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Acceleration Axes in Spatial Kinamaties I. -

H. HILMi HACISALIHOGLU*

Brown University

ABSTRACT

Section I is introduction. In section II we give the basic concepts for the method of
Study mapping. In section III, it is shown that there are, in general, three acceleration
axes in three dimensional line space. Their location and reality are derived. These axes,
in general, are skew lines, and the spherical case, derived by Bottema, is the special
case that three axes form a pencil of lines.

I. INTRODUCTION

The acceleration of a point in spherical motion is the sum
of three orthogonal components: (a) a component normal to the
sphere; (b) a component tangent to the path (or tangential acce-
leration); and (c) a component normal to the path but lying in
the plane tangent to the sphere (geodesic normal acceleration).
The locus of points having zero tangential acceleration is the sp-
herical equivalent of the Bresse circle of planar kinematics. Fol-
lowing Garnier’s notation we denote this spherical curve as C,. The
locus of points having zero geodesic normal acceleration is the
spherical equivalent of the inflection circle, denoted as Cs. The in-
tersections of the curve C, and C; have neither a tangential acce-
leration nor a geodesic normal acceleration: their acceleration is
purely normal to the sphere and they are the acceleration centers
S; discussed in the paper of Bottema [1].

The oriented lines in R3 are in one-to-one correspondence
with the points of the dual unit sphere D3 (E. Study). Using this
correspondence, in this paper we extend the spherical properties

* Research Associate, Division of Applied Mathematics. On leave from The Uni-
versity of Ankara, Faculty of Sciences.
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discovered by Bottema to three dimensional line space R3. In or-
der to do this we consider that the sphere is a unit dual sphere,
hence everything belonging to the sphere is dual: dual point,
dual angle, dual vector, dual number [2]. A dual point of D3
corresponds to a line in R3; two different points of D3 represent
two skew lines in R3. A differentiable curve on D3 represents a
ruled surface in R3. In section IT we give the basic concepts of
this method.

In section III, it is shown that there are, in general, three
acceleration axes in R3 . Their location and reality are derived.
These axes, in general, are skew lines and the spherical case is the
special case that three axes form a pencil of lines.

II. BASIC CONCEPTS

a) Dual Numbers, Dual Vectors and Dual Angles:

Definition (2-1): If a and a* are real numbers and e2=0, the com-
bination

A = a 4 ca* (2-1)
is called a dual number.

Hence ¢ is the dual wnit. Dual numbers are considered as
polynomials in e, subject to the defining relation 2 = 0. W. K.
Clifford defined the dual numbers and showed that they form an
algebra, not a field. The pure dual numbers are ca*. According
to the definition pure dual numbers ca* are zero divisors, (ca*)
(sb*) = 0. No number ca* has an inverse in the algebra. But the
other laws of the algebra of dual numbers are the same as the laws
of the algebra of complex numbers (a+ib, i2 = -1). This means
dual numbers form a ring over the real number field. For example
two dual numbers A and B=b-}cb* are added componentwise.

A+ B=(a+b) + @ +b¥ (2-2)
and they are multiplied by
AB = ab + e(a*b + ab*). (2-3)

For the equality of A and B we have
A=Be2a=5» and a* = b*. (2-4)
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—_
An oriented line in R3 may be given by two points on it, x

- .
and y . If p is any nonzero constant, the parametric equation of
the line is
- - -
y= x+pa (2-5)
g - . .
and the moment of the vector a with respect to the origin 0 is

— — — — -
a* = x X a =y X a. (2-6)

—
This means that the direction vector a of the line and its moment

—_
vector a* are independent of the choice of the points of the line.

