = a.ei®Ne, will lie in

7*, while a,* which is the projection of a*, will lie in the projection
II* of =* . In fact I1* is obtained from [T through a rotation equal
to (n—1)c , Thus in the neighborhood of ¢,* = &, e/ the
boundary of IT* is a continuous arc I'* containing ¢*, and which
is obtained from I" through a rotation equal to (n—1)e. Similarly,
the boundary of n* in the neighborhhpod of

* * * % *
= (5,%, 0,* . -y 6%, 5 Gp%)

p

is a continuous arc y* of which I'* is the projection. Taking ¢ suf-
ficiently small so that

b* = (6,% o,*..., c¥,_,, by)
is an interior point of V,, one obtains: property III.
Property IV. In the neighborhood of o, I lies on both sides

of the real axis, i. e., it contains points ¢, ¢ I" with Im a, < 0 as
well as points ¢, ¢ I" with Im a, > 0,

Indeed, otherwise I' will contain two ares I',, I'; ending at
the point 6, and lying say in the upper half plane. Let A be a line
parallel to the real axis sufficiently near to it, and which intersects
T';, and I, at the points o', , a* respectively with, say,

(7 Rea!, < Red*, Im a!, = Im &*

Applying Teichmiiller’s Principle to the boundary point

_ 1
a, = (6,, 6y4ees Oy GY)
we have ‘

(8) Re {(a’,—a'y) A} < 0, @ # a\y

In view of Lemma I, as A tends to the real axis, A, — 1. Thus



12 C. ULUGAY

it follows readily that for A sufficiently pear to the real axis the
inequality (7) is preserved and (8) is impossible . In fact, to see
this, it will suffice to write (8) under the form

(9) Re @, — Re @', < (Im o’, — Im a')) tan arg A _,.

We shall denote by I',, the continuous arc with Im a;, = 0, where
Im @, = 0 if and only if a, = &,.

Let us consider again the convex region II. We recall that I',
lies, except for G, , entirely in G. It will be convenient to introduce
the following notations. Let { = el(®-Y¢ | where ¢ is assumed to
be positive and sufficiently small. Denote by = Z &, the point
on the arc of circumference g of G and by t,, the point on I', such
that

Imz, = Imr= - 6, sin (n—1) ¢ = - 5, (n—1) =+0 (&%), 0(*) >0.

Let a°, ¢ I, such that Re ¢°, = Re 1. Let  be any direction issuing
from © and lying within the right angle determined by the vertex
7 on g and by the segments 17t, and 7 a°, parallel to the axes of
coordinates. Let @, be the intersection of § with I',. If o, 0 < « <

%, is the angle defined by 8 and 7t,, then as « varies in the open

interval (0, —;C—), the point a, ¢ I', sweeps the open subarc I‘ls

of ', extending from =, to a°,. Note that « is independent of ¢.
On rotating I', through ¢, we obtain the arc I'* = { (I')) and
the direction 3* = Z(3) issuing from &, will lie on the upper
half-plane for « fixed and ¢ > 0 sufficiently small. §* intersects
I"\* at the point a,* =% a, . We then have the following impor-
tant consequence.

Property V. Let

a* = (0,%.c, 6%, @,%), a,* =a * (g, a), o,* = oy eiVNe
v = 2.., n—1, a,* = { a, with ¢ > 0 sufficiently small, a*
satisfying a differential equation 9,* of the form (loc. cilt. p. 36)

(£ ) e = 0

w

where
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% _ N A‘i*
P* (w) = \E1 P
n-1 B.* —
*) = % DY B _ B
Q (z) Ve(n-1) P =V v
and
(A) Ay = i o FVT) F*
k=v41
-y
B, — IEI ko, F* oy, v = 1, 2, ..., n—1

(B)
B* = 3 (h—1) q* F*

k=2

Then for fixed « , Q* (z) which is analytic in z is continuous with
respect to € (¢ = 0) and z, and Q* (2) — Q(z) uniformly as ¢ — 0.
Here Q(z) is the right hand side of the differential equation 8,
corresponding to p, (¢ = 0).

