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On Absolute Equivalence of T-Matrices For
(G, r) - Bounded Sequences

M. B. ZAMAN

“On absolute equivalence of T-matrices for (Gr)- bounded sequences”
In this note, the author proved the following main results besides bmmas:-

Theorem 1. The T-matrices A and B are absolutely equivalent for all (C, 1)- bounded
sequences iff

® lm FTk|Aey | =0

n-> oo k=1

where C = A — B
Corollary. A T- matrix A is absolutely translative for all (C-1)- bounded esequences

iff

lim §k]Azank[=0.
n—» o k=1 ’

Theorem 2 Let t is a positive integer; then the T-matrices A and B are absolutely
equivalent for all (C, r) - bounded sequences iff

() lim Rfc,, = 0 for every n, and
R—>w '

< - .
(ii) lim X K| A Cak =0 (=12 3,...,71),
n—>c k=1

where C = A — B.

Corollary. If r is a positive integer, then a T-matrix A is absolutely translative for
all (C, r) - bounded sequences iff

@) lim K* A a , = 0 for every n, and
K—eo ’

(@ lm ¥ KAt a,|=0G=123 . , 1),
n—>w k=1 ’
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N. B. The author requests the referee to compare the following if there is any omis-
sion in the original M S: - (3.3) on page 5 of M S must be read as (i) of Theorem 1 of this

Summary.
(4.1) and (4.2) on page 12 of M S must be read as (i) and (ii) of Theorem 2 of this Sum-
mary.

(4.12) and (4.13) on page 15 of M S must be read as (i) and (ii) of corallary of Theo-

rem 2 of this Summary.

1. INTRODUCTION

Cooke (1], 105, (5. 4, 1)) has proved the following theo-

rem:

Theorem A. A necessary and sufficient condition that T- mat-
rices A and B are absolutely equivalent for all bounded sequences
is that

oC
(1.1) lim 2 Ja, —b,, | =0
n—->oc k=1
Jha ([4], 120) obtained the necessary and sufficient condi-
tions in order that any two infinite matrices are absolutely equi-
valent for (C,r) - bounded sequence where r being a positive inte-
ger.

In this paper, the necessary and sufficient condition for the
absolute equivalence of any two T-matrices for all (C, 1) bounded
sequences is obtained, and the result is extended for all (C, 1) -
bounded sequences (r being positive integer).

Finally, necessary and sufficient conditions for the absolute
translativity of any T-matrix for the above classes of sequences
are found.

2. NOTATION AND DEFINITIONS

Write 4 d, = d — dy,, then

T T
e1 aa, = = (ap () 4
p=o
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and

T T
22) A (wew) = 2 (V) A" w AT wiy,

v=o0

We use the standard notations

T T
A =+ +2)..c+v)/v,A =1,
v o

r k r-1

S = X A 8,

k v=o0 k—v

() T r-1 r-1 r-1

Write s, = S, and S, =S, + S, 4+ ... S

r=1,2 ...)

e
Definition 1. If s | = S,/ ( T ) is bounded for all n,

we say that {s;} is (C,r) — bounded . If s; - 8

as n — o<, {s;} is summable — (C,r) to s.

Difinition 2: The matrices A = (a,,) and B = (b,,) are
said to be absolutely equivalent for a given class of sequences {s}
whenever

o< ==
lim [ X a,,s - 2 by s ] = O (Cooke [1],p.97)
n—oC k=1 k=1
Definition 3. A matrix A = (a,,) is said to be absolutely
translative for a given class of sequences {s,} whenever

o o
im [ 2 a s - kZ 1:;1,,’k+1 s, ] = 0 (Cooke [1], p. 114)

n—oc k=1
3. OBSOLUTE EQUIVALENCE FOR (C,1) BOUNDED SEGUENCES

In this section we proceed to obtain a necessary and suffi-
cient condition in order that ant two T-matrices are absolutely
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equivalent for all (C, 1) - bounded sequences. We need the following
lemmas to prove our result.

o
Lemma 1. If ¥ k | 4 a,, | =< M for every n and

k=1
lim a,, = o for every n, then lim k a,, = O for
k—>cc k—oc
every n.