— -
The two vectors a and a* are not independent of one another;

they satisfy the following equations:

->2 [
a. a*

— 0. (2-7)

— —
The six components a,, a*; (i=1, 2, 3) of a and a* are Pliic-
kerian homogeneous line cooordinates. Hence the two vectors

—_ -

—_
a, a* determine the oriented line. A point z is on the line of

- >

vectors a, a*if and only if
- - —
z a

X a= a*. (2-8)

The set of oriented lines in R3 is in one-to-one correspondence
with pairs of vectors in R3 subject to the conditions (2-5), and so
we may expect to represent it as a certain four-dimensional set
in R® of sixtuples of real numbers; we may take the space D3
of triples of dual numbers with coordinates

Xy =x + ex*, X, = x, + ex,*, X3 = x3 fexz*. (2-9)

Each line in R3 is represented by the dual vector in D3
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— — —_
A = a 4 za* (2-10)
K is a dual unit vector
- - — — — -
A.A=a a-+ 2a a*=1 (2-11)

if we carry over the formal definition of the products of vectors
to dual space.

Theorem (2-1) (E. Study). The oriented lines in R3 are in one-to-
one correspondence with the points of the dual unit sphere

- -
A.A=1in D3 |2].
: — — —
The scalar product of two dual vectors A = a - ca* and
— — —
B =Db + <b* is
A.B = a.b + ¢ (a*.b 4 a. b*). (2-12)

— - - -
Both a and b are unit vectos; a. b is the cosine of the angle ¢

R - > .
of the two lines which correspond to A, B. the skew lines in space

have a unique common perpendicular (Fig. 2-1).

A

N

of

FiG. 2-1I
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The minimal distance ¢* between the two lines is defined as the
shortest distance between the lines.

Theorem (2-2). A. B is the cosine of the dual angle ® = ¢-+cp* of
the two lines. (K B = cos @).

Proof: According to (2-12) we may express this theorem as fol-
lows:

AB=—2ahb + s(:. b + ;*.E)zcos(l).v(2-13)

On the other hand, since the Taylor polynomial of an analytic
dual variable function has just two terms we may write

f(t + ch) = £ (t) + <f (h)
sin ® = sin (¢-}c*) == sinp + ep* cosg )
(@1
cos @ = cos (¢p+¢ 9*) = cosqp —co* sing .

Then (2-4) and (2-13) give us

- —
a.b = cosp , (2-15)
— - —

a.b* 4 a*.b = —¢* sing.

Since ¢ is.the angle. of the two lines the first equality of (2-15)
is obvious. In order to show the second equality of (2-15), we

- -3 —>»

choose points y = ; —|—_z: on A, z = 71) + b on ﬁ Then

a.b 4+ a*.b= (a,q 2z) + (P7 Y- b) = - (a, b, q) +
+ (a b, p) = (a,b, p-q) = —¢* sing.

Here the last equation follows from the interpretation of the deter-
minant as the (oriented) volume of the parallelepiped spanned
by its row wvectors.
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Hence (2-13) and (2-14) give

—_ =

A. B = cos® = cosp — ep* sing, (2-16)
and the following special cases of (2-16) are very important in this
papel‘:

I If N /
A.B =0 (2-17)

K3 — —

then ¢=— and ¢*=0; this menas that two lines A and B meet

at a right angle.
II. If

A B = pure dual, (2-18)
T — —
then o= — and ¢*50; the lines A and B are orthogonal skew
lines. 2
Iy, It
A. B = pure real, (2-19)

T -
then ¢ ¥ — and ¢* = 0; the lines A and E intersect.
2

IvV. If

—

—

AB=41 (2-20)
then ¢=0 and ¢* = 0; the lines A and B are coincident
(their senses are the same or opposite).

b) Spatial Motions:

Since an euclidean motion in R3 leaves unchanged the angle
and the distance between two lines it will leave also unchanged
the dual angle between two lines. Therefore the corresponding
transformation in D3 will leave the scalar product

A B — ABT

invariant. It is the action of an orthogonal matrix with dual
coefficients. When the center of the dual unit sphere must remain
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fixed, the transformation group in D3, which is the image of the
euclidean motions in R3, does not contain any translations.