Proof. TI being convex, it follows that the arc I', in a neigh-

borhood N( 6,) of 5,, is convex, and it is well known that in N( 5,),

T is differentiable, save a countable number of points!. Hence if

. T .
4y ®, are two fixed numbers such that 0 < o) < a; < —5- 1t

follows that for ¢ > 0 sufficiently small, and «, = o = «,, so that
the points (g, «) ¢ I'; lie in N( g,), the first partial derivatives of
Ba (g, &) and A, (g, o) exist at points where I'; is differentiable. Here

a, = o, + iﬂm Ay = c';n_ hn3 a’n* = O(n* + iﬂn*9 O‘n* - 6n - )\n*
where

Bo s 2y > 0ascec - 0,

On using the relations

1) G. Valiron, Théorie des Fonctions, Masson et Ci¢ editeurs, 1948, pp- 79-80.
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(10) a, = Can* = E( én—)\n* + 1/311*)
and
(11) Bo* = 2,* tan (x — (n—1)e)

we find for ¢y < 0 < o, and e = 0
(12) ¥ = (B, + a, sin (n—1)c) cos (o—(n—1)c) [sina,

Ba* = (By + o, sin (n—1)¢) sin (a—(n—1)¢) /sine.
For ¢ > 0 sufficiently small, formulas (12) define in the upper
half-plane a curvilinear triangular region T with one vertex at ¢,
and whose closure denoted by T, lies, except for &,, entirely

in the upper half-plane. It follows that on T, 3,* (¢, «) and f,*
(e, «) have first partial derivatives with respect to ¢ and o, save
a countable number of points. Namely, formulas (12) define,
by means of a system of two-dimensional cross-sections {m*},
on the boundary of V,, near p, a curvilinear triangular set of
points

*

a* = (c,*, ..., 6%, , a,* (&, 0)),

with one vertex at p, which we may denote by R = R (p), and
whose closure we indicate by R, and such that R is differen-

tiable except at a countable number of points. But in R we may
write (loc. cit p. 110).

13) A} = 3 o * F* v=1, 2, .., n—1, 6.* = a,*
k=v41

The system (13) being linear in the F,* with non-vanishing de-
terminant (loc. cit. p. 110) it can be solved for the F,* in terms
of A* = (A*, AJ*, ..., A* _ ) and a*. But, as in the proof of lemma
I, the vector 4% is continuous at each point of R, i. e., on R. Hence
F,* is continuous onR; and at those points where R is differentiab-

le, we have (loc . cit. p. 111)
Re {F,* 8c,* + ... + F* , 3¢*,, + F,* 3a,*} = 0

Namely, the vector
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F* = (F*,.,F*_,F*

is normal to V, at the points a*c R. Since F* is continuous

on R, it follows that
(i) R is continuously differentiable at all points a* ¢ R and

(ii) the vector (0, 0, ..., 0, 1) being the value of F* at the po-
int p, then

(14) F* = (FF, .., F*_, F* > (0,0, ..., 0, 1)

as ¢ — 0, uniformly with respect to o, ¢, < o = a

0 1°

Hence, Q*(z) is continuous on R, and for each fixed oy = o = o,
Q*(z) > Q(z) uniformly as ¢ — 0.

In view of the relation a, = Za,*, where a,* has by (i) con-
tinuous first partial derivatives, a, itself has continuous first par-
tial derivatives with respect to ¢, oo. Hence repeating the same ar-
gument for I',, namely, when a, ¢ I, is the intersection of § with
I';, one concludes that I' is continuously differentiable in N( o,).

Finally, using s, the arc length of I'; from ¢, to a,, as the pa-
rameter to fix the position of @ = (o, ..., 6,_,, @), @, = @, (s),
by fixing the position of a, on I';, we see that along y.,

U= ¥  BO g =B,

v=—(n—1) Fad

where Q(z,5) is continuous in both variables, and Q (z,5) — Q(2)
as s - 0. First, we note that on I';, the polynomial
21 Q(z,8) = —En_l (s) "2+ ...+ Bo(s) 21 .+ B, (9),
B,_,(s) # 0, B(s) > 0,
has the same zeros on | z | = 1 as Q (z, s). Next , the expression

on the right hand side, when considered as a polynomial R in z
and the real variables x,, y, defined by
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B, = &, + iyy, By=ax,—iyy,v=1,..,n—1, By=x,>0

is linear with respect to these 2n—1 independent real variables and
therefore irreducible within the formal polynomials ordered ac-
cording to decreasing powers of z, with polynomials in the 2n—1
variables x,, yy, as coefficients. Hence R and its partial derivative
R, with respect to z are relatively prime. Consequently?, the disc-
riminent

D=D (xo 2 Xys Nyo owes X ynﬂ)

is not identically zero in the 2n—1 real Euclidean space E*",
Next , eliminating the F,’s amongst the relations (B) as applied
to a, we obtain the equation

