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Generalizations Of The Non-Desarguesian
Moulton’s Plane

Riistem KAYA

Ankara Universitesi Fen Fakiiltesi, Turkey

ABSTRACT

This paper contains three parts. The first part is the-introduction. In the second”
part, we construct a class of non-desarguesian planes which contains Moulton’s plane as
a particular case. In the third part, we show that the constructed planar geometries can
be regarded as affine geometries.

I. INTRODUCTION

F. R. Multon [1] constructed a new plane by deformong the
lines of the euclidean projective plane. The points of this plane
are points of the euclidean projective plane. The lines of this plane
are defined by

1) ¥ = f(y,mm(x - a) ,
where m,aeR, and f(y, m) is defined as follows:
If meR- 4-{0}, then f(y,m) = 1;

(2){ If meR* and yeR-, then f(y,m) = 1;
If meR* and yeR*+ {0}, then f(y,m) = ¢, ¢ £ 1, ceR™.
Here R, R* and R~ are the sets of all real numbers, positive real

numbers and negative real numbers, respectively. In addition, the
equation of the line is given by

y=D» (beR),
when m =0 and a — o, and by
X = a

when m - 0. That is, in this plane geometry, the lines of non-posi-
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tive slope are euclidean lines, and the lines of positive slope are
euclidean broken lines, broken at the x-axis so that the slope in
the upper half-plane is a positive constant ¢ (not unity) times the
slope in the lower half-plane.

Later, K. Levenberg [2] generalized Moulton’s non-desar-
guesian plane geometry by consideration of the broken line plane
geometries defined by an arbitrary functional relationship between
the upper and lower half-plane angles, 6 and @, respectively. Here
the function @ = f (0) is strictly monotonic increasing continuous
single-valued function with a single-valued invers, in the closed
interval [0, =]. All the plane geometries obtained , in this way,
are constructed by the broken lines*.

In this paper, we give generalizations of Moulton’s plane. To
do this, in section 11, we first break the parts of the straight lines
in the upper half-plane by a certain ratio ¢ and then replace their
equations by particularly chosen polynomials of the odd degree.
Thus, we construct the real planes such that a part of infinite lenght
of their lines are deformed to the non-linear curves**. Moreover,
we consider the euclidean projective plane as a particular case.
In the section IT1, we show that the constructed planar geometries
can be regarded as affine geometries at the same time.

I should like to express my indeptednes to Professor Dr.
Masatoshi Ikeda, for this encouragement and advise in the pre-
paration of this paper.

II. GENERALIZATIONS OF MOULTON’S PLANE

The points of a generalized Moulton’s plane are the points of
the euclidean projective plane. The lines of such a plane are given

by
3) y = {(y;m)m (x-a)** , n=N,

where f(y,m) is described as follows:

* There are some other non-desarguesian planes besides these, see [3].
** By non-lineer curves, we mean planar curves which are not particularly, straight

or broken lines.
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If meR~+ {0}, then f(y,m) = 1 and n = 0;
If meR* and yeR~, then f(y, m) = 1 and n = 0;
@ If meR* and yeR*+ {0}, then f(y,m) = ¢, ¢ 7 1, ceR",
¢ = constant;

If m — oo then f(y,m) m = d, deR —~ {0} ,n = 0 and y = 0.
Moreover, when m = 0 and a— oo, the equation of the line is
given by

y=», (b = y — intercept).
Hereafter , in order to distinguish the lines of this plane geo-

metry from the ones in the euclidean plane we use the term
“stragiht line” instead of the term “line’” in the euclidean sense.

Now, let us show that these generalized planes satisfy the
axioms of alignment of a general projective geometry of a plane.

Theorem 1. There is only one line joining any two points of
the plane.

Proof. It suffices to prove the theorem for the following two
cases:

(i). The two points are in the upper half-plane;

(if). While one point is in the upper half-plane the other one
is in the lower half-plane.

Case i) Let the points N, = (x,,y,) and N; = (x;. y.) be given,
where x,, y,eR¥, x,, y,eR" -+ {0} and x, > x,, y, > y.. The value
of the parameters m and a which are sufficient to define the line
(3) can be calculated uniqely as follows

% — x v, [1~(y, [y,)H/2n+ ot
Tz . ] )1/§n+1 and m = = Y2_1 11 5
(v2/v: o(x,x%,)

because of these points satisfy the equation

a—

y=cm(x—a)*®1 |  neN.
Similar proofs may be given for the following cases in each of
which choosing the suitable coordinates x; and y;, i = 1, 2):

a) Both of the N, and N, are the points of the second quad-
P q
rant;
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(b) One point is in the first quadrant and the other is in the
second.

Case ii) Let the points N, = (x,, y,) and N = (x,, —y:) be in
first and fourth quadrants, respectively; where x,, x,, y.€R* and
y,eR*4-{0}.

In accordance with the definition suppose that x, > x,. Since

these points are to satisfy the equation of the line on which they
lie, the equations

5) Yo = om (x, - ap

and

(6) v, = m (x, - a)

are valid. From Eq. (5) and Eq. (6) we have

o) ey (- x4y, (- %) = 0.

Now, if we denote (x; ~ x;) by k, keR*, the Eq.(7) yields
®) oy (a-x " + v, (a - x) + ko= 0.
If Y denotes (a - x,), that is,

©) Y = (a-x)

(8) reduces to

(10) Y+ LY 4+ po= 0,

where % = y:/ cy,, & = ky. /ey, JpeR*. It is obvious that
Eq. (10) can not have any positive real roots. For in this case the
left side of the equation is definitely positive. Hence, all the real
roots have to be negative. Now, if we define a new variable Z by

(11) Y=—127
then Eq. (10) reduces to ;
(12) 72t L 37— wo= 0.

