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ABSTRACT.
The left spectrum c'(a) and the right specttum c7(a) of an element in a Banach
algebra A are considered and some properties are proved. Operator algebras in which,

for every element T, g{(T) = ¢™(T) are investigated, and a characterization of c{(T)
and 6"(T) is given.

INTRODUCTION

The left spectrum o' (a) and the right spectrum ¢*(a) of an
element a in a Banach algebra A with identity are defined to be
the following subsets of the field C of complex numbers:

o'(a) = {neC: a-he is not left invertible}
o' (a) = {eC: a-he is not right invertible }.

Equivalently, hes! (a) (Aes™(a) ) 1f and only if a-Ae generates a
proper left (right) ideal in A. If the algebra A is commutative
then

ol (@) = o'(a) = b (a): b D)

where @ is the maximal ideal space of A [1, p. 320]. For an
element a in a noncommutative algerra A, ¢'(a) = c'(a) is not
true in general.

The notion was first introduced by Robin Harte ( [2] [3])
to prove spectral mapping theorrems for the joint spectrum of
an n-tuple a = (a,, a,, ..., a;) in A. In the present paper we shall
prove some properties of ¢'(a) and ¢*(a), and we shall give a cha-
racterization of ¢'(T) and ¢*(T) for an element T in the Banach
algebra A of operators on a Banach space.



38 MUSTAFA DEMIRBAS

II. PROPERTIES OF cs'(a) AND o'(a)

Let A be a Banach algebra with identity e, and acA. It is
well known that ¢ (a) = oc!(a) Us™(a) is a non-empty compact
subset of C contained in the disk {zcC: [z | < || a ]| }. Now we
note that c'(a) or ¢*(a) can be proper subsets of o(a). This is
demonstrated by the following example.

Example, Let H=1I?and A be the Banach algebra of all boun-
ded linear operators on H. Then for any Te A,

o(T) = {neC :inf || (T-a)x|]] = 0},

=i =1

o'(T) = {<C : (T-3) H £ H}

[3, pp. 95-97]. Therefore if we take an operator T ¢ A which is
not one-to-one but onto, then 0 ¢ ¢'(T) but 0 ¢ 5*(T). For instance
define T by

T (x) = (x5 X3 X

50 o) for x = (x, x5, x5, ..4).

It is easy to see that T is linear, and bounded since
T 2 — ] 12 2
ITEIF-= £ s P-<lxIk

We observe that T is onto. If y = (v,, ¥, Vs»...) is in H, then
T (x) = yforx = (y,0,y,0,y;,...). We note that
Ker T 7~ {0}, since Ker T consists of all vectors x of the form
x= (0, x,, 0, x,, 0, %, ...).

Since c'(a) or ¢f(a) could be proper subsets of ¢ (a) it is natural
to ask whether either of them can be empty. We shall prove that
neither ¢'(a) nor ¢"(a) can be empty.

An element a in A is said to be a left (right) topological zero

divisor if there exists a sequence {b,}in A such that || b, || = 1,
n = 12,3,..., and ;

tim || ab [l = 0 (im || bya || = 0),

n—>> n—%

and a is said to be a two-sided topological zero divisor if there
oxists asequence {b, }in A for which || b, || = 1,n=1,2,3, ..., and
lim || ab, || = 0 = lim || bya |}

n—>% n—-
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Theorem 1, ¢'(a) and o*(a) are both non-void compact sub-
sets of C. Furthermore the boundary of ¢ (a) (bdys (a) ) is included
in both ¢! (a) and s'(a).

Proof, We give the proof for the left spectrum. The prood for
the right spectrum is similar. Let A ¢ bdy ¢ (a). Then a-Ae is a
boundary point of the group G of regular elements, therefore
a—\ e is a two-sided topological zero divisor [4, p. 862]. We claim
that A e 6'(a). If b ¢ A is a left inverse for a-1 e, then'b (a-he) = e
implies that b,= b (a-A e) b, and hence there is inequality

I bal < Bl (a-he€) ball-
which rules out the possibility that a-2 e is a left topological zero
divisor. So, h¢c'(a). Similarly, a-Ae is a right topolegical zero
divisor implies that A is in 6%(a), and the proof is complete.

Definition, A complex linear algebra A with identity e will
be called semi-commutative if ¢'(a) = c¢"(a) for every element
a in A.

Of course every commutative algebra is semi-commutative.
It is interesting to investigate semi-commutative algebras which
are not commutative. An example of such an algebra which comes
first to the mind is the algebra A of nxn complex matrices. If ac A
then A ¢ ¢'(a) if and only if a-) e is not left invertible but a square
matrix is left invertible in and only if it is right invertible. There-
fore, c'(a) = o*(a) = o (a). In this case o {a) is the set of eigenvalues
of the nth order complex matrix a.

