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ABSTRACT

.Previous studies on the Chebyshev approximation are enlightened, and the best
Chebyshev approximation preved to be A+B*log (1-}-CX) on [0,0] and it is generahzed
w1th the help of new coneepts.

INTRODUCTION

" The most general approxunatlon problem, first presented in
1970 by Barrodal [1], can be express shortly as the followmg

On the assumption that X is a topologic space and C(X) a
set of bounded and continious functions (have real and complex
values) on space X, C(X) space can be set up by norm '

lell = sup{ lgx)| 5 x ¢ X} ,

Let P be a parameter space and F approximation function
in C(X) corresponding an element A of parameter space P such
as F(A,.) =F[A]. There is an element, F[A], for f whichis in C(X)
such that

o(£,X) = inf { |f -~ F[A*]]; AeP }.
with the condition of
o(£X) = |f - F[A*]]
then A is called “best parameter” and the function F[A*] “best

approximation” to f-on X. Searching A* is the essential of Che-
byshev problem. o :
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Solution of Chebyshev approXimation problem is carried
out by means of varying X, F and P. The conditions hold in for
the solution of Chebyshev problem are important.

G. Meinardus and Schwedt [2] found out important theorems
in 1964 which are used for the best approximation in Chebyshev
problem. Then many scientists have studied on Chebyshev ap-
roximation problem under various conditions [3]. C.B. Dunham
[4], [5] proved that the best approxition would be A+B*log
(1+CX) on [0, «].

In our study we set up new lemmas, theorems and definitions
in order to enlighten the obscurities in previous studies and to
prove the best Chebyshev approximation to be A 4-B* log (1 4-CX)
on [0, «]. Furthermore, we have generalized it by means of new
concepts.

EXTENSIVE SOLUTION OF CHEBYSHEV APPROXIM-
ATION BY A +B*log(l +CX)

Topologic concepts are invariant under an homomorphism.
[-1,+1] is homomorph to [0,x] so we can use [-1,-1] instead
of [0,x].

Let C([-1,4+11]) be the space of defined and numerical func-
tions on [-1,41] with norm l

lgll = supile@x) s -1 < x < +1}
and with the condition
P = {A: A = (a,a,a,) e}?
Consider the existence of approximation function F, correspon-

ding to element f on the same space, C([-1,4-1]). Let the appro-
ximation function has the form of

F(A,x) = a +alog (1+a;x)

for an element A of a selected parameter space, P. When |a, |>1,
IF(A,.) | goes infinity so that the parameter a, satisfies

-1 <a,< +1

After selecting an approximation function F as above, finding
element A* for which [f-F(A,.)| is minimum, gives solution of
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Chebyshev problem. Such an element A* is called “best para-
meter” and F(A*,) “best approximation” to f. '

We can put approximation functions of the type

F(A,x) = a, +alog(l +ayx)

into two groups: :
1. Constant approximation

Constant approximation is such approximation functions
that correspond to parameters A = (a,,0,a,) or A = (a,az0).
Really in this case F(A,x) = a,.
2. Non-constant approximatien

Now a; # 0 and a, # 0, that 18 a,a, #0. In this case ap-
proximation function is evidently unique.

Lemma 1: The difference between a constant approxima-
tion and another approximation has at most one zero in [-1, 1],

Proof: Constant approximation is F(A,x) = a, when A
has the form A=(a, 0, a;) or A=(a,,a:,0). Now, let non-—cens-
tant another approximation function

F(B,x) = b,+ b, log(1-bx)
Due to the definition, b,b;, # 0.
Consider that
d(x) = F(A,x) - F(B,x)
has two zeros in [-1, +1]. According to Rolle theorem
d'(x) = F'(Ax) — F'(B,x)

has zero at leasi for one x value. That is

’ . b21)3 —
&) =- v7%x ~
This implies b = 0 or b, = 0. However, this is a contradiction

to the assumption that b,b, # 0.

Lemma 2: The difference between a non-constant appro-
ximation and a linear approximation has at most two zeros in

[-1,+1].
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Proof: Under the circumstances of —1 <7, < +1, consider the
difference between

F(A,x) = a,+a; log(l+a,x) and a,+ ax
Suppose d(x) = F(a,x) — a,—a.x has three zeros in [-1,-1].
Then derivative of d(x),

a,a,— a— a.a,x
d'(X) — 2 31_*_Saxs 3
3

has at most zeros in [-1,-+1].

For the approximation function, F(A,x) =a, +a, log(1 +a,x),
to be definite in [-1, +1], 1 +a,x>0 is raquired. Then the right
hand side of

5T 585X

(14 a;x) d'(x) = aa,— a
is a polynomial of first degree and has at most one zero. On the
other hand if d’' is identically zero then

aa;- a, = 0
and

aa, =0
F(A,.) is another non-constant approximation, so a,a; # 0.
Then a, = 0. Inserting this value in the above equation we
have a,a, = 0. However, this a contradiction 1o the non-cons-
tant approximation, F(A,.).

