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On The Cohomology of Categories

GEORGES HOFF
INTRODUCTION

We have started our study of the cohomology of categories
[1] in particularizing a note of C. Ehresmann [2]. Then, our
wish was to put together, in a same work, our original study and
the theory of M. André [3]. The result is the text herewith presen-
ted. )

In the first chapter, we construct a homology and a coho-
mology of categories. The cohomology is a generalization (dif-
ferent of the one defined in [2]) of the cohomology considered
in [1]. The homology is the very same as the one defined in [3].

In the second chapter, we particularize the previous theory
"in order to obtain a cohomology of the small categories which
generalizes the classical cohomology of the groups, a group being
" a particular category.

These two chapters are written in a different mind; conse-
quently, we have judged useful to differentiate their notations.

We could use also the tools herewith introduced, for example,
in a generalization of the study of the groups operating on topo-
logical spaces; this will be the subject of an other publication.

Georges HOFF

Universite Paris-Nord,

Centre Scientifique et Polytechnique,
Departement de Mathematiques,
‘Place du 8 Mai 1945

93206 Saint—Denis FRANCE



Chapter l HOMOLOGY AND COHOMOLOGY OF CATEGORIES

Section 1 FUNCTORS

1.1 Recalls and notations.

If N is a category (see [4] and [5]), we shall denote by
MorN the class of morphisms of N. If N is an object of N, we
shall denote by N the identity morphism of N. If f is a morphism
of N, we shall denote by o(f) and B(f) the domain and the codo-
main of f respectively.

In the following A will be an abelian category such that
every set of objects of A has a coproduct in A. If N is a category,
we shall denote by [N, A] the abelian category of natural trans-
formations between functors from N to A.

We shall consider a category N and a full subcategory M of
N. If U is a functor with domain N, we shall denote by U|M the
restriction of U to M.

1.2 Free funciors.

TLet T: M —— A be a functor.

Definition: A functor U: N —— A is said T—free if for every
object N of N the object U (N) of A is a coproduct of objects of
the form T(M) where M is an object of M.

Let X be a set, n and m applications from % to the class of
objects of N and to the class of objects of M respectively. We
denote by NxX the class of pairs (f,6) ¢ MorNxX such that

a(f) = n(o)

and for each object N of N we denote hy (NxZ)(N) the set of
pairs (f,6) € NxX such that

B(f) =
We define <f, 6> = T (m(o) ) for each (f, 5) ¢ NxX. For each
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object N of N let U (N) be the coproduet

<f, 6>. For each morphism g of N let U (g) be the morphism from
U(a(g) ) to U(B(g) ) defined by the identity morphisms from
<f,6> =T (m(c)) to <g.f,6> = T (m (5) ). Thus we obtain
a functor U: N —— A and, by construction, this functor is T—free.

Definition: This functor U is called the T- free functor ge-
nerated by (£, n, m). ,

(Recall that if for every summand of a coproduct there is
given a morphism to some summand of an other coproduct, then
this define a morphism from the first coproduct to the second).

Section 2 RESOLUTIONS

2.1 Free‘resolutions.
Let T: M —— A be a functor.

For each integer k >> 0 let U: N —— A be a T-free functor;
for each integer k > 0 let 9, be a natural transformation from U,
to U,_; and let 9, be a natural transformation from U, |M to T.

Definition: L = (U, &) =0 is a T- free resolution of T if
the sequence

Ok o1
.. Uy U, e U, U, )

is a complex of [N,A] and if for each object M of M we have a
resolution

B &y (M) 9, (M)
vo.— U (M) —U_, M)——...— U, (M) —->T (M)—0
of T (M) in A (i.e. an exact complex of A over T (M) ).

2.2 Canonical resolutions.

In the following, we shall consider, as in [3], a category N
and a full and small subcategory M of N. Let T: M —— A be a
functor.

Definition: If k > O is an integer, a k—simplex of M is a
sequence [fi,..., f;] such that
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f; ¢ MorM v i=1,...k,

wlfy) = BE) v i=l,..., kL.
Let 2, be the set of k-simplexes of M, n, and m, the appli-

cations from 2, to the class of objects of N and to the set of
objects of M respectively defined by

Nyt [fk9- . '7f1] - B(fk)v
my: [f,..., fi] — a(fi).

Let 2, be the set of objects of M, n, and m, the applications
from X, to the class of objects of N and to the set of objects of
M defined by the identity application of Z.