A semi-commutative algebra can easily be characterized
as follows:

Propesition, A Banach algebra A with identity e is semi-com-
mutative if and only if for any two elements a,b in A

ab = ¢ if and only if ba=e
that is, an element a is left invertible if and only if it is right in-
vertible.

In a Banach algebra A it is possinle to have ab=es*ba.
For example, let A be the Banach algebra of all bounded linear
operators on the Hilbert spacel* Consider the rlght and left
shifts Sy and S; defined by
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Sp (X Xy X5, .) = (0, X, X,, Xy, .0)

S Xy Xp0 Xy 00d) = (X5, X35 X, .0d)
Ifis easy tosee that S, S; = I 7 S; S, . Of course this algebra
cannot be semi-commutative according to our preceding propo-
sition, for instance one can show that ¢'(Sg ) #%0°(Sg). We note
that ¢"(Sg) = {0}, but 0 ¢ 6* (Sg). To see this we recall that
Aeo'(Sg) if and only if Sy —2 Iis not onto. But Sy —x I is ento
for any 240, since if y = (y,, ¥, Vs -+.) is in PPthen (Sp-AD)(x)=y

— Y _ X5 Y
for x = (x,, X,, X;,...) where. X= S, X=
X, X,
xX,= 23 L, X,=— Ini7Vn , for any n=2,34,.. . Hence

37 A ?

6"(Sg) = {0}. Now we show that 0 ¢c'(Sz). Again we recall
that Aec'(Sy )if and only inf ]| (Sg — 2 I) (x) || = 0.

X i =

But || Si (x) |]P= § [x; )= || x|?. Therefore inf || Sy (x) || = 1,
i=1 <=

and hence 0 ¢ ¢'(Sg).

Theorem 2, Every finite dimensional Banach algebra with
identity is semi-commutative.

Proof, Let A be a Banach algebra with identity e, and let
L (A) be the Banach algebra of all bounded linear operators
on A. We identify A with the subalgebra of L (A) consisting of the
operators T,, ac A, where T (b)=ab If the dimension of A isn,
then L (A) is isomorphic to C"**, nxn matrices. Therefore A is
isomorphic to an n-dimensional subspace of C"*", Let e, e,, ... , €,
be the the standard basis of C* and M, be the matrix of T,relative
to this basis. Then for any ac A we have

op(@) = opw (T)) = ocam (M) ,
where ¢ denotes the spectrum of any sort left or right. But we
have already observed that for any nth order complex matrix
M,, c}(M,) = o'(M,). Therefore for any a = A we have '(a) = ¢'(a),

and A is a semi-commutative algebra.
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In our previcus discussions, we proved thatin a non-commu-
tative Banach algebra A it is not always true that ¢'(a) = ¢'(a)
for every az A. It is interesting to know for which elements ¢'(a)
= ¢"(a), in case of an algebra whose structure is familiar to us.
We shall answer this question in case of the Banach algebra of
all bounded linear operators on a Hilbert space H. We know that
in an algebra of linear operators on a finite dimesional space, it
is always true that 6'(T) = 6*(T) for every operatcr T. Many of the
results that held for linear transformations on finite dimensional
space also hold in the infinite-dimensional case, provided the addi-

tional hypothesis of compactness is imposed.

Theorem 3. Let H be a Hilbert space, and A=L (H) be the
Banach algebra of all bounded linear operators on H. If T is a
compact operator and A # 0 is a complex number, then A £ ¢',(T)
if and only if & ¢ 6", (T).

Proof. We recall ence more that for any Tec A we have

oi(T) = fneC: infﬂ (T21) (x) || = 0}

of(T) = feC : (T-21) H=H}

If T is a compact operator and A ¢ 6(T) for A 7% 0, then
ilrf | (T-21) (x) || > 0,i.e., T-AI is one-to-ome. But this is
xj]=1

true if and only if T-A 1 is onto [5, pp. 393-393]. So A ¢ ¢*(T).
Similarly, if A ¢ 6°(T) then (T-A I) H=H, i.e., T-A I is onto. But
this is true if and only if T-AIis one to ome. Thus, clearly
inf || (T-21) (x) || > 0, and » ¢ &*(T).

Ixll=1 |

We can not sharpen the statement of theorem 3 to conclude
that ¢/(T) = o*(T) for every compact operator T in A=L (H).
The point A = 0 has a status different from other points in relation
to T if T is compact and H is infinite dimensional. In this case 0
is always in the spectrum o (T) = ¢!{T) Uc*(T), because the Banach
subalgebra of all compact operators in A is a two-sided ideal in
A which is not inverse closed [6, pp. 98-991}.
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Corollary 1, Let A be the Banach algebra of all bounded linear
operators on a Hilbert space H. Then ¢'(T) = cf(T) for every
finite rank operator T.