Theorem2-3. The euclidean motions in R3 are represented in D3
by the dual orthogonal matrices x = (X;;), xxT = I, X;; du-
dual numbers.

The lie algebra L (Op?) of the group of 3x3 orthogonal
dual matrices is the algebra of skew-symmetric 3x3 dual mat-
rices. This is seen by differentiation of xxT = I. Therefore we
can easily extend all known formulas about real spherical mo-
tions [3] to the dual spherical motions. But it is necessary to
pay attention to the zero divisors.

’ - > — —
The two coordinate systems {0; e, e,, e3,} and {0';e'y, €', €3}
are right-handed orthogonal coordinate systems which rep-
resent the moving space H and the fixed space H' respectively. Let
us express the displacements (H/H') of H with respect to H' in
a third orthonormal right-handed system (relative system) {N;

- - > :
ry, T,, r3}. Then the corresponding dual orthonormal coordinate
axes are

—

— — — — — > —
E, = e; +ce*;, E,=¢; +ee*; R=r;+ ar*;,(i=1.2,3), (2-21)
where

— -

o*,—OM xe;; % —=OMx o;0%;, = NM x r;(i=1.2,3) (2-22)

i?

and M is a fixed origin point in the space. Then the corresponding
dual pfaffian forms are

Q; = 0; + *;, Q) = o) + ¥, ((=1,23). (2-23)

Hence we can write the following formulas for the dual sphe-
rical motions which are equivalent to the real spherical motions [3 |:
a) The displacements with respect to H are

dR = QR (2-24)
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where
0 Q3 —Qz ﬁl
Q=1-Q 0 ©Q | awdBR =R, | (225
Q, -Q 0 _ R _
b) the displacements with respect to H’ are
dR = QR (2-26
where
-0 Q5 -Q', 7
Q=1 -Q3 0 Q' . (2-27)
_Q, Q7 0 _

The real and dual parts of (2-24) or (2-26) corfespond to
the pure rotation and the pure translation of the motion H/H’,
respectively. This separation is based on the following property
of the theory of groups:

Theorem 2-4. The 6- parameter group of motions is the commu-
tative product of the 3- parameter group of rotations and
the 3- parameter group of translations.

I, ACCELERATICN AXES
a) Velocity in Spatial Motions:

Consider a point X of unit dual sphere such that its coordi-
nates with respect to the relative system are

Xi=x%x; +ex;* (i =1, 2, 3). Then

3
2 X2=1 (3-1)
i=1
and
X — XTR (3-2)
where
X,
X=X, (3-3)
X3 _
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Aline X in space corresponds to this dual point X. The displace-

—_
ments of X with respect to H and H' are

-

dX = aXTR + XTdR
and

dX = dXTR 4+ XTdR

respectively or, from (2-24) and (2-26),

X = (d&XT + X*Q) R (3-4)

and

dX = (dXT 4+ XTOQ') R. (3-5)

Therefore if 52 is fixed in H or H' then ds)(-——-O or d’}_(>=0 and
we may write

dXT = XT QT (3-6)
or

dXT = XTQ'T, , (3-71)

Now, suppose that 5)( is fixed in H and let us calculate its

velocity d§§> with respect to H'. Then we substitute (3-6) in (3-5)
and obtain '

4X = XT (Q-Q) R. - (3-8)

If we define a new dual vector whose components in the relative
system are

¥,o= Q- Q, (3-9)

then (3-8) reduces to

X = ¥ x X (3-10)
where
V= et (3-11)
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is the dual rotation Pfaffian vector. The real part J: and the dual

— — ‘
part {* of ¥ correspond to the rotation motions and the trans-
lation motions of the spatial motions [4]. In order to leave out
the pure translation motions we will suppose that