For each integer k > 0, let U, : N——A be the T—free functor
generated by (Z,,n,,m,). For each integer k > 1, let &', be the
natural transformation from U, to U,_, defined by the identity
morphisms from < f, [f,..., fi] > to <f. £, [f_,,....fi] >
for i=k, to <f, [f,..., f.1.5,...,fi] > for i=1,..., k-1, and
by the morphisms T (f;) from <f, [f,....,fi] > to <f, [f,...,
f;] > for i=0; then we have, for each integer k > 1, a natural

k
transformation 9, = X (-1) ¥ from U, to U,_,. Let &'; be
i=0
the natural transformation from U; to U, defined by the iden-
tity morphisms from <f, [fi] > to <f. fi, « (f;)) > for i=1 and
by the morphisms T (f;) from < f, [fi] > to <f, a (f) > for i=0;
then we have a natural transformation 9; = 0!; — 9° from U,
to U,. Moreover, let &, be the natural transformation from U, |M

to T defined by the morphisms T(f) from < f, «(f) > to T (B(f) ).
Theorem: L = (U, 8, ) = 0 is a T free resolution of T.
Proof: A formal simplicial calculus permits to prove that
%.01=0 yk>1,
and thus that the sequence

B¢ o
. Uy U1 e U, U, 0
is a complex of [N, A]. In order to prove that, for each object M
of M, the augmented complex




ON THE COHOMOLOGY OF CATEGORIES 179

o (M)
U (M) U, (M)—>. ..

2, (M)
U,(M) T (M) —0

is a resolution of T (M) in A, we construct morphisms

st Ug M) — Uy, (M)
such tha’g

o1 (M).8¢ + sy -0 (M) = Uy (M)

(i.e. a contracting homotopy in the sense of [6] p. 41). We define
s, by the identity morphisms from < f, « (f) > to < 8 (f), [f,
a(f)] > fork=0 and from < f, [f,...,fi] > o <B(f), [f.f,...,
fi] > for k > O when f has M for codomain.

Definition: A k-simplex [f,..., fi] of M is said degenerated
if one of the f;, i=1,.. .k, is an identity morphism.

For each integer k > 0, let 2° be the set of degenerated k-
simplexes of M, n, ° and my ° the restrictions to % °, of the applica-
tions n, and my respectively.

For each integer k > 0, let U°: N——A be the T—free func-
tor generated by (2°, n.°, m°). In the category [N,A], the
object U° is a direct summand of Uy; let U, be the quotient
U, /U°. Let U, be U,.

Theorem: There exists a T— free resolution L=(Ty, &, ), >0
of T which is a quotient of the T—free resolution L of T, i.e. such

that & is a quotient morphism of 8, in the category [N, A].

Proof: The question is to prove that, for each integer k >0,
the morphosm 9°, defined on the summand U° of U, by g,
factors through the summand U°_; of U,_;.

Definition: The T-free resolution L (resp. L) of T is called
the canonical T-resolution (resp. the canonical normalized T-
resolution) of the category N.



180 CEORGES HOFF

Section 3 HOMOLOGY AND COHOMOLOGY OF CATEGORIES

3.1 Definitions.

Let N be a category, M a full and small subcategory of N and
T: M——A a functor.
Let L=(U,, ¢)x > 0 be the canonical T-resolution and

f:(ﬁk, 5;()1(20 the canonical normalized T-resolution of N.

Let (Hy( ,T) ), >0 and (H, ( ,T) ),>>0 be the homology
graded objects of the complexes of [N, A] defined by L and

T respectively.

Definition: For each integer k>0, the functor H, ( ,T) (resp.

H, (,T) ) is called the T-homology functor (vesp. the normalized
T—homology functor) of order k from N to A.

Remarks: The functor H, ( ,T) is the Kan extension of T.
For every object M of M we have

HMT)=0 , HMT)=0 vk >0 .

For each integer k > 0, we denote by M, (resp. k)
the functor from [N, A] to ab, the category of abelian groups,
-such that for each functor U: N——A the group HY, (U) (resp.

ﬁkT(U) ) is the k—th. cohomology group of the complex of [N,A]

defined by L (resp.L) with coefficient U.

Definition: The functor HX (resp. H5) is called the T-
cohomology functor (resp. the normalized T-cohomology functor)
of order k from [N, A] to ab. The group H¥, (U) (resp.
ﬁkT (U) ) is called the T-cohomology group (resp. the normalized
T—cohomology group) of order k of N to U.