(B*) B, = 6,B, + (26,—26,%) B, 4 (36,— 70,0, + 45,7) B, - ...
+ {(n_‘“l) @y + Pn—y (62 2ty Gnﬂ)} Bnﬂ ”
where ¢,_, is a polynomial in 6., ..., 6, .
If 5, ..., o, are fixed, so is @, , and it follows from (B¥)

and (B) that there is a one to one continuous correspondence bet-
ween the points a,(s) and the points

B(s) = (Bu(s), Bi(s)ees By_,(5)) ¢ B
In fact the equality B (s) = B (s) implies upon substraction

(n_l) (an(s) - an(s/)) Bnﬂ = 0.
Then, since n > 1, B, |, 3£ 0, it follows that a, (s) = a, (s').

Consequently, as a, (s) describes I';, B(s) describes in a one to
one continuous way an arc %, in E*1, ’

Now, at each point of », B,. B, satisfy a linear relation of the

form
.B**. B . n;l BV J— v
{ ) o - min p — + B,z = 0,
1z|]=1 v=1 z
or,
n—i
X, -+ 2 min (xy cos VO + ¥, sin v0) = 0,

1) M. Bécher, Introduction to Higher Algebra. The Macmillan Company
N.Y., 1907, pp. 212-—213.
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where the minimum occurs at a multiple zero, say z = z_, z, =3,(s)
|2,|=1, of Q(z,5)=0, with z (s) continuous in s"). More generally, since
each a*¢ R determines uniquely F*, we see from (B) that the
vector B* is uniquely determined by e¢* and that the corres-

pondence a* —~ B* is continuous on R. Next, the components
of a* can be calculated from (B)step by step in terms of the
components of B* and F* with the conclusion that on R,

%7

oy* = oy*’ implies B* _, = B*' _,. Hence the inverse mapping

B* > a* so defined is one to one. We conclude that ¢* - B*
is one to one continuous on R. Hence closed sets are mapped
onto closed sets. Consequently, the inverse mapping B* ->a*
is also continuous. It follows that the vector B* describes in
E™'q region N that is the topological image of R. At each
point of N, B* satisfies a linear relation of the form (B**)

where the minimum occurs at a multiple zero of Q*(z), on

|z]=1.

But, D=0 being necessary and sufficient for Q* (z) =0
to have a multiple root on |z|=1, it follows that D vanishes
on N. Geometrically, if z is considered as a parameter then
D=0 is simply the envelope of the hyperplanes R == 0. Ho-
wever, D=0 is real, irreducible and homogeneous of degree

4 n-6, i. e, an algebraic hypersurface. Now, IV is that portion
of D=0 at each point of which (B**) is the tangent hyperp-
lane. Since N is algebraic, there exists on it an arc ¢ with
one end point at B (0) along which B* can be expressed
analytically with respect to some parameter and Q* (2) > Q (2).
But this contradicts the fact that Q* (z) should have multiple

zeros along ¢, near B (0). Thus no such N and thereby x,
can exist unless reduced to the point B (0). Hence I'| reduces
to the point o, and theorem I is proved.

We illustrate this by an example corresponding to the classical
case n = 2. In thise case | 5,| = 2. We may assume o, = 2. Then,
D =0,R =0, R, =0 all coincide whenever B, is real and z = —1.

1) By the fundamental theorem on the continuity of the roots, y, cannot
be an analytic arc.
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In fact we have B = 2 B,. Then comparing with (B*) we obtain
complete identity, since 5,=2. Also, B,=1, B=2 as expected.

Corollary. If n = 3, theorem I implies that 6, must be a
boundary point of V,, i. e. |6,] = 2. Hence the extremal func-
tion corresponding to the third coefficient is the Koebe function.
Accordingly, |a,] < 3.

3|

Theorem II. Let p = (o, ..., 0,4 ,,&,), 6, >0. Then p belongs
to the Koebe function with 6, = n.