For proof, put r = 1,6 = o in Bosanquet’s Lemma 7 [2], also

Cooke [1], p. 216, p. 218.

Lemma 2. The necessary and sufficient condition that a matrix
A transforms all null sequences into null sequences are that

(3.1)  lim a,, = o for every fixed k,
n—>oc
and

e
(32) X lag, | < M for every n, where M is independent
1

of n.
For proof see Cooke [1], p. 64. (4. 1, IT) and the remarks in
italics concerning the case z = o; Hardy 3 p. 49.

Lemma 3. If the matrix C = (c, ) is efficient for every (Cr)-
bounded sequences (r being positive integer), then it is necessary that
lim k' ¢, = o for every n (Jha [4], p. 120.).
k—cc

Lemma 4. If
o

(i) 2 | a,, | = M for every n,

k=1
(ii) lim a,, = o for every fixed k,

n-—>oC

oC

(iii) lim X a,, s, = o for every bounded

n-oc k=1
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sequence {s}, then
oc

Iim 2 Ja,|=o0
n—oC k=1

This immediately follows from the nccessity part of Theo-
rem A. 1. Also see Jha [4] p. 115.

Lemma 5. Let A = (a,y) and B = (a,,,) be infinite mat-
rices. If A and B are absolutely equivalent for a givenclass of sequ-
ences, then A is absolutely translative for that class of sequences.

The proof obviously follows from Definitions 2 and 3.

Theorem 1. The necessary qnd sufficient condition that the
T- matrices A and B are absolutely equivalent for all (C, 1) — boun-
ded sequences is that

oC

(3.3) lim X k [Adc, | =o
n—-oc k=1
where C = A - B.
Proof. Put

(B4) Zy = (s, + s, + s, + ... + s.)/k, then
(3.5) s =k Z - (k-1) Z,_,, (k =1).
It is obvious that if {s,} is any (C, 1) - bounded sequences,

then {Z,}, defined by (3. 4), is bounded. Conversely, if {Z,}is any
bounded sequence {s,}, defined by (3.5), is (C, 1) — bounded. Also

P P
66 T s = T ol 2o (D) 2o

P
= 2 k (cn,k - Cn,k+1) Zk + Pe
k=1

The condition (3.3) implies that

Z

n,p+! “p*

e
37 X k | 4cy | <M for every n.
k=1 '
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Since A and B are T — matrices,

lim ¢, = Lim (a,, ~ b,y) = o for every n
k—soc k—>oc

From (3.7), (3.8) and lemma 1, we have

(3.9) lim k ¢,, = o for every n.
k—>oc ‘

Now (3.8) and (3.9) together imply that

(3.10) lim p ¢
p—>oC

Z, = o for every bounded {Z}.

n,p+1! b

The condition (3.3) also implies that

oC
(3.11) lim 2 k 4 ¢,y Z, = o for every bounded
n—-oc k=1

sequence {s,}.
Letting p—~>oc in (3.6) and using (3.10) and (3.11) we get
oC

m X ¢,y s, = o for every (C,1) - bounded
n—oc k=1

sequence {s,}. Thus the condition is sufficient.

Conversely, if the T- matrices A and B are absolutely equi-
valent for all (C, 1) - bounded sequence,

oC
lim X ¢, s, = o forevery (C,1)- bounded

n->oc k=1
sequence {s,} ——>
oC
lim X ¢,y (kZ - (k-1)Z,_,} = o forevery
n—roc k=1
bounded sequence {Z,} ——>
oC
(3.12) lim [ X kAde, Zy + lim pe, ., Z,] = o
n—>cc k=1 p—oC

for every bounded {Z}.
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Since the T- matrices A and B are absolutely equivalent for
all (C, 1) ~ bounded sequences, the matrix C = A — B suems every
(G, 1) — bounded sequence to O.

Thus Lemma 3 > (3. 9). Therefore (3.9) and (3.8) to-

gethet > (3.10). Now it follows from (3.10) and (3.12) that
oC
(3.13) lim X f,, 7, = o for every bounded {Z}
n—-oc k=1
where f,, = k 4 c,,.