3.2 Dimensions.

To each homology or cohomology defined above corresponds
a dimension. It is the greatest integer k, if it exists, such that
the corresponding functor is not the zero functor; if such an in-
teger k does not exist, we say that the corresponding dimension
of N is is infinite.
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Definition: If there exists an integer p > 1 such that
1° for all integer q > 0 every (p+q) —simplex of M is degenerated,
2° there exists a p-simplex of M not degenerated, then we say
that M has the simplicial dimension p. If for all integer k> 1
every k-simplex of M is degenerated, i.e. if M is a discrete cate-
gory, then we say thet M has the simplicial dimension 0. If for
each integer k > 1 there exists a not degenerated k-simplex of
M, then we say that M has an infinite simplicial  dimension.

Remark: 1f M has the simplicial dimension p > 1, for each
integer k such that

l1<k<p,
there exists a non degenerated k-simplex of M.

Examples: The category 2, with only one morphism, the
domain and codomain of which are distincts, has the simplicial
dimension 1. A not discrete category with only one object has an
infinite simplicial dimension, in particular it is the case for the
groups.

This notion of simplicial dimension permits to majore certain
of the dimensions of N.

Theorem: Let N be a category and M a full and small subcate-
gory of N. If the category M has the simplicial dimension p > 0,
then for all functor T: M——A and for each integer k>p, the functors
s, (,1) andﬁkT are the zero functors from N to A and from
[N, A] to ab respeciively.

Proof: For each integer k>p, the set Z°, of degenerated k-
simplexes of M is the set X, of all k-simplexes of M. Then the
subobject U° of Uy is Uy; consequently, the quotient U, is null.
It follows that the normalized homology and cohomology functors
of order k are the zero functors. “

CONCLUSION

The homology obtained here is the one defined by M. André
in [3]. S. Swierczkowski has shown in [7] that it is a particular
case of Barr and Beck homology defined with cotriple notion.
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We do not give the properties of homology and cohomology
functors defined in this chapter. The methods are those of [8]
and for the properties of homology functor, see [3].

In the following chapter, we shall consider the case where
the categories IV and M are the same, where A is the category ab
of abelian groups and where the functor T is defined by the cons-
tant functor T: M ———Z, Z being the group of integers.
Then we shall consider only cohomology, because the defined
homology is null. The canonical T-resolutions being projective
resolutions, the cohomologies (normalized or not) coincide.

In order to point out that the obtained cohomology is a
generalization to the small categories of the classical cohomology
of groups, we shall use different notations.

Chapter II A COHOMOLOGY OF SMALL CATEGORIES

Section 1 MODULES ON A CATEGORY -

1.1 Recalls and notations.
In this chapter, all categories are small categories.

We shall denote by C’ a category where the set of elements
(morphisms) is C and where the law of composition is“.”.

The set of units of a category €' (which is in 1 to 1 corres-
pondence with the set of objects of this category) will be denoted
by C,. We shall denote by « and B the applications from C to
C', which associate to each morphism f ¢ C its domain and its
codomain respectively.

If C' is a category and if e and e’ are two units of C then
we shall denote by C' (e,e’) the set of morphisms f ¢ C with e as
domain and e’ as codomain.

Recall that a groupoid is a category in which all morphism ‘
is invertible; a group is a groupoid with only one unit (the unit
element of the group).
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1.2 Modules on a category.
Let ab be the category of abelian groups. Let C’ be a category.
Definition: A G —module is a functor M: C' ——— ab such that
M) NM(e')= ¢ vee Gy, ye'e O, e%e’;

a natural transformation ¢ between such two functors is called
C' -linear application.

Remarks: A ¢’ —module M defines an “espéce de structures
(CG', M) dominée par les groupes abéliens” and a C' —linear appli-
cation ¢ defines an “application covariante (C', 9) entre espéces
de structures dominées par les groupes abéliens”; these notions
are defined in [4]. We may vepresent a C' -module as a fibration
of C', with abelian groups as “fibers”, each morphism f ¢ C defines
a group homomorphism from the “fiber” over its domain to the
“fiber” over its codomain. Any functor from C’ to ab defines a
C’ —module, “separating the fibers”, if necessary, by an indexation
of images of units. '

‘The C' -linear applications between C' —modules define a
full subcategory of the category of natural transformations bet-
ween functors from C’ to ab. This category is abelian and will be

denoted by Mod C'.

