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ÖNSÖZ

Cumhuriyetimizin kuruluşunun 50. yıl dönümünde, Ankara 
Üniversitesi Fen Fakültesinin Dekanı olarak bulunmam benim 
için çok mutlu bir raslantıdır.

Yarım yüzyıl önce büyük bir azim ile milletini bir bütün 
halinde toplayan büyük kurtarıcımız Atatürk’ün aziz hatırası 
önünde memleketimizin bütün bilim adamlarının saygıyla eğil-
diğine eminim. İnsanlık haysiyet özgürlüğüne göz diken.ve
kıskanç ve hırslı ruhların aldatmaya çalıştığı gençlerimiz, ümit 
ederimki, Atatürk’ün kendilerine emanet ettiği bu Cumhuriyet’in, 
içine atılmaya çalışıldığı durumu artık anlamışlar ve ancak Ata­
türk’ün kendilerine gösterdiği “hayatta en hakiki mürşit olan 
ilim” yolunda çalışarak memleketlerine hizmet edebileceklerinin 
bilincine varmışlardır.

Gençlerimizin bu teknik ve uzay çağında bir Fen Fakül­
tesi öğrencisi olmanın değerini çok iyi takdir ettiklerine ve fe-
dakâr milletimizin kendilerine sağladığı bu imkânı en iyi şekil-
de kullanmaya azimli olduklarına inanmaktayım. Fakültemizde 
son yıllarda % 8O’e çıkan başarı durumu da bunun delilidir.

Öğrencilerimizin ve Fakültemiz mensuplarının Türkiyenin
geleceğine katkıda bulunmak için daha kuvvetle çalışacaklarına 
bu yıl dönümünde bir kere daha söz veriyoruz.

DEKAN

Prof. Dr. Sevinç KAROL
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Proof of Bieberbach ’s Conjecture

C. ULUÇAY

De La Faculte Des Sciences De L'Lniversite D'’Ankara

SUMMARY

It is shown by the method of 2-dinıensional cross-section that for the class S of a- 
nalytic and schlicht functions

the inequaiity
/(z) = z + l-l< L

a.

İS always true, with equality for any n, n 2 if and only if/(s) is a Koebe func- 
tion.

Survey. In this paper we prove the fam o us Bieberbach’s 
conjecture, i. e., for the class S of analytic and schlicht functions

f(z) ~ z a2Z^ + a,z^ + 1,
the inequality

i «n I n

I 2 I

is ahvays true, with equality for any n, n 
is a Koebe function

’ 2, if and only

(1—<>i't2)‘
= 2 + 2ei9 2^ -|- 3e2i6 z’ •••5 9 real-

Up to now, the conjecture has only been proved for re = 2, 3, 4 (see: 
[2], [3], [4], [5]).

As usual let V,n-1 be the set of pOints

a = ^^3, ®n-ı)

belonging to functions
1) This work is dedicated to the SO*'* auniversary of the Turkish Republic.



2 C. ULUÇAY

/{z) = 2 + a^z^ + - + «n-ı z'-n-1

of class S. Let = sup 1 «„ 1; evidently

4- «„z“ -h ...

Ş; n, and it ■will suffice
to consider only the class S„ of so-called extremal functions

tt(2) = 2 + <^2Z^ + + Ö„Z’' + ...

İn S with respect to the zı-th coefficient. In the sequel the dot
will always refer to such a coefficient for which (7(z) is extremal.

The main idea, from which the Bieberbach’s conjecture 
(Theorem II) is easily derived, is formulated in Theorem I. This 
idea, i. e., any extremal function a(z) with respect to the n-th
coefficient implies that the point (uz, n-ı.J should be a
houndary point of İS quite intuitive. For, let us associate

to each point az V,n-ı the numher fn=*n(®) tıniquely defined hy
the 2- dimensional cross-section Tz of V„ obtained by holding

fixed and letting vary, and such that%

t — (<*25 Ö3,-"5 ^n)

is a houndary point of V„, lying on tz, in which

= ReT„ = max Re «,"n

It is then natural to expect that nıax must occur at some point

on the houndary of V,
idea suggets at the

n-ı . It should be noticed that the above
same time the method of proof which may be

called the method of 2- dimensional cross-section. This, in turn 
involves a certain important inequality due to Teichmüller ([1 ], 
p. 105). Let

a — («2, •••, p s)
be a houndary point of V„. It is knownthat aor what is the same
thing w /(z) satisfies a differential equation of the form

2
z
tv

dw 
dz

P(w) - Q(2)

where
A, P(w) = 2 ■V

V-1 w
Q(z) =

n-ı
S By

z''
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If A,■n-1 0, then
Re — a,O

where 6= (a^.
holds if and only if i. e., a

6jı) is any point of V„ in tc. The equality
b. From this inequality it

follows that n as well as the set of intetior points of V„ belonging 
to TT is convex. We shall cali the set of interior points of Vj, belon­
ging to TC the interior of tc. Due to its importance, the above ineq-
uality will be called by us the Teichmüllefs Principle.