Now we observe that all null sequences are bounded sequen-
ces; hence if F = (f, ) transforms all bounded sequences into null
sequences, it must be so far all null sequences. Therefore, from
Lemma 2

(3.14) lim £, = o for every fixed k,
n—-cC
and

oC
(3.15) 2 | £, | < M for every n.

Thus it follows from (3. 14), (3. 15), (3. 13) and lemma 4 that

oC
dim X2 £, =0
n—>oc k=1
Le.
oC
lim 2 k |Adc | = o,
n—oc k=1

hence the condition is necessary.

Example : If a T — matrix A is defined by

ay=-— (1 =k =n), = o (k > n).

and another T- matrix B is defined by
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1
= — (1 <k < — .
b, « ] 1 <k <n), ok >n
Let C = A — B, then
oC oC
2k IA Cnx l == 2k I (an‘k '—bn,k) + (3‘11,k—(~l - bn,k+‘) I
k=1 k=1
oC
- 2k |(an,k—an,k+l)_(bn,k_bn,k+l) |
k=1
o | 1 1 | = 1 1
—nly n+1 ' n n(n+1) n+41
oC
lim 2 k |Adcy, | =o0.
n—oc k=1

Thus there are T — matrices A and B which satisfy the con-
dition (3.3).

Corollary : The necessary and sufficient condition that a T-
matrix A is absolutely translative for all (C, 1) — bounded sequences
is that

oC
im 2 k |42a,, | = o.
n—>oc k=1
The result follows at once from Theorem 1 if we put a_,
for ¢,y and use Lemma 5.

4. ABSOLUTE EQUIVALENCE FOR (C,r) BOUNDED SEQUENCES

In this section we obtain the necessary and sufficient condi-
tions in order that the T-matrix is absolutely equivalent for all
(C, 1) - bounded sequences where r is a positive integer. We need
the following lemmas.

Lemma 6. If r is a positive integer, {s,} is (c, r) — bounded if
and only if, {Z} is (C, r-1) — bounded where Z, = s, + s, + ... -

8,) /n.
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This is essentially lemma I of Bosanquet [2].

Lemma 7. If {s.} is (C, r) — bounded where r is a positive inte-
ger, then s, = O (n%) (Jha [4] p. 117).

Lemma 8. If f, = k(a,, — a,.1), then

o
lim X ki | dla,, | = o (j = r — 1, 1) implies that
n—oc k=1

oC
lim 2 k™' | 4™ f,, | = o where r is a positive integer
n—oc k=1

Proof. We have
A= f o= A" (kA a,y)

r—1
= X ~1) Ak A%V ang o,

v=o0 \Vv
=k A" a,, — (r-1) 4" ay i, -
Therefore

Kt A5 £y = K A7 gy = (1) KO A g
and hence

oC oC oC
2RAT e | S DR A ag |+ (1) 2 kT A A |
k=1 k=1 k=1

oC oC
< XK |[day, |+ (@-1) T k| Aa,
k=1 k

- 0 as n — oC.
Finally, we get
oC
lim X k* |A'f,, | = o.
n—oc k=1

Lemma 9. If fn;k = k (an,k - an,k-H)’
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oC oC
lim XY k™'{4"'a,, |=o0and lm X k"|4™'f ,|=0
n—-oc k=1 n—ooc k=1
oC
together imply that lim X k'[A4° a,, | = o, where r is
n—->oc k=1

a positive integer.
Proof. Proceed as in Lemma 8, we get

k=t A f  =k" A%a,, - (-1) k"' A4""a, .,

or, k"A"a,, = k"'Af 4+ (r-1) kKA a0,
Hence
oC oC oC
2 kT ATay ] < Tk A | (-1) 2 KA |
k=1 k=1 k=1
oC oC
< TRV [ (1) T R[4
- 0 as n — oC.
Consequently
o
im % k' | 4" a,, | = o
n-oc k=1

Theorem 2. If r is a positive integer, the neessary and sufficient
conditions that the T-matrices A and B are absolutely equivalent for
all (C, r) — bounded sequences are that

(4.1) lim k% ¢, = o for every n, and
k—oc
oC
(4.2) Im XY ki | Adie, |=0(G =123 ....71)
n—oc k=1

where C = A - B.