Definition: A free C' —module is a C' —module M such that for
each e ¢ G the group M (e) is a free abelian group.

Remark: The free C' —modules are defined by the Z —free
functors, in the sense of chapter I, Z: ¢ ——>ab being the C
- —module defined by

Ze)=1{e}xZ yecC,,
Z (f) (e;p) = (¢'p) vyiecC (e e),
where Z is the group of integers.

If Mis a C' —module, for each e ¢ C', we shall denote additi-
vely the law of composition in the group M (e) and its unit will
be denoted by O (). If f ¢ C is a morphism, for each z ¢ M («(f) )
we shall write fz the image M (f) (z) of z by the group homomor-
phism M (f).
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We shall see, at the end of this chapter, that this notion
of module on a category is compatible with those of generalized
module on a predditive category (i. e. on a ringoid).

Section 2 CROSSED HOMOMORPHIMS
Let C' be a category.
2.1 Crossed product.

Let M be a G’ -module; by definition, the category C’ operates

on the groupoid sum of groups X M (e) with the law of com-
ecC’

position x defined by
x (f, z2) = fz
if and only if fz is defined, i.e. for z ¢ M (« (f) ).
Let Mxy C' be the set of pairs (z, f) such that
feCzeM@PB(E).
Let (Mx;, C')* be the set Mx, C' together with the law of com-
position defined by
(z, ) + (z, f) = (20 + £ z, £.9)
if and only if we have
o () = 8 () .
Proposition: (Mx,, C')* is a category and X M (e) is identi-
ecC’,
fied to a subcategory of (Mxy C')+. Furthermore C' is a quotient
category of~ (Mxy C)*, the projection functor being defined by
w: (zf) — f .

Proof: Clearly (Mxy C')* is a category whose units are pairs
(O x(,),e) for all e« C',. The functor 1: Z M (e) —— (Mxx C)+

ez,

which sends each z e M (e) onto (z, e) ¢ Mxy C' gives an identifi-
cation of ¥ M(e) to the subcategory of (Mx, C’)* constituted by

ecC’y
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the (z,e) for all ec C',. Let p be the equivalence relation defined
on Mx, C' by
(zf) ~ (2.f) < =10;

it is compatible with the law of composition of (Mxy C’)+. The
functor 7: (Mxy C)* —— € defines an 1 to 1 correspondence bet-
ween the quotient Mxx C’ /g and the set C; The law of composition
in, C defined by the one of (Mx) C')* and this 1 to 1 corresponden-
ce is the law of C’; the class modulo p of all unit (Oy(,), e) of
(Mxy C')* corresponds to the unit e of C'. Thus the category C is
a quotient category of (Mxx ")+, the projection functor being
the functor .

The units of (Mx, C)* are identified to the units of its sub-
category = M (e).

ecC’,

Definition: The category (Mx, C’)* is called the crossed pro-

duct of M and C.

2.2 Crossed homomorphisms.

Let M be a ¢ —module.

Definition: A crossed homomorphism of C' to M is an applica-
tion { from C to = M (e) such that

ecC’,
$E) e M@E)) weC,
g (E.£) = ¢ () 4 £ () if o(f) = 8 (f).

Remark: If { is a crossed homomorphism, we have

$e) = Ox()  yeeC,

The sum of two crossed homomorphisms ¢, and {, defined by

(b1 + $2) (6) = 41 (6) + ¢ (D) vieC,
is a crossed homomorphism. Under this law of composition the
set of crossed homomorphisms of C' to M is an abelian group,
which will be denoted by Z1! (M) and whose unit is the crossed
homomorphism {, defined by

o (F) = Oy B(8)) yfeC.

Let © be an application from C'j toX M (e) such that
ecC’, '
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7 (e) e M (e) veeC, .
Let ¢ be the application from C to = M (e) defined by it
: ecsC’,
br (F) = 1 (e) — fr (e) v feC (e €);

it is a crossed homomorphism of C' to M.

Definition: A crossed homomorphism of the form { is called
principal crossed homomorphism.

Since

('I.')Tl + ‘L""z = ‘L(TH-Tz)’

where (11 4 7,) is the application from C'; to X M (e) such that
ecC’,

(ri + ) (e) = 71 (¢) + 72 (e) veeC,,

the principal crossed homomorphisms constitute a subgroup

Bt (M) of Z! (M).