T #0 (3-12)

b) Acceleration in Spatial Motions:
From (3-10) it follows that the acceleration of X is given by
_J) = df2—)2=—‘i’ x (‘_I;x—)z)—l— FrX——¥2X —}—(;17—))():}") +
L >
¥xX, (3-13)

— -
where W' = d ¥ is the instantaneous dual angular acceleration vec-
tor. Equations (3-10) and (3-13) can be written in the matrix
form:

dX = MX (3-10)’

) J=M 4+ MX (3-13)’
where M, M, M2 are
0 W, W, 0 ¥y ¥
M=| ¥ 0 ¥ [[M=dM=| ¥, 0 -¥,|; (3-14)
_—IFZ lFI O ___—‘I}z li".l O _ ’ ‘

V2492, WY, ¥,
M2 = IFIIFZ —‘FZ—I—‘FZZ IF;‘I"B
I 4% & ¥, ¥ V2452

; M3=-%2M (3-15)

and for the higher order accelerations, the power of the matrix
M has the following properties:

M2n+2 _— (_l)n\IJ‘Zn M

. % (3-16)
M2n+2 — (_l)n\FZn MZ_

Equations (3-16) are also valid for M if ¥ is replaced by ¥.
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In the equations (3-13)’ we see that the components of the
—
acceleration J of X are homogeneus linear functions the coordi-

nates X; (i=1,2,3) of X. If we calculate the determinant D of
the coefficients of (3-13)’, we obtain

D=- V2 ¥2 sin2y (3-17)
where

Vv = « + ca* (3-18)
is the dual angle between the vectors ‘—P') and Q If both vectors ‘?’

—_ :

and ¥ correspond to the same line of space, this line has no ac-
celeration, in this special case D=0. After the discussion of the
general case D # 0 we shall return to this special case.

In order to extend the notion of the acceleration pole of sp-
herical kinematics to the spatial motions we accept that the unit
real sphere is a unit dual sphere and the same definition is on this
dual sphere:

Definition 3-1. If a unit dual vector X of the unit dual sphere
and its dual acceleration vector —j are linearly dependent,

-
the ponit X is the dual acceleration pole and the line

- ,
X is the acceleration axis of the motion.

— —
If we denote the acceleration axis X by V, according to de-

finition 3-1, from (3-13) the vector V satisfies the following eq-
uation:

T. VT + PxV=A¥2V (319
where :
A=2xr+ ar* (3-20)

is a dual scalar. (3-19) is equivalént to three homogeneous linear

- —
equations of the coordinates X, X,, X3 of V; so for the non-zero
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solutions, the determinant of the coefficients must be zero. Hence
we have

A3 — A2 4 KA - Kcos2y = 0 - (3-21)
where . . . . )
v 2 29@¢%-¢dT)
K = ktek*= — = — —¢ . (3-22)
Coge LIJ4 ‘LS
Since we have
A= A-er*, A2=024-e2000%, A3=034-e3a*
Fodegn W=t =gty |
V= tef*, W2=y2 42§ §*
cosy = cosx — ca*sina, cos2y = cos2q — ea* sin2a
(3-21) reduces to two equations:
2B - 4+ kn — keos2oq = 0
k*cos2 a—ka* sin2a-k*A (3-24)

At =

-4k

(3-21) or (3-24) generally give three roots Ay, A,, A; so there are
in general three lines I , I, , I; which we shall call the instantaneous
acceleration axes. These axes represent the generalization of the
acceleration pole of plane kinematics. These three axes are in gene-
ral skew lines in space. The special case of k* = 0 is very impor-
tant; for this, according to (3-22) there are three possible cases:
a) ¢ =0,b) 2¢*) — ¢ §* =0, and ¢) {* = 0.a) J = 0 implies
¢ = constant and k = 0. Therefore (3-21) has the roots A; =
A, = 0 and A3 = 1. According to (3-19) the corresponding acce-
leration axes are

L=L=W.V,) ¥Y+%¥xV, =0

2
and

l3=(‘?.{;3) ‘?—f— @xﬁ—?zv3=0.
b) 2¢*¢ — ¢ ¢* = 0 gives us, by integration, ¢* = ¢, ¢. Then
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*

the pitch of the instantaneous helicoidal motion is — = ¢, {.

Where ¢, is a real constant. The orbit of a point is a circular helix
during the instantaneous motion.

¢) If {* = 0 then {* = 0 and again k* = 0. In this case there is a

.
fixed point on the instantaneous axis V. Since {* is the translation
part of the spatial motion, this special case is the spherical moti-
on. In this case three axes l;, l,, I form a pencil of lines whose

vertex is the center of the sphere (the fixed point of ?)

The spherical case has been presented by Bottema [1].

b) Reality of the Acceleration Axes:

In view of (3-24) the three }; (and also three A*;) are either all
real or two of them are imaginary. Therefore the three axes [;
either all real or at least one of them is real. In order to discuss the
roots of equation (3-21), we define a new unknown L:

1
A=1L+ — . (3-25)
3
Then (3-21) reduces to
I34+BL+C=0 (3-26)
where )
1
L = u+teu*, B= b +sb* = K- —, C= cHtec* =
3
1 2
(— - cos’y) K~ — |
3 27
1 , 1 2
b:k—'—, c = (——_. (:0520() k- N b* = k:i:7
3 3 27

1
¢* = k* (— cos2x) + ka* sin2« . (3-27)
3
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The real and dual parts of (3-26) give

@B+ by +e=0
b*u + c* (3-28)
32+ b

The roots u of the cubic equation of (3-28) are real (and the values
of u* also are real) if and only if the discriminant

pr= -

o 4b3 4 27 ¢2 <0
or from (3-27)
k{4k2 4 (27cos2s-18 cos2a-1) k + 4cos2a} <0
or since k > 0

f=4k2 + 27 cos? o -18 cos2«-1) k + 4cos2a < 0 . (3-29)

The equation f=0 represents a cubic curve (C) on the (k, cos2a)-
plane.

According to Bottema [1] this curve has the following properties:

(a) The graph of (C) is as shown in Figure (3-1);

—

cos?a

(%.%)
(0,0) -
(3.0)
FIG. 3.1
1
(b) (C) has a cusp point for k = }, cos2a= ——, and the eq-
: 9

uation of the cuspidal tangent is
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6k — 9 cos2q — 1 = 0 ;

(c) The points of intersection of (C) and the k — axis are (0,0)
and (} , 0);

(d) The asymptotes of (C) are the lines k = 0 and cos?x = 1.

The points on (C) correspond to the positions which have
two parallel acceleration axes. The cusp point corresponds to the
position which has three parallel acceleration axes. The other
points of the strip k>0, 0< cos2a <{ 1 correspond to the positions
which have only one real acceleration axis. Hence we may express
the following theorem:

Theorem 3-1. In the spatial one-parameter motion, the three
acceleration axes are real if and only if (3-29) holds.
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OZET

L kisim girige ayrilmigtir, II, kisimda Study tasvirinin metodu igin temel kavramlar
verildi, II1. béliimde, genel olarak ii¢ boyutlu gizgiler uzayinda, ii¢ aykir1 ivme ekse-
ninin var oldugu gosterildi. Bu eksenlerin konumu ve reelligi elestirildi. Ug ivme ekse-
ninin bir dogru demetine ddniistiigii 6zel halin Bottema tarafindan ele alinan kiiresel
hal oldugu gosterildi.



Prix de P’abonnement annuel

Turquie: 15 TL.; Etranger: 30 TL.
Prix de ce numéro: 5 TL. (pour la vente en Turquie).

Priére de s’adresser pour ’abonnement a: Fen Fakiiltesi

Dekanhg, Ankara, Turquie.

Ankara Universitesi Basimevi, 1971