Proof, If H is finite dimensional then ¢/(T) = o*(T) for every
T. Suppose that H is infinite dimensional. If T is a finite rank
operator then it is compact, and furthermore 0c ' (T)n o*(T)
because a finite rank operator can never be one-to-one, and it
can never be onto if H is infinite dimensional. If A 74 0, then by
fheorem 3, e o!(T) if and only if 2 £ 6°(T), and the prof is comp-

ete.

Corollary 2. Let A be the Banach algebra of all bounded linear
operators on a Hilbert space H, and let T be a compact operator.
Then every A # 0 in o (T) is an eigenvalue of T.

Proof, If » 54 0, ). ¢ 6 (T) then by theorem 3 X is

necessarily in ¢!(T), therefore inf || (T-A I) (x) || = 0. Thus, T-2 I
Hxll=1

is not one-to-one, and % is an eigenvalue of T.

Although 0 is always in ¢ (T) for a compact operator T,
0 need not be an eigenvalue of T.

Example, Let H=I? andlete, = (1,0,0,...)e,= (0, 1,0, ...),
e, = (0,0, 1,0,...) be the standard complete orthonormal set in
H. For x = (x,, X,, X,, ...) ¢ H we define an operator T by
Xx X
5= 3 0 3 o)

We show that T is a compact operator. If we define the sequence

T (x) = (0,

of operators {T,} by

X, Xq

Ta () = (0, 5 5 g ooy g 5 05 0,0

for n=1,2,3, ... then it is a Cauchy sequence in the norm topelogy
of L (H), and therefore convergent. Clearly, lim T =T. Each T,
n->

being a finite rank operator is compact and therefore, lim T, =
T is compact because the Banach subalgebra of all compact opera-
tors is the norm closure of the finite rank operators [7, pp. 124-125}

If T (x) = 0, then obviously x must be zero, therefore T is
one-to-one. Thus 0 is not in ¢!(T) but 0 ¢ ¢*(T) since T is not onto.
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IIl. A CHARACTERIZATION OF o' (T) and o (T)

Let X be a Banach space and A=L (X) be the Babach algebra
of all bounded linear operators on X. We shall denote the set of all
left (right) invertible elements in A by G'(G¥). We set G=G' G.
We note that T ¢ G if and only if Tis a topological isomorphism

(1. e. a linear isomorphim which is also a homeomorphism) onto
X.

Theorem 4, T ¢ G'if and only if T is a topological isomorp-
hism between X and the range of T, and there is a projection of
X on the range of T.

Proof, If T c G'then T is not a left topological zero divisor
and this implies that T is a topological isomorphism between X
and the range of T. To prove the existence of a projection of X
on the range of T we first show that ran T is a closed subpace.
Since T is a topological isomorphism, T is bounded below, i.e.,
there exists an ¢ > 0 such that || T (x} || > ¢ || x || for every x
in X. Hence, if {T(x,)}:>, is a Cauchy sequence in ran T, then the
inequality

1
” Xn— Xm“ < _C— ” T (Xn) - T (Xm) ” ?

implies that {x,} is also a Cauchy sequence. If x=lim x,, then
T (x) = lim T (x,) is in ran T. Thus ran T is closed.
n—>=

Let S be the inverse mapping from Y=ran T to X. Then
ST=1Iin A. By hypothesis there exists Uin A such that UT=Iin A.
Consequently U=3 on Y and U is an extension of S. Now we
decompose X into cosets y-+Ker U, yc Y. By hypothesis each
coset y-+-Ker U contains one and ounly one yc Y, and every ele-
ment of X is included in some coset since U is defined on all
of X. Thus each x ¢ X hasa unique decomposition x=y-+
(x-y) where y=zY is the representative of the coset to which
x belongs, so that x-ye Ker U. Therefore Y and Ker U are
complementary subspaces in X, .and the transformation defined
by P (x) = y is a projection on X to Y = ran T. Since both
the range and the kernel of P are closed, P is bounded [8, p.
2423.
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Conversely let T be a topological isomorphism bhetween X
and the range of T, and suppose that a bounded projection P of
X onran T exists. Let S be the inverse mapping between ran T and
X. Then SP is a bounded operator with domain all of X. Further-
more (SP) T = I and thus T ¢ G*

Corollary 1, If T is an operator on a Hilbert space H then
T £ G' if and only if T is bounded below.

Proof, T is bounded below if and only if T is an isomorphism
between H and the closed subspace ran T. Since H is a Hilbert
space there exists a projection of H onto the closed linear subspace
ran T and the corollary follows from theorem 4.

Corollary 2, If T is an operator on the Hilbert space H, then
reo!(T) if and only if inf || (T-21) (x) || = O.