All the real roots of Eq.(12) are positive. “Descartes’ rule of signs”
and some well known theorems of algebra imply the existence of
one real root. Thus the parameter a, in Eq.(5), is uniqely deter-
mined by going back from Eq.(12). Then the parameter m, in
Eq.(5), can be easily determined from Eq.(6).
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Choosing the suitable coordinates, similar proofs can be given
in the following cases:

(a) While one of the points N, and N.is in the third quadrant,
the other one is in the first;

(b) While one of the points N, and N, is in the third quadrant,
the other one is in the second.

Theorem 2. If the straight lines
L, ..y = m, (x-a), m,eR
L, ... y = m, (x-a.), m.cR , a, £ a,

intersect at a point of the upper half-plane, then the half lines
corresponding to L, and L., respectively,

C .. vy = ¢ m, (x—a)"!

2n-+1

C, .y = ¢ m, (x-a,)

intersect at only one point in the upper half-plane. If the straight
lines L,, L, intersect in the lower half-plane or if they are parallel
(i- e. not intersecting at a finite point), then the intersection set
of the lines C,, C, is empty.

Proof. Let the straight lines L, L, intersect at the first quad-
rant of the upper half-plane. For this purpose, we choose m,>m,
and a, > a,. Then the system of equations C,, C, gives the follo-
wing intersection point

1 /2041 1 /2041 2+t
(13) [az(mz) — a1(m1) / a, — &
(

cmm, [
m2)1 2n4+1 __ (ml)l 2041 ? 1 2 \ (m2)1 [2n+1__(m1)1 2n+1

This is a real point in the first quadrant if a,cR* 4 {0}, and a
real point in the first or in the second quadrant if a,cR~.

To prove the second part of the theorem, let the straight
lines L,, L, intersect at the lower half-plane. For this purpose,
we can choose m, > m, and a, > a,. Then the point (13) lies in
the lower half-plane, since a,—a,eR~. This means that the lines
C, and C, do not have a common point in the upper half-plane.

For the last part of the theorem, suppose that the line L,
does not intersect L, at a finite point. In this case, we can take
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m, = m, = m and a, * a,. Then it is easily seen that C, and C,
can not have a finite common point.

Theorem 3. If the straight line y = — m, (x ~ b), m,eR*, or
a straight line parallel to x or y axis, intersects the straight line

y = c¢m (x—a) in the upper half plane, then it also intersects the
half line

y=cm{x—a)™ |y >0
at a point of the upper half - plane.

Proof. The theorem is obvious for the lines parallel to the coor-
dinate axes. Let us consider the straight line

(14) y = —m, (x - b), meR"

with negative slope, and the line

(15) Y= cm (x - ),

Since we have b > a, we set b—a = k, keR*. Eliminating y
between Eq.(14), and Eq.(15), we obtain

(16) em (x—a)*™! + m, (x-a)-mk = 0.

In Eq.(16), if we replace

(17 Y=x-a

then it redues to

(18) Y2 4 Y - po= 0.

where A = m,/em, » = km, Jem, %, peR*. This last equation
can not have any negative real roots. According “Descartes’ signs
rule” and some well known theorems of algebra, we can say that
it has only one positive real root. Thus Y is uniqely determined
by (18). x and y, also , can be uniqely determined from (17) and
(14), respectively.

As a result of Th.2 and Th.3, it can be said that any two
different lines, in the plane, intersect at just one point.

Particularly, the family of planes whose lines are defined by
expressions (3) and (4), contains the non-desarguesian Moulton’s
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plane for n = 0, and the euclidean projective plane for n = 0 and
c =1L

Furthermore, we can apply this deformation to the upper
parts of all straight lines (including the ones with negative slope)
of the euclidean plane. The given proofs are also valid for them. But
in this case, we need Th. 3 to show that the constructed planes con-
tain the Moulton’s plane as a partiular case.

Choosing a point S different from the point
(a 4 ¢t | m ¢12m)

as the center of perspectivity, from fig. 1, can be easily seen that
these planes (except the case n = 0, ¢ = 1) are non-desarguesian.

!

4

Fig. 1

II1. AFFINE GEOMETRY

In this section, we use the following definition, and show that
the constructed planar geometries can be regarded as affine geo-
metries at the same time.

Definition. Two lines in a generalized Moulton’s plane are cal-
led parallel if they do not intersect at a finite point of the plane.
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Then we give the following theorem.

Theorem 4. In a generalized Moulton’s plane , there is only
one line which passes through a given point and parallel to a
given line.

It is enough to prove the theorem only in the case when the
given point is in the upper half-plane and the given line has posi-
tive slope. Let deformed part of the given line be defined by

(19) y = em (x — a)™*!

and deformed part of a line passing through the given point (x,,y.)
be defined by

(20) y = em, (x — a)**,

Since the point (x,, y,) satisfies the Eq.(20) and the euclidean parts
of these lines do not intersect at a finite point, we can have

m, =m and b=x —(y, /em)#.

1

This completes the proof.
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OZET

Bu caligma ile F. R. Moulton diizlemi [1], K. Levenberg [2] den farkli bir yolla,
genellestirilmektedir. Bunun icin reel projekiif diizlemin dogrularmin iist yari diizlemde
kalan kisimlar: énce belli bir ¢ oraninda kirthr, sonra da tek dereceden ve dzel bir gekilde
secilmig polinom egrileriyle degistirilirler. Reel projektif diizlemi de 6zel hal olarak igine
alan bu genellestirilmis diizlemler stmfimn her iiyesinin bir afin diizlem olarak da goz

oniine almabilecegi gosterilir.
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