Introduction. To make the paper self-contained, we recall önce 
more some known facts about the n- th coefficient region V„ in
(2n—2) - dimensional real Euclidean space whose points («2, ^^39
..., «„) correspond to functions of clasş S. For details, the reader 
is referred to [1], Chapter 1. The topdlogical structure of V„ is 
almost evident. First of ali, is bounded and closed since

I «n I en and S is compact. Moreover the function /(z) 2
being in S and bounded it readily follows that the origin 
is an interior point of V„ . Finally, it can be shown that
V„ İS connected and topologically equivalent to the closed
(2n—2) - dimensional full sphere. For example, the coefficient-re- 
gion V2 of points («2) is simply the disc | | < 2. For, any
function f{z)sS such that | | 2, «2 is an interior point of

, and to each houndary point

a unique function in S, i.e., f[z)

Cb2
z

— 2e'9 corresponds

(l_ei0 2)^ . It is conve-

nient to introduce at this moment the following terminology.
We say that the point («2 , ■35 helongs to a function

/(2) = Z + + ... + b,Z- + ...

of class S and that f(z) belongs to the point («2, «3, . «„) İf

«V -- = 2, 3,..., n

If a = («2,
of Vj, then there is an s > 
satisfying the inequality

a,, öj,) belongs to/(2) and is an interior point
0 such that âli points c ---  (C25

II « —c|| 2 1 c. e
1
2
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are interior points of V„, and so there is at least one function of
class S whi('lı belongs to (C;'29 C3, c„). In particular, the point
(pfl,, p^Oj, p"-' %) İS an interior point of V„ for some p > 1.
It follows readily that there is a bounded function of class S which
belongs to (a^, a,, Conversely, it f(z} is a bounded function
of class S and belongs to («2, «„) then the latter is an interior
point of V„. The boundary and interior points of V„ can be cha-
racterized as follow8 ; If (O; O: aj is a boundary point of V„,
then there is only one function of class S belonging to it, whereas 
if it is an interior point of V„ then there is more than one function
of class S belonging to it.

Lemma I. (i) Let p - â„). Then p satisfies a
differential equation Hj, of the form

where

z
w

dw 
dz

2

P(«’) Q(2), i 2 I 1, Mî ct(z),

P(w)
n-ı 
S

y=l

Ay
W

Q(2) =
n-1
S 

y=-m_l)

By

B_v =

Here Q (z) has 
even order.

Bv, Q(e’0) 0 and A,n-ı = B,n-ı 1.

on I z I = 1, at least one zero, which must be of

(ii) Let p^ be a boundary point of V„ ,
fies a differential equation !)„“ of the same type

near p. Then satis­

where

Po(w)

-V

and

z
w

dw 
dz

2
•J Po («’) Qo (2) |2 1 I

n-'i 
s

y=ı

A
W

Q.(2)
n-ı
E

V=-(n-l)

^y 
z''

1 as

(ei9) 0

p through boundary points.

Proof. To show the first part of the lemma, we use the Schae- 
ffer Spencer variational formula [1]. We see that p satisfies the
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differential eguation of the form

z'‘a'(zY
<^(2)’

s,
n-ı n-ı

= (n-l)d„+ Y + 2
V=1 2 '

,n-v
n

1 
«^(2)

where S„ is defined by

1- o(z„)

00
S S, 

n=2
n

= 1is of the reıjuired type. We see irnmediately that B„_j
while an easy calculation shows that A„. j = 1. Thus A,̂ -1
B.n-ı as it should he.

As to the second part of the lemma, let be a houndary point
of V„. We knovt" from the general theory of the coefficients of 
schlicht functions ([1], pp. 36-43), that p^ satisfies a differential 
equation of the form described in the lemma, i. e..

where

dw 
dz PoCm») = Qo(2),

PoH
A, o 

-V

V=ı

z
w

2

s
w’' '

I « I 1

The houndary in the w- plane corresponding to \ z | = 1 
in the mapping (z) belonging to p^ consists of loci defined by

Re J (P(j(w)) — = constant.

If A° designates the (n—1) - tüple . ■ • ’ A®„_1) then
ÇA^) is a function of A° as varies on the houndary 

of Y„. Let
A — (Al, A2, Ajj_j)

he the vector associated with In view of the extremal property
of p, (A) is a single analytic arc extending to infinity.
without critical points and of mapping radius unity. It is known
then that B^ (A) is a. continuous function of A (cf. pp. 44-87, Lem- 
ma XXII). Finally, it follows from a known argument (loc. cit. 
pp. 40-41 and p. 111-112) that there is a one to one continuous cor- 
respondence between the houndary points of V„ in the neighbor-
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hood of p and a set of vectors containing A. Hence if p„ is suffi­
ciently near p it follows from the foregoing continuity argument
that pj, satifies a differential equation h, 
close to A, i. e.

H 0 
n İn which y4“ is arbitrarily

n-1
s I A,» - A, I
V=ı

2
1
2

0 as p„ P-

In particular A*0
■ n-1 A,‘n-ı as Po p through boundary points.

Theorem I. Let <7(2) s S„. Then (<73, <73,

point of Vjn-l’

<7n-ı) i® a boundary

Proof. Consider the 2- dimensional cross-section of Vjj obtained
by holding ’n-ı fixed and varying the last coordinate in

P = (a^2, Gs, ^n—1 ’ «İn)-

Suppose on the contrary that ,
point of V,n-1 . Then the following properties hold [6]:

cr„_j) is an interior

Property I. let p (<72, <73, C7„^J, C7„). Suppose that b =
{02, <73, ..., <7„_,, ₺„) İS an interior point of V„ . Then each point of 
the segment bp, save p, is an interior point of V„.

Indeed , let tz denote the 2- dimensional cross-section of V„
obtained by holding Ujn-1 fixed. Owing to the fact that tz

İS convex, the segment bp lies in tz. Suppose that r p is the first
boundary point of V„ on the line segment bp. Since the interior
of Tz is also convex it follows that every point on rp is a boundary
point of Vj,. Let p^ be any boundary point of V„ lying on rp and
sufficiently near p. Applying Teichmüller’s Principle to p,,, we have

(1) Re {( cj, - t“„) A»„_j } 0, dj, # t'.0 
n ’

where t°„ is the last coordinate in p^ = (02, cts, <7,
ma I, (ii), A«

’n-p

n-1 1 as p„ p. Recalling that t'
T 

.0 
n

.0 ■ 
n.,). By Lem-
lies on the

segment i»„ (7„ which is fixed and non perpendicular to the real axis 
since />„ lies in the interior of the disc G, centre at the origin and
radius d,,. İt İS readily seen that for sufficiently near p, this
ineguality is impossible. One can also see this by calculation. In 
fact, (1) can be written as

u,0
' n V' n(2) tan 0
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where 
ting 1 <

n’ arg A°n-ı = 6 with 6 0 as Pj p. Set-
I = s and assuming not real, then C7„ — u'

and r” are of precise order s. Hence (2) is impossible even if
o, for the right hand side of (2) is of higher order than s.

This contradiction implies r = p.

Property II. Let p = (<72, (73, ..., o,n-ı , dp) Suppose that
6 = (<72, (73, an interior point of V„. Let

p ((72,..-, (tn-ı. Cj,) be a boundary point of V„ sufficiently near

p. Then each point of bp, save p is an interior point of V„.

İndeed, let r, p„ and be as before. Applying Teichmüller’s

Principle to po. we obtain

n

-

0

1 bn) İS

T n

Re {(c7„ — <•O AVU
As in property I, the result is geometrically evident. For, by assu- 
mption

Re ’^n»

and the line segment .0 n lying on is never perpendicular

to the real axis as C7, âj, The latter property and thereby the

sense of the inequality in Re — Re (7„ 0 will be preser-

ved after application of the infinitesimal rotation Arg A”n-ı

to T.0 n and respectively. Namely, •

(4) Re e‘9 — Re <7j, e'9 = Re { (t'.0 n .)e’e} 0.

n

O^n t^n

f^n,

= e

However (4) contradicts (3) and the assertion follows.