X freerd
This is a restatement of Corollary 1 in terms of left spectrum.
Theorem 5, T c G if and only if T is onto and there exists
a projection of X onto Ker T.

Proof, Suppose T ¢ G*. Then T is not a right topelogical zero
divisor. We know that ran T=X if T is a topological isomorphism
[8, p. 234 ]. Assume the contrary that T’ is not an isomorphism.

Then there exists a sequence {x,'} © X' with || x|l = 1 such that
n—>%

lim || T'(x’y) || = 0, or lim | x",(Tx) | = 0 for every x in the

n—>% n—>>

closed unit ball of X. Let u c X, || u || = 1; and let U <A be defined
by Uy(x) = x,'(x) u for n = 1,2,3, ... .It is eacy t¢ show that

| Ul = 1, and also lim || Uy(T,) || = lim || x'5(Tu ||=
n—>%* n—>%

lim | x7(T,) | = 0 for every x with || x || < 1, which contradicts

n—>>

the fact that T is not a right topological zero divisor. Consequently
ran T=X,

To prove the existence of a projection of X on Ker T we
show that X is the direct sum X=Ker T @ ran U where
U is a right inverse for T, i.e. TU=I. Ker T n ran U = {0},
for if U (x) £ 0 and U (x) e Ker T then TU = lis violated.
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We consider the quotient space X /Ker T, and show that every
coset x + Ker T contains one and only one element of ran
U. Suppose that x,+ Ker T contains two elements y, and 'y,
of ran U. Lety, = U (x,) and y,= U (x,). Since y,~y, ¢ Ker T
we have TU (x,) = TU (x,) or x, = x,, and hence y,=y,. On
the other hand x, + Ker T contains an element of ran U.
Forevery x e x,-+ Ker T, T (x) has the same value T (x,), moreover
T(x) = T (x,) only if xex,+ Ker T. Now we note that TU
(Tx,) = T (x,). Then z = UT (x,)isin (x,+ Ker T) n ran U Let_
xe X, and let Y be a coset of X/Ker T which contains x. Let x,
be the unique representative of Y in ran U. Then x has the repre-
sentation x= x, 4 (x-x,) where x, ¢ ran U and x-x, ¢ Ker T (since
both x and x, are in Y). This representation is unique. For if also .
X=X, (x-x,) where x,c ran U and x, 7= x, then x, ¢ Y, because
Y contains exactly one element of ran U. Since x ¢ Y, x-x,is not
in Ker T. Consequently X=Ker T @ ran U. Since TU=I, Ue G/
and by Theorem 4 U is a topological isomorphism, and thus ran
U is closed. Therefore Ker T and ran U are closed complementary
subspaces, and there exists a bounded projection of X on Ker T
[8, p. 242].

Conversely, suppose that T is onto and there exists a bounded
projection P, of X on Ker T. Then X=ran P, @ Ker P, = Ker
T @ Ker P,. If we let P=I-P,, then ran P=Ker P, and X=Ker
T @ ran P. If we consider TP as a mapping with domain ran P
and range in X, then TP is a topological isomorphism between
ran P and all of X. Let x, and x, be in ran P. Then P (x,) = x,
and P (x,) = x,. If TP (x,) = TP (x,), then T (x,—x,) = 0 and
x-X, ¢ Ker T n ran P={0}. Thus TP is a one-to-one mapping.
To see that the range of TP is all of X, take any y ¢ X. Since ran
T=X, there exists an element x ¢ X such that T (x) = y. Let
x=X,+ X, be the decomposition of x where x,¢ Ker T x,e ran P.
Then y=T (x) + T (x,) = T (x,) = TP (x,). Then by the Open
Mapping Theorem TP is a topological isomerphism. Let S be the
inverse mapping from X to ran P. Then (TP) S=I1=T (PS) and
PS ¢ A=L (X), consequently T ¢ G-

Corollary 1, If T is an operater on a Hilbert space H then T
¢ G"if and only if T is onto. '
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Proof, By Theorem 5, T ¢ G*if and only if T is onte and there
exists a projection: of H on Ker T. Since H is a Hilbert space there
always exists a projection on the closed linear subspace Ker T.

Corollary 2, If T is an operator on the Hilbert space H then
» e 6*(T) if and only if T-AI is not onto.

This is a restatement of Corollary 1 in terms of the right spect-
rum of T,
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OZET

Seol ve Sag Spektrumlar

e
Bir A Banach cebiri icindeki bir a elemammin cl(a) sol spektrumu ve o*(a) saj

spektrumn incelenmekte ve ham ozellikleri 1spatlanmaktadir. Her T elemam icin o'(T)
= o*(T) olan operator cebirleri aragurilmakta ve 6'(T) ve ¢*(T) ciimlelerinin bir karek-
terizasyonu verilmektedir.
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