Proof. Let us first prove the sufficient part. We shall use
induction on r. Put r = 1in (4.1) and (4.2), and proceed as in The-
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orem 1, we at once obtain our theorem for r=1. Suppose that the
theorem is true for r = t — 1; then we shall prove that the theorem
is true for r = t.

Put

(4.3) Zo = (8. + s, + s + ... + s / k, so that
(4.4) s, = kZ - (k1) Z, (k > 1).
It follows from Lemma 6 that s is (C, t) — bounded if, and only

if, {Z,} is (C, t-1) — bounded and then by Lemma 7, Z, = O
(k'-1). Also we have

P p
Z gy sk = 2 ey kZ - (k1) Z,)
k=1 k=1
p
_ 2 k(cn,k - cn,k+1) Zk + P cn’p+‘ Zp
k=1
Therefore

P p
(4.5) I cpp s = X iz P capy Zp
k— k=1

where f, = k (¢, — €pper) -

The condition (4.1) implies that

(4.6) lim pe,,., 2z, = o, when z = O (k'*),
p—oC

since lim e¢,, = o for every n, and
k—>oc

4.7) lim k f , = o for every n.
k—oc

By lemma 8, with r = t, (4.2) implies that

oC
(4.8) lim kA L | = o
nooc k=1

Letting p - oc in (4.5) and using (4.6) w e get

oC oC
4.9) m 2 ¢, 8 = lim X £, z .
n—>oc k=1 n-oc k=1
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We have already supposed that the theorem is true forr = t-1
and the matrix F = (f, ) satisfies the condition (4.7) and (4.8);
then the right-hand side of (4.9) is O i. e.

oC
lim X f, z = o
n—oc k=1
o
Therefore lim 2 ¢, s, = o for every (C, t) - bounded
n—-oc k=1

sequence. Thus the conditions are sufficient.

If A and B are absolutely equivalent for all (C, r) - bounded
sequence, the the matrix C sums all (C, r) - bounded sequences
to O. Hence the necessity of the condition (4.1) follows from
Lemma 3. ‘

We observe, from Lemma 6, that {s.} is (¢, t) — bounded
whenever (z,) is (c, t-1)- bounded.

Transition from (4.5) and (4.9) is justified in this case also
because (4.5) is an identity, z, = O (k'~') and (4.1) holds. There-

fore

oC
lim 2 ¢, s, = o for every (C, t) - bounded {s,}
n—~oc k=1

implies, by (4.9). that
oC

(4.10) Lm X f .z = o for every (c, t-1)- bounded {z}
n->oc k=1

By the supposition that the theorem is true for r = t-1, then
it follows frpm (4. 10) that

cC
(4.11) lim X k' | A | = o0
n—->oc k=1

is a necessary condition.
Again every (C, t-1) - bounded sequence is (C, t) - bounded,
then the necessity of (4.2) for j = 1, 2, 3... t-1 assumed. Threfore,

from Lemma 9, the necessity of the condition (4. 2) follows for
r = L
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Remark: The condition (4.1) does not follow from (4.2). Of
course, the condition (4.2) implies that

o
2 K [ Adie, | <Mfor everyn (j =1, 2, ... 1)
k=1

oC
but X k' | A" ¢, | = M for every n, which together with
k=1

¢,x — 0 as k — oc implies that
ey =0 (ko ), 6 =20,1,2, ...., -1
Cooke [1], 218, also see Bosanquet [2], Lemma 7.

Corollary: If r is a positive integer, the necessary and sufficient
conditions that a T - mairix A is absolutely translative for all (C,r) -
bounded sequences are that

(4.12) lim k* a,, = o for every n,

k—oc
and
oC
4.13 lim 2 ki | 4itt a = o (j = 1,2,3,....,r
n,k J
n-occ k=1

Lemma 5 and Theorem 2 give the corollary.
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