We also conciude that if p is sufficently near p, then p, is the

only boundary point on 6 p.
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Let us consider the 2- dimensional cross-section tc. It is clear 
that as the point

a = {^2, G39 •••, (Zj'n)- i «n I

describes tl, the last coordinate will describe in the complex pla­
ne a set of points 11 lying in the disc G, centre at the origin and 
radius and which is convex. We shall say that a„ is the projection 
of a and 11 is the projection of tt. ö„(o) is said to be an interior or 
a houndary point of 11 (tt) if a is an interior or a houndary point 
of respectively. We recall that the interior of 11 as well as the 
interior of k is convex. In view of property I and property 11 the 
set y of houndary points of k containingp and sufficiently near p, 
is a continuous arc containing p. Let P be the projection of y 
in n. P passes through â-„, and which is the projection of asy.
describes P. It follows that every point on the line segment
save «n is an interior point of 11, and that P is a continuous arc.

Let us show that P can have no point in common with the
circumference of G, save ön. as a.n
such a point, then the point

approaches If is

Pç — (Oz, '^3, •••, CTn-ı

would lie on the houndary of k. Using the notation of Lemma I,
it is easily seen that B» has the representation

I T> v\ )
Bo = — min

W-=ı

n-ı 
S

'J=l

where B„ = (n—1) ,
— (fı I (re—1), the point pif, takes the form

’n-V Through rotation

(y-
* 
n-i’

and

(5) — min
)Z1 =1

n-ı
E

V=ı

By' , T»
V + * 

'V z''

where

(re-v) a' a' n-V

-ı 
e

. (re-v-1)
n-ı

B,; = (n—v)

P-(fll(n-ı) — (<’■;. *
'2 ’

. *
'3 '

B 0

B * n-v î

which is impossible. Indeed, we recall that

9
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QW =
n-ı
S 

v=-(n-i)

and that Q(z) 0 on | z | = 1 with at least one zero there, which 
must he of even order. Similarly for each cp we have

Q* w =
n-ı 
S

V=-(n-l)

R * 
'7^

with the same properties on | z | = 1. Namely Q* (2) 0 on
I z 1 == 1. with at least one zero there, which must he of even or­
der. We write

n-ı 
S

V=-Cn-1)

a,'n-M

-i 
e

+ B, = B„; *
0 B *

and consider the expression

Q*(^)
n-1
2 

V=-(n-l)

'n-V + B, î: = 1^1i * o ’

which concides with Q*(z) on | [ = 1. If | Zo | = 1 is a zero of
order m oi Q (z), then in wiew of a fundamental theorem, in a suf­

ficiently small neighorhood of z», Q*(z) has 
are analytic functions of X, and tending to

m distinct roots which
as 1 (? 0).

It follows that for | | == 1 and (p sufficiently small, Q*(z) has
on ( z i = l, zeros of order at most 1, thus contradicting the property 
of Q* (z) having on | z | = 1 at least one zero of even order.

Next , we consider neighhoring cross-sections n’ as follows.
By hypothesis g,, ..., Un-ı) heing aıi. interior point of Vjn-ı there
exists a function

f{z) = z + b^z^ -h ... + 6„_ı 

of class S such that

,n-i

^0

.*

+ + -

— n-1,
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and which is bounded. Hence the point

(6) b = (C2, <t3,

is an interior point of Vj, and lies in k. It follows that |6„ | 
Let us consider the neighboring function

®n-

= z + o. z^ + ... + a n-1 z',n-l + ₺*z"+ .... * '2

which is also of class S for s real, and belongs to the interior po­
int

. *'2 ’
■where

fjj*, ..., a * 
n-1’ bn*)

c.. * 'V = «TvC’C*-!)® , V = 2, ..., n—1; *

If s is sufficiently small, then the point

will be also an
b* = (n/2 o.. * 

'3 n—1’

interior point of V„ .

..., c ₺„)

Property III. Let p dj,). Suppose that 6==
(*^25 *^32 ..*2 ^n—1’ 6„) is an interior point of V^. Let p*

<7- n-1 C7„) be any boundary point of sufficiently near. *
'3 »•••?

p. Then each point of h* p*^ is an interior point of V„.

Indeed, fe being an interior point of V„, if p* is sufficiently
near p and therefore s sufficiently small, then b* = (cr. <7-. *

‘3 ■

(j n-1’ 6jj) is interior point of . The conciusion follows by appl-

. *
’2 ’

ying the argument as in property II to the segment b*p* lying
*, obtained by holding c.İn the 2- dimensional cross-section tz' . *

'2 ’

n-1 fixed. Namely, assuming Re T'.0 
n Re (7„, where

is the last coordinate in p* = (a.. * '2 2 ^3*2-, .* 
n-p on near

<73*,...,

p*^ see, repeating word for word the argument at the end of 
the proof of property Tl that each point of b* p*, save p*, is an 
interior point of V^.

We also conciude that if p* is sufficiently near p, then p* 
is the only boundary point on 6*p*.
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It should be noticed however that property III is an imme- 
diate consequence of property 11. In fact, let in general s 11. 
To will correspond in tc, the point

,)O =

If s is real , the point
'3 1 ••• 5 ’^iı-ı ’ «n

a*
where

Uj*, a'.* 
n-P a.

K'

CT, = , V = 2,..., M—1; a.‘n* = , will lie in
*, while Oj! * 'n wlıich is the projection of a*, willlie in the projection

n* of TC* . In fact 11* is obtained from 11 through a rotation equal
to (n—Ije , Thus in the neighborhood of u,
houndary of 11* is a continuous arc T* containing

©‘("-hs the 
and tvhich

is obtained from F through a rotation equal to (re—Ijs. Similarly,
the houndary of tz'' in the neighborhhood of

a. CT'

İS a continuous arc y* of which F* is the projection. Taking s suf-
ficiently small so that

₺* = . * '2 CTj*,..., ₺n)

= . *^2 ’

(7^

^n* )

. * 
V

n

. *
*2 ’

. * 
3

.* 
n—1’

n-ı ’

. * 
n )

is an interior point of V„, one obtains property III.

Property IV. In the neighborhood of ün, F lies on both sides
of the real axis, i. e., it contains points a„ s F with Im 0 as
well as points «, Ol

Indeed, otherwise F will contain two arcs Fı, F2 ending at
the point cr„ and lying say in the upper half plane. Let A be a line 
parallel to the real axis sufficiently near to it, and ıvhich intersects
Fı, and F2 at the points a‘ respectively with, say.

(7) Im « n = Im

n z F with Im «jj

Re re’n
n ’

Re a^„. n

Applying Teichmiiller’s Principle to the houndary point

we have

(8) Re

«1 = «n)

0, a' «n-

^n- 1 ’

^‘n'

In view of Lemma I, as A tends to the^real axis, A*,n-ı 1. Thus
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İt follows readily that for A sufficiently near to the real axis the
inequality (7) is preserved and (8) is impossible . In fact, to see 
this, it will suffice to write (8) under the form

(9) Re a‘ — Re a'„ (İm d' — Im a n) tan arg A\n-ı •

We shall denote by Fj, the continuous are with Im < 0, where
Im Uj, 0 if and only if

Let us consider again the convex region II. We recall that Fi
lies, except for , entirely in G. It will be convenient to introduce
the following notations. Let where s is assumed to
be positive and sufficiently small. Denote by (j„ the point
on the are of circumference g of G and by 
that

n’ the point on F, such

C^n-

ImT„ = ImT= - CTjı sin (re—1) s - ('i—1) s+0 (s’), 0(s’)>0.

Let a”], s F, such that Re = Re t. Let S be any direction issuing
from T and lying within the right angle determined by the vertex
T on g and by the segments ttj, and t a' parallel to the axes of
coordinates. Let be the intersection of S with Fı. If a, 0

TC
-j^, is the angle defined by S and then as a varies in the öpen

' n
a

interval (0, -^), the point
2

s Fj sweeps the öpen subarc Fj

of Fı extending from to a’^. Note that a is independent of s.
On rotating Fı through , we obtain the arc Fj* X, (Fı) and
the direction S* = J^(S) issuing from cy„ will lie on the upper
half-plane for fixed and s 0 sufficiently small. S* intersects
Fı* at the point * . We then have the following impor-n
tant consequence.

Property V. Let

a* * 
n-p a,

V = 2,..., re—1, a„* = with
=a ]
z

(s, a),
0 sufficiently small. d^

satisfying a differential equation Hjj of the form (loc. cilt. p. 36)

dtv 
dz

p*(w) = Q*(z)

% *

*

S * n
. * C7v

z
w

2

where
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*

and

(A)

(B)

P* (w)

Q* (^) =
n-1
S

Bo*

n-1 
S
v=l

ns
k=v+l

n-v 
S 
k=ı

n 
S

k=2

Av
İt''

' *'_v B *-‘-’v

V = 1, 2, ..., n—1

(fe-1) ,7/ F/

Then for fixed a , Q* (z) wbich is analytic in z is continnous with
respect to s (s 0) and 2, and Q* {z) Q(2) uniformly as s 0.
Here Q(2) is the right hand side of the differential equation 
corresponding to p, (s = 0).

R *

A *

F * 
k+V ’

Proof. n being convex, it follows that the arc P, in a neigh- 
borhood N( <!„) of â, 
F is differentiable.

'n’ is convex, and it is well known that in N( âp), 
save a countable number of pointsh Hence if

Kj are two fixed nnmbers such that 0 «o
TZ

follows that for s > 0 sufficiently small, and a a aı, so that0
the points (s, a;.) s F, lie in N( ct„), the first partial derivatives of 

(s, a) and (s, a) exist at points where Fi is differentiable. Here

*+«n = 

where
«n + iA'n’ ■n* a, , * 

'n

0 as S 0.

«n ^n ^ni ®ı . * 
n = '^n - \< *

On using the relations

1) G. Valiron, Tlı6orie des Fonctions, Masson et C® editeurs, 1948, pp. 79-80.
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(10) 

and

(11)

we find for (/.,
x„*

•o

tan (a — {n—l)^)

aj and s

(12) X, * 
'n (l®n + ^n ---- l)s) COS (a—(re—l)s) /sina,

*
a

A, * + o-p sin (re—l)s) sin (a—(re—l)s) /sina.

For £ > I 
half-plane

0 sufficiently small, formulas (12) define in the upper 
! a curvilinear triangular region T with one vertex at dp

and whose closure denoted by T, lies, except for dp, entirely
İn the upper half-plane. It follows that on T, Xp* (£, a) and ^p
(e, a) have first partial derivatives with respect to £ and a, save 
a countable number of points. Namely, formulas (12) define.
by means of a
on the houndary of V,

System of two-dimensional cross-sections {tz*} ,

n’
points

near p. a curvilinear triangular set of

a* * 
n-ı a,s * 'n

. *
'2 ’ (s, 0^)),

*

with one vertex at p, which we may denote by R = R (p), and
whose closure we indicate by R, and such that R is differen-
tiable except at a countable number of points. But in R yfe may 
write (loc. cit p. 110).

(13) A^*
12
L 

k-v+ı
Fk*, v=l, 2, re—1, * = a,>n*

The System (13) being linear in the F^* with non-vanishing de-
terminant (loc. cit. p. 110) it can be solved for the F^* in terms
of A* = (Aj*, A. A*p_j) and a*. But, as in the proof of lemma
I, the vector A* is continuous at each point of R, i. e., on R. Hence

is continuous onfî; and at those points where R is differentiab-
le, we have (loc . cit. p. 111)

Re (F/ Sff, + ... + F*n-ı Sa*,n-ı + Fn* S«p*} = 0

F *

*
'2 ’

r *

Namely, the vector
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F* = (Fj* F n-1’ F„*)

İS normal to V„ at the points 
on F, it follows that

a* £ R. Since F* is continuous

(i) R is continuously differentiable at ali points a* s F and

(ii) the vector (0, 0, 0, 1) being the value of F* at the po­
int p, then

(14) F* = (Fj*, F (0, 0, 0, 1)* 
n—19

as £ 0, uniformly with respect to a, a Kp

Hence, Q*(2) is continuous on iî, and for each fixed
Q*(z) Q(2) uniformly as s

“o
0.

In view of the relation where a,̂n* has by (i) con-
tinuous first partial derivatives, itself has continuous first par- 
tial derivatives with respect to s, a. Hence repeating the same ar-
gument for Fz, namely, when o,'n s F2 is the intersection of 8 with
Fj, one conciudes that F is continuously differentiable in N( ün).

Finally, using s, the arc length of Fı from to as the pa-
rameter to fix the position of a 
by fixing the position of % on F

(^2’ *^n—1’ a. .) «n (s),
we see that along y,,

Q(2, s)
n-ı
S

v=-fn-l)

By (5) B, (s) = B_, («)

S OC Kj ,

where Q(2,s) is continuous in both variables, and Q (2,s)
as s

Q(«)
0. First, we note that on Fi, the polynomial

2"-‘ Q(2,s) = B,n-1 + - + Bo(«)

B,■n-ı (s) o, B„(s) 0,

(s) 22”--" + ••• + Iln_j(s),

has the same zeros on | 2 | = 1 as Q (z, s). Next , the expression 
on the right hand side, when considered as a polynomial R in 2 
and the real variables defined by
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Bv — = 1,..., n—1, B(, = O

İS linear with respect to these 2re—1 independent real variables and 
therefore irreducible witlıin the formol polynomials ordered ac- 
cording to decreasing powers of z, with polynomials in the 2re—1 
variables as coefficients. Hence R and its partial derivative 
Rj, with respect to z are relatively prime. Consequentlyb, the disc- 
riminent

D - D («., «1 3^1 5 •••5 ^11-1 5 yn-1)

İS not identically zero in the 2re—1 real Euclidean space E^” b
Next , eliminating the F,^’s amongst the relations (B) as 
to re, we obtain the eguation

applied

(B*) B„ = + (2^3-2^/) B, + + 4ct,’) B, + ...
+ ((re—1) a,’n + Tn-1

where Çj'n-1 İS a polynomiaİ in CTs,

If ..., a'n„j are fixed, so is ç,, _j and it follows from (B*) 
and (B) that there is a one to one continnous correspondence het-
ween the points a,'n'(s) and the points

B(s) - (B„(s), B,(s),..., B,n-1 (s)) s E“-‘.

•••’ ®^n-ı'

In fact the eguality B Çs) B (s') implies upon suhstraction

Then, since re
(re- •1) («n(s) — a I n. n-1 = 0.

1,B,n-1 0, it follows that Ojj (s) «n (s').
.(«')) B.

Consequently, as (s) describes Fi, B(s) describes in a one to 
one continnous way an arc x, in E^“'.

Now, at each point of Zj, B^j. B^ satisfy a linear relation of the 
form

(B**) B(j 4‘ min
1Z| = 1

n-1 
S 

v=ı
= 0,

or,

^0 + 2 min
0<9<2Tt

n-1 
S (x^ cos v6 + sin v6) = 0,

1) M. Bocher, Introduction to Higher Algebra. The Macmillan Company 
N.Y., 1907, pp. 212—213.
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where the minimum occurs at a muit iple zero, say z = z.’o ’ -o «o(s)
|Zj,|=l, of Q(z,s) = 0, with Zo(s) continuous in sb. More generally, since 
each a* s R determines uniquely F*, ive see from (B) that the
vector B* is uniquely determined by a * and that the corres-
pondence a * B* is continuous on lî. Next, the components
of a* can be calculated from (B) step by step in terms of the
components of B* and F* with the conciusion that on R,

*

B*
=
->a*

*/ implies B * 
n-v = B * t 

n-v- Hence the inverse mapping
so defined is one to one. We conciude that a* B*

is one to one continuous on R. Hence closed sets are mapped
onto closed sets. Consequently, the inverse mapping B* a*
is also continuous. It follows that the vector B* describes in
E""-’ a region N that is the topological image of R. At each
point of IV, B* satisfies
where the minimum occurs at 
1-1 = 1-

a linear relation of the form (B**)
a multiple zero of Q*(z), on

But, D=0 being necessary and sufficient for Q* («) = 0
to have a multiple root on
on N. Geometrically, if z is considered as

|z|=l, it follows that D vanishes
a parameter then

D=0 is simply the envelope of the hyperplanes R = 0. Ho- 
wever, D=0 is real, irreducible and homogeneous of degree
4 n -6, i. e., an algebraic hypersurface. Now, IV is that portion
of D=0 at each point of which (B**) is the tangent hyperp-
lane. Since N is algcbraic, there exists on
one end point at B fOJ along which B*

it an arc u with 
can be expressed

analytically with respect to some parameter and Q* (z) -> Q (z). 
But this contradicts the fact that Q* (z) should have multiple
zeıoa along o, near B (Q). Thus no such N and thereby x■1
can exist unless reduced to the point B (0). Hence F reduces 
to the point and theorem I is proved.

We illustrate this by an example corresponding to the classical
case n = 2. In thise case | cr^ | 2. We may assume Uz = 2. Then,
D = 0, R = 0, = 0 ali coincide whenever B, is real and z = —1.

1) By the fundamental theorem on the continuity of the roots, x, cannot 
be an analytic arc.
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In fact we have B^, 2 Bp Then comparing with (B*) we obtain
complete identity, since <s^=2. Also, B,—1, 3^=2 as expected.

Corollary. If n
boundary point of V,, i.

3, theorem I implies that (7, must be a
e. |(j2 i = 2. Hence the extremal func-

tion corresponding to the third coefficient is the Koebe function.
Accordingiy, |

Theorem II. Letp

3.

to the Koebe function with
(^2, .. '^n-1’ 

n.
Ğn), >0. Thenj» belongs

Proof. Since by Theorem I, the point (ct,, ..., <7^ |ı) is a boun-
dary point of the coefficient region V„_j , 
equation of the form

2

it satisfies a differential

(15)
dw 
dz

n-2 
S 
v=l w''

n-2
E

v=-(n-2)

By'
Z'> '

W=aÇz).
z
w

As in the proof of Lemma I the boundary of (7(2) is conti-
nuous at A' = (A/, ..., A'n_2) which implies A'^, , = B'. #0n-2
(loc. cit. pp. 81-87). On the other hand (7(2) satisfies the differential
equation İ.C.,

(16)
z

ÎV
dw 

dz V=ı

•V
w''

n-1
S

V=-(n—1)
"n-1 = B,n-ı = 1.

Eliminating 

we obtain

dw 
dz

between the two differential equations.

(H) n-2 B'„-, + - + Bn.n-2

■n-ı n-r
^2.1-2 + - + B.n-1

z

2 “.^1 A,
S

B'' 
'7^

W
-|- ... A A',

Aıw””2 4-... -p A]
z

2""^

Thus w is an algebraic function of z and to each value of z there 
corresponds at most n—2 values of w. From either of the given
differential equations it follows that ıv 
can be writtten as

0 as z 0. Equation (17)

(18) — z(p,o 4- \+ ^ı’^ + •••} [^0^6.

Thus in a neighborhood of the origin each branch of w = w 
analytic and has an expansion

(^) is



bieberbach’s conjecture 19

(19) w z + (^2^^ 4“ •••
Hence ali branches of w(z) coincide in a neighborhood of 

the origin thus impiying that ali branches of w(z) coincide for ali 
2, and w(2) is single-valued and therefore rational

Accordingiy
w 2KP2(^)- ’

where Pı(2) and P2(«)
and Pı(0)

are polynomials without common factors
P2(0) = 1. Following Schaeffer-Spencer (loc. cit.

pp. 156 — 158), we see that Pı(2) is a constant and Pı.fz) is a poly- 
nomial of precise degree 2. Thus

M!
2

1 + Â2 + (12^ ’
I (X I = 1-

Since the prodnct of zeros of 1 Â2 + ^,2^ is of modulus 1 and
no zero can lie in 1 2 | 
and consequently ,

1 it follows that both zeros lie on | 2 | = 1

(20) W
2

(1—eip z)

Finally w = 
function with ö-,n

(7 (2) being extremab (20) reduces to Koebe 
= re.

Exactly as in case ra =2, we verify, for any re, that R =0, 
= 0, and D = 0 thereof, coincide whenever B^ is real and

z = — 1. Namely.
Bo — 2B1 + 2B, — ... :± 2B,n-1 = 0,

Comparing this with (B*) 
theorem II,

we obtain complete identity, since by

(72 — 2, Gs — 3, ..., (7„ re.
Also, Bq = re {n—1), Bv = {n—vf.

We collect ali these as

Corollary. A boundary point q o{\ n Z 2, is extremal

and belongs to the Koebe function /(2) =
z

(W 2 ’ if and only

İf the vector B = (B^,, Bp B„_j) associated with g satis-
fies (B**) with B„ 0, B^, V = 1, . n—1, real and with mini­
mum occuring at 2 = — 1.
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ÖZET’’

2— boyutlu arakesit metodu ile gösteriliyor ki,

/(z) = z + a2z‘ T i z j 1

analitik ve schlicht fonksiyonları için 

nö,'n

eşitsizliği daima doğrudur. Herbir n için, n 2, eşitlik yalnız ve yalnız Koebe fonkiyonu 

için vardır.

1) Bu çalışma Türkiye Cumhuriyetinin 50. Yıldönümüne ithaf edilmiştir.
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