Proof. Since by Theorem I, the point (o, ..., 6,_,) is a boun-
dary point of the coefficient region V,_, , it satisfies a differential
equation of the form

: 2
(i_ dw ) 2 A, _ niz B) e,
1 =—(-2

v v
w dz vl W v )y @

(15)

As in the proof of Lemma I the boundary of o{z) is conti-
nuous at 4" = (A", A,’, ..., A, ) which implies A’ , =B’ _, 340
(loc. cit. pp. 81-87). On the other hand o(2) satisfies the differential

equation 9, i.c.,

z  dw \* n-1 A n—1 BY
16 b il — _— = = .
(16) < w o dz ) \EL wY v:—z(n_l) P Anmy Bao, !
e z  dw

Eliminating <T _dz_) between the two differential equations,
we obtain

' n-3 ’ Y n—4 14
(17) " Aw _ 2—|— oA . B, f., i + ..+ B,

Awd=2 . 4+ A B,_#"*+ ..+ B,

Thus w is an algebraic function of z and to each value of z there
corresponds at most n—2 values of w. From either of the given
differential equations it follows that w — 0 as z — 0. Equation (17)
can be writtten as

(18) w{, F 2w+ ) =2y FowE o Ry =g, £ 0.

Thus in a neighborhood of the origin each branch of w = w (z) is
analytic and has an expansion
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(19) w =z + f,2& + ..

Hence all branches of w(z) coincide in a neighborhood of
the origin thus implying that all branches of w(z) coincide for all
%z, and w(z) is single-valued and therefore rational

Accordingly P.(s)
— Z ”
P,(2)
where P,(z) and P.(z) are polynomials without common factors
and P,(0) = P,(0) = 1. Following Schaeffer-Spencer (loc. cit.
pp. 156 — 158), we see that P,(z) is a constant and P,(z) is a poly-

nomial of precise degree 2. Thus

z

e = 1.
T T F et e |
Since the product of zeros of 1 -+ 2z - pz? is of modulus 1 and
no zero can lie in | z| < 1 it follows that both zeros lie on | z| =1

and consequently ,

z

20 w =
20 (1—e*2) (1 — €iB 2)

Finally w = o (z) being extremal, (20) reduces to Koebe
function with 6, = n.

Exactly as in case n =2, we verify, for any n, that R =0,

R, = 0, and D = 0 thereof, coincide whenever B, is real and
z = — 1. Namely.
B, — 2B, + 2B, — ... &+ 2B, = 0.

Comparing this with (B*) we obtain complete identity, since by
theorem 11,

6: = 2, 6y = 3, ..., 6, = n.

Also, By = n (n—1), By = (n—v)%
We collect all these as

Corollary. A boundary point ¢ of V,, n = 2, is extremal
| z
(=)
if the vector B = (B, B,, ..., B,_)) associated with ¢ satis-
fies (B**) with B, > 0, B,, v = 1, ..., n—1, real and with mini-
mum occuring at z = — 1.

and belongs to the Koebe function f(z) = , if and only



20 C. ULUGAY

REFERENCES

[1] A. C. Schaeffer and D. C. Spencer, Coefficient regions for Schlicht Functions, Amer.
Math. Soc. Colloquium Publications 35 (1950).

121 L. Bieberbach, Uber die Koeffizienten derjenigen Potenzreihen, welche eine sch-
lichte Abbildung des Einheits kreises vermitteln, Sitzungsber. Preuss. Akad. Wiss,
Berlin 1916, 940-955.

{131 K. Léwner, Untersuchungen iiber schlichte konforme Abbildungen des Einheitsk-
reises I, Math. Annalen 89 (1923) 103 - 121

[4] M. Schiffer and P. R. Garabedian, A proof of Bienerbach Conjecture for the fourth
coefficient, J. Rat. 1955.

15] Z. Chariynski and M. Schiffer, A new Proof of the Bieberbach Conjecture for the
fourth Coefficient, Archive for Rational Mechanics and Analysis, Vol. 5, Number 3,
1960, pp. 187 - 193.

[6] C. Ulugay, International Congress of Mathematicians, Stockholm 1962.

0ZET)

2 boyutlu arakesit metodu ile gosteriliyor ki,
f@) =234 az* +— ., |5] <1
analitik ve schlicht fonksiyonlart igin
lay, [=n

esitsizligi daima dogrudur. Herbir n icin, n == 2, egitlik yalmz ve yalmz Koebe fonkiyonu

icin vardar.

1y Bu ¢ahsma Tiirkiye Cumhuriyetinin 50. Yildoniimiine ithaf edilmistir.



Prix de I’abonnement annuel

Turquie: 15 TL.; Etranger: 30 TL.
Prix de ce numéro: 5 TL. (pour la vente en Turquie).

Priére de s’adresser pour Pabonnement a: Fen Fakiiltesi

Dekanligi, Ankara, Turquie.

Ankara Universitesi Basimevi, 1973