Lemma 3: The difference between a non—constant appro-
ximation and another approximation has at most two zeros iu
[_]-9 "I“]-]‘

Proof: Let F(A,.) and F(B,.) be two non-constant approxi-
mation functions. C

Suppose d(x) = F(A,x)-F(B,x) has three zeros, so d'(x)
has the form of o

(azas_b2b3) + (alasba—a3b2bs)x
T +a) 1+b9
which must have at most two zeros. F(A,x) and F(B,x) to be de-

finite in [-1, +1] so that 1 +a;x>0 and 1 +b,x>0 are required.
Then the right hand side of

d'(x) =F'(A,x)-F'(B,x) =
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(1 +a;x) (1+byx) d'(x) = (a,a;zb,b;} + (a,a,b-ab,by)x }
is a polinomial of the first degree so that it has at most one zero
and then d has at most two zeros.

~ On the other hand if d'is identical 10 zero, d must _be cons-
tant. In that case d has zeros if and only if d’ =0. This is a cont-
radiction. More clearly
a,a,— bb, =0
and
ab(a; — b2) =0

are required. Approximation functions are not constant, hence
a,a;#0.and b,b, #. 0. From the second equation we find-a,=b,
and inserting it in the first equation we have a, = b, and d =
a, — b,. Here again if d has zeros which imply a, = b, then we
get F(A,) = F(B,.) which contradicts the assumption.

Definition 1: Define linear space D (A,.,.) formed by
¢F(A,.) | 8a;, where i=l, 2, 3 and let the dimention be d(A). Then
d(A) evidently depends on A.

If each non-zero element of linear space D(A,.,.) has at
most d(A)-1 zeros at element B of parameter space P then the
space D(A,.,.) has “Clasical HAAR” property.

A linear space that has the property of clasical Haar is.cal-
led Haar subspace. '

Lemma 4: If D(A,.,.) correspond a constant approximation
there exists a parameter A with a Haar subspace of dimention
two.

Proof: Let A=(a,a;,a,), then it has continious derivatives;

0F(Ax) [ oa;:
oFAX) _ | #F(Ax)

K

oF(Ax ax
= log(l +ayx) 5 6(32 : - l+za3x

da, oa,

Let BA:(bl,lo‘,_,bS)‘7 then an element of D(A,.,) has ;tshe foll@ihg

form,

. ﬂk 3o oF(Ax) » ‘a,x
D(A,B,X) == i§1 bi T = b] +b2 IOg(]. +33X) —l—— 1?3 T—{—T3x—

»
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If we select the approximation function F(A,)) as contant and
take A=(a,,0, a,) then we have

D(A,B,x) = b,+b, log(l +a,x)
It is evidently seen shat D(A,B,x) is an element of linear space of
two dimentions.

On the other hand, D(A,B,x) has at most one zero in [-1, 41]
according to Lemma 1, under the condition that b(A,B,x) # 0.

In that case, D(A,.,.) is an “Haar subspace” of twe dimeti-
ons for A = (a0, a,).

Lemma 5: If F(A,.) is any non—constant approximation then
D(4,.,.) is a Haar subspace of dimention 3.

Proof: Since the approximation function F(A) is non-
constant a, and a, are non-zero and

ax

D(A,Bx) = b,+ b, log (1-+a,x) + b, Tras
3

is clearly an element of vector space of dimention 3. This shows
that D(A,...) is a linear vector space of dimention 3.

Let D(A,B,x) be a non-zero element of D (A,.,.) then B =
(b,sb,b,) # 0. Since '

T’ _ (b 33"‘ bsa?) + bza ’x
DB = =

has at most one zero in [~1 , +1] then D(A,B,x) has at most
two zeros. On the other hand since D'(A,B,x) = 0 then b,a,
ba; = 0 and b,a;> = 0. Using a2z # 0 and a, # 0 circums-
tances, we have b,=0 and b, = 0. That is

D(A,Bx) = b,
From the assumption B = (b, b, b)) # 0 it is necessary to

be b,#0. In that case D (A,.,.) is a Haar subspace of dimention 3.

Remark 1: If A corresponds to a constant approximation
function, Lemma 1 shows that d(A)=2. Otherwise Lemma 3
gives d(A)=3.
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Now, to obtain a result of DE LA VALLEE-POUSSIN type
which is useful in characterizing “near best approximation”, let
us consider a compact—Hausdorf space, X and prove some the-
orems. ‘

Let us consider a compact Hausdorf space X, and a set C(X)
of all continious functions on X. If P he a parameter space and
f be any element of C(X) then S(A,B:x) is defined such as

S(ABx) — (F(Ax) - £(x)) (F(Ax) - F(Bx)
where A and B are elements of P. Now, let us prove that
o(f) =inf | | F(A,) - f | ; AcP }

has a sublimit.

Theorem 1: Let A be an element of parameter space, P. If for
each element, B, of P, there is a closed subset, K, of X such that

min- { S(A,B;x) ; xeK} < 0
1hen
o(f) =2 min { [F(Ax) - f(x)| 5xe K} =0

|
Proof: Suppose p (f) < 6 then
off) < | FB.) -f | <o

such that there exists an element, B, of P. Hence for the ele-
ments x of K ’

| F(Ax) - f(x)] - [F(B,x - f(x)|>0

and

S(A,B,x) = | F(Ax) - f(x) 1= (F(Ax) - f(x))(F(B,x) - f(x))
> |F(Ax) - f(x)| (|]F(Ax)f(x)| - |FB,x)-f(x)|)>

This contradicts the hypothesis.
Definition 2: For a g\element of space C( [-1, + 1]) if there

exist

lg(x) |=]gl, sx)= (-1)ig(x): (