If 7 is an application from C';, to = M (e) such that the

ecC’,

'r(e).sM(e) veeC,,

the “inner automorphism” of (Mx, C')* defined by v is the functor
from the crossed product to itself defined by

(z, £f) —> (z(e).e) + (2, £) + (—= (¢’), ¢’)
= (tle) + z — fr (¢’), ),

where
e’ =« (f), e = B (f).

Proposition: The group of all those invertible funciors from
the crossed product to itself which induce the identity functors both on
the subcategory & M (e) and the quotient category C’ is isomorphic

esC'y :
to the group Z1 (M) of crossed homomorphisms. Under this isomorp-
hism the inner automotrphisms of (Mx, C’)* defined by the appli-

cations t from C', to & M (e) such that
ecC’y
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7 (e) e M (e) v ecs G,
correspond to the principal crossed homomorphisms.
Proof: A functor as described must be given by a formula
Y (z, f) = (z + § (f), f) v (z, f) e Mx, €,

for some application { from C to & M (e) such that
ecC’,

$(f) = M (B(f) ) vieC,
{ (e) = Ox (e) veesC,.

The fact that { does not depend of z is an immediate consequence
of the fact that ¥ must be a functor and that we must obtain

¥ (2f) = ¥ (2, B(f) ) + ¥ (0O~ (B(f) ), ©).
Since ¥ must be a functor, we must have the following relation
v ( (Z', f.) + (Zaf) ) =¥ (z'o f.) + (z7 f) lf@ (f) = (f.)
which is equivalent to the following
WD =)+ 0O B O =« ().

Conversely a such defined functor ¥ is invertible, because the V'
application (—{) from C to = M (e) defined by

ecC’,
@) =—4¢(@) vicC
defines a functor ¥-! by the formula
Y1 (z, f) = (zH(—{) (), f) v (zf) ¢ Mxx C',

and W1 is an inverse of ¥'. The composition of the functors ¥’
corresponds to the sum of the applications § and the inner auto-
morphisms. of (Mx,. C)* defined by the applications © correspond
to the principal crossed homomorphisms.

2.3 The cohomology group of order 1.

Let M be a C' -module. We shall denote by H! (M) the quoti-
ent of abelian groups Zt (M)/B1 (M).

Definition: The abelian group H! (M) is called the cohomology
group of order 1 of C' to M.
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Let M and M be two C' —modules, if ¢ is a C" -linear applica-
tion from M to M and if { is a crossed homomorphism of C' to M,
the formula

[Z1 (0) 41 (f) = ¢ (M(B()) (W)) v feC

gives a group homomorphism Z! (¢) from Z1 (M) to Z! (M) which
makes Z! and H! functors from Mod C to ab.

Remark: These functors can be extended to functors from the
“catégorie des applications contravariantes entre espéces de
structures dominées par les groupes abéliens” (see [4] ) to ab.

Nota: The notions of crossed product and crossed homomorp-
hism considerated in this section are particularizations of the ones
defined in [9] together with the notion of cohomology classes of
order 1 of a “catégoriec munie d'une catégorie d’opérateurs”.

Section 3 EXTENSIONS

3.1 Extensions of categories.
Definition: An extension of calegories is a sequence

L 3

E: HY — Kt —— (0%

such that the functor . identifies H+ to a subcategory of K+ and
(' is a quotient category of K+, the projection functor being the
functor r; furthermore we require that for all k; ¢ K and ky ¢ K

7 (ki) = = (ko) < 3! z ¢ H such that ky = 1 (z) 4+ k; .
Remarks: If E is an extension of categories we have
i) a(n(k)) =8 (nlki)) = (k) =6 (k) ;
i) w () = C,
iii) For every k ¢ K and z ¢ H such that
B(()) =« (k)
there exists an unique z; ¢ H such that
k+i(z)=1(z)+ k; 1)

and we shall write
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g (k, z) = z; .
Let E and E be two extensions of categories.

Definition: A morphism of extensions from E to B is a triple
' = (v, g, v) of functors such that the following diagram is
commutative

t T
E: H—K+—-> ¢

vonob e v
R S -
B fi+—KkK+— .
Obviously, the composition of morphisms of extensions may
be defined. A morphism of extensions I' = (v, ., v) is called iso-
morphism of extension if the functors %, . and v are invertible.

3.2 Extensions of modules on a category.

Let C" be a category and M a " —module.

Definition: An extension of M by C' is an extension of cate-
gories
T

L
E:Z M (e) — K+t — C

ecC’y
such that for all k ¢ K the conditions
zeM(e(n(k))) and oa(k)=p1(z))
are equivalent and that we have then
xg k, z) = = (k) z .
Remark: for every e ¢ €' and z X M (e) we have
ecC’,
zeM () < n1(z) = e 2)
The problem. is that of constructing all extension E of M by
C'. There is at least one such extension, taking the crossed pro-

duct (Mx;, C)* as category K+ and the functors ¢ and & of the
proposition 2.1.

Let E and E be two extensions of M by C'.

Definition: A congruence from E to B is an isomorphism of
extensions I' = (v, w, v) from E to E with
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=2 M(e) and v = €
esC’y
A congruence from E to E defines obviously a congruence
from  to E; we may therefore speak of congruence classes of
extensions of M by €. Let Ext (M, C') denote the set of all con-

gruence classes of extensions of the C' —~module M by C'. We wish
to describe the set Ext (M, C).

3.3 Factor application of an extension.

Let C" be a category and M a €' —module. Let
T

L
E: XM (e) —> Kt —> C

ecC’
be an extension of M by C'. For convenience, identify each z ¢

Z M (e) with ¢ (z).
ecC’,

To each f ¢ C choose a “representative’ u (f) in K; thatis an
u(f) ¢ K with = (u(f) ) = f. In particular, choose u (e) in K+, for
each e ¢ €. Now each class modulo = in K contains exactly one
u (f) and the elements of K can be represented uniquely as z-+u (f)
for a z ¢ X M (e) and a f ¢ C. Then (1), for k=u (f), becomes

ecC’,
u(f)+z=1fz+ u(f) vze M («(f)) . (3)
On the other hand, if C',C’ is the set of pairs (f, fi) ¢ CxC such
that f,.f; is defined in C', for each (£.f;)) ¢ C',C the element
u (f5) + u (f1), which is defined according to the remark i) of 3.1,
must lie in the same class modulo © as u (f,.f1); so, from the de-
finition of an extension, there is an unique ¢ (£, f) ¢ T M (e)

ecC,
such that
u () + u(f) = ¢ (f £) + u (. £) . (4)
applying = to (4), and according to (2), we have
¢ (6, £) e M (8 () ) v(k, f1) € C*C.

Since for all e = C', the element u (e) is in K+, we also have

§ (£, €) = Oy (B(E) ) and & (e, fi) = O x() yesC'y. (5)
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Definition: The application ¢ from C,C to T M (e) is called
esC’,
factor of the extension E.
By this factor and the C' —module M, the law of composition
in K+ is determined, the composition of any two elements z, + u
(f,) and z; + u (i) of K can be calculated, if it is defined, by (3)
and (4) as

(mt+u®))+ (@ +ulfi))=(+Hat+ @ H))+u
£ . £) . (6)

By this rule, for each (f3, £, f;) ¢ C'*C*C’, we have
(u(3) + u(f) ) + u(fy) = ¢ (f3, &) + $ (3. 5:£) + u(fs.£.f),
u(fs)+(u(f)+u (1) ) = £3 ¢ (Bf)+ $(shh-fi)4ulfs.£.£) ;

the equality of these two triple sums (associativity of the law of

composition of K+) and the unicity of the element z ¢ T M (e)
ecsC’,

such that u (f3.£,.f;) = z + u (f3.£,.11) give
f34 (f, £) + 4 (5, . £1) = § (f3, £) + ¢ (F5.6, £)
A4 (f3, fz, f1) € C.*C.*C'- (7)
Remark: If E and E are two extensions of M by C’ such that
there is a congruence between E and E, and if { is a factor of E,
then ¢ is a factor of E; If E and E are two extensions of M by C

" having a same application () for factor, then there is a congruence
between E and E.

The factor { for an extension depends on a choice of repre-
sentatives. If u’(f) is a second set of representatives with u’ (e)
in K+, for each e ¢ €', then w'(f) and u (f) lie in the same class

modulo 7, so there is an application t from C to X M (e) such
ecC’y

that u’(f) = 7 (f) + u (f) for every f ¢ C. Clearly we have
| cE)eM@BE))  yfeC e =0x() yecC,.
Thus for every (f;, £,) ¢ C'*C" we have

w () + w0 (f) =t (&) + & () + W) + v (B.6),

and from the unicity of the element z ¢ ¥ M (e) such that
1
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w (f) + v (f)) = z + u (f,.f)), the new factor is such that

Y £) = b (B8) + § (B £) v (B £) < €,C,

where {r is the application from C',C’ to = M (e) defined by
ecC’,

be (b £1) = £ () —= (.6) + 7 (6) v £)eC*C (8)

One verifies that Jr does satisfy the identity (7), with { replaced
by {r there.

3.4 The cohomology group of order 2.

Let C be a category and M a C' —module. Let Z2 (M) denote
the set of all applications { from C',C’ to X M (e) which satisfy

e,
the following conditions,
1o d(f, £1) e M (B(f) ) v(f, f1) e C*C,
2° § (£, £1) = O (B(fy) ) if f; e C, fori=1lor2,

3° 34 (B, £1) + & (fs, £.0) = ¢ (£, &) + & (f5.6, £)
V (f3, f2, f1) g C.*C.*C. .
This set is an abelian group under the law defined by
G+ §) (B £) = $(, ) + ¢ (1) y(ff1) e C*C" .
Let B2 (M) denote the subset of Z2 (M) which consists of all appli-

cations of the form (i, defined by (8), where T is an application
from C to X M (e) satisfying the following conditions,

=
1°<(f) e M (B(f) ) vfeC,
ZOT(e):OM(e) VCSC'O;

it is a subgroup of Z2 (M). We shall denote by H2 (M) the quotient
of abelian groups Z2 (M) / B2 (M). _

Definition: The abelian group H2 (M) is called the cohomology
group of order 2 of C' 1o M.

Proposition: The application which assigns te each extension
of M by C the equivalence class of its factors defines a 1 to 1 corres-
pondence

o: Ext (M, C) -~ H2 (M)
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between the set of all congruence classes of such extensions and the
cohomology group of order 2 of C' to M. Under this correspondence
the crossed product corresponds to the unit of H2 (M).

Proof: Since the factor of an extension is well defined modu
lo the subgroup B2 (M), and since congruent extensions have the
same factor, we know that the application « is well defined. If two
extensions yield factors whose difference is some application (¢
B2 (M), then a change of representatives in one extension will
make the factors equal and the extensions congruent; therefore
wisa 1 to 1 correspondence of Ext (M, C') with a part of H2(M).
Given any { ¢ Z2 (M), one may define a category K+ to consist of
pairs (z, f), where f ¢ C and zeM (B(f) ), with a law of composition
given as in (6) by

(22, £) + (21, £1) = (z2+-Boz + ¢ (B, £1), £.£1)

when the last term is defined, i.e. for every (f3, fi) ¢ C'*C’; the
(C’—module rules and the above condition 3 ° show that this composi-
position is associative; it clearly yields an extension of M by C

v (z) = (ze) vzeM (e), n(zf) = f viz.f) <K,

with representatives u (f) = (O x(8(f) ), f) and factor ¢. Then &
is a 1 to 1 correspondence. Finally, observe that the crossed product
(Mxy C')* has the trivial application

b (f, £1) = Oy (B() ) v (2, f) e C,C

as one of its factors.

Section 4 COHOMOLOGY OF CATEGORIES

4.1 The cohomology functor.
Let C' be a category, Mod C’ the category of C' —modules.
Let Z the €' —module such that
Z (e) = {e} x Z yeeC'y
Z (f) (ep) = (€p)  viC ().

The canonical normalized Z —resolution of C’, in the sense of
chapter I, defines a projective resolution L=(M,,6,),=>0 of Z
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in Mod C'. For each integer k > O, let H* denote the functor from
Mod C’ to ab such that, for every C' —module M, the group H*(M)
is the k-th cohomology group of the complex L with coefficient M.
This functor is defined by the cohomology functor and by the
normalized cohomology functor of chapter 1 (these are equal
because they are defined by two projective resolutions of a same

object in Mod C').

Definition: H* is called the cohomology functor of order k
from Mod C’ to ab and H* (M) the cohomology group of order k of C’
to M.

Remark: This functor can be extended to a functor from the
“catégorie des applications contravariantes entre espéces de
structures dominées par les groupes abéliens” to ab.

4.2. Cohomology of order 1 and 2.

Let C' be a category and L= (M,5,), = O the resolution of
Z in Mod C’ defined by the canonical normalized Z -resolution
of C', in the sense of chapter I, and let M be a C’ —module.

For each e ¢ €', the group M,(e) is the free abelian group
generated by all the pairs (f, 6) e C x (Z — Z°) fork > O, ¢
C x €, for k=0, such that

« (f) = ne (o), B(f) = e ;

the such pairs of the form (e, o) are identified to o ; for each g
¢ C, the group homomorphism M, (g) from M, («(g) ) to My (8(g) )
is defined by the application

f, o) — (g.f, o).
The C -linear application o, is determined by the application
[ - -of1] ~f [ty - -.fi]
4 X (=)L, ]
i<k
+ (D [fe o]
for k > 1, by the application

(] ~ £ o () - B ()
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for k=1 and by the application
‘ e > (e, 1)

for k=0. All degenerated simplex being identified to the unit of
the corresponding group M, (e).

Then a k-cochain ¢ from L to M is determined by an applica-
tion ¢ from I, to T M (e) such that

esC’
([ - - £ DeM(B(E) ) vl ofile B
P([fo- - HD)=0%@(E) ) v file %

Thus a 2~cochain ¢ from L to M is defined by an application
% from .C',C’ to X M (e) such that

ecsC’,
(f2f1) eM(B(E) ) v(fnfy) e C*C,
(f,f1) = Ow(B(f) ) if f; G, for i=1 or 2 ;

the fact that ¢ is a 2-cocycle is equivalent to
f3 8 () + ¢ (5, £.5) = ¢ (£, £) + ¢ (£3.£2, f1)
v (5, 6, f)) ¢ C*C*C.

A 1-cochain ¢ from L to M is defined by an application ¢
from C to X M (e) such that
ecC,

o(f) e M (B() ) viesC,
¢ (e) = Ox() veeC,

The coboundary 8’ of a 1-cochain ¢ is given By the formula
o (B, 1) = H3(f) — ¢ (6.£1) + 3(f)  v(bf)C,C .

Consequently, the cohomology group of order 2 of C to M de-
fined in 4.1 is the one constructed in the section 3.

The fact that a 1-cochain ¢ is a 1-cocycle is equivalent to
#(fz-£1) = o(f) + £ ¢ (f) v(f) ¢ C*C,

i.e. to the fact that ¢ is a crossed homomorphism of C’' to M.
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A O-cochain ¢ from L to M is defined by an application ¢
from G to £ M (e) such that

esC’,
2@ eM(e) yesC,.
The coboundary 3° of a O—cochain g is given by the formula
3% (f) = £ (f) ) —& (B(F)) vy feCs

i.e. to give a I-coboundary is equivalent to give a principal crossed -
homomorphism of C' to M.

Consequently, the cohomology group of order 1 of C" 1o M de-
fined in 4.1 is the one constructed in the section 2.

CONCLUSION

Although a notion of generalized module alread exists, module
on a predditive category (i. e. on a ringoid), we have introduced
the notion of module on a category. Same is not incompatible
with the previous one. This two notions are connected as the
notion of module on a group is with the notion of module on
a ring. In the classical study of the cohomology of groups (see
[6] p. 104), the modules on a group are defined as being the
modules on the free ring of this group; we can also define the
modules on a category C' with a ringoid (see [1] ) which is the
free ring of C’ when C° is a group. Regarding the generalized
modules, refer to [10].

Consider the case in which the category C’ is a group whose
the only unit is e. Let M be a C' —module. The crossed product of
M and C’, in the sense of 2.1, is the semi-direct product of M (e)
and C’, in the sense of [6] p. 105, and H! (M) is the first cohomo-
logy group of C* over M (e) defined in [6] p. 106. A group extension

L i
is a short exact sequence of groups O H+ K+ a

t T
—— 0, it is a sequence E: H*——>K+—— C such that E is an

extension of categories in the sense of 4.1; the group H2(M) is
the second cohomology group of C' over M (e) defined in [6] p.
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112, The canonical normalized Z -resolution of C is the Bar
Resolution defined in [6] p. 114 and the cohomology groups H*
(M) are the classical cohomology groups of G with coefficient
M (e) defined, for example, in [6] p. 115.

Consequently, the cohomology of small categories which we
have constructed is a generalization of the classical cohomology
of groups.

This cohomology is a particular case of the one considered in
[2] where is defined the central cohomology of categories.

The homology defined in the chapter I is null in the case
considered in the chapter IT; we may find a homology. of smali
categories in [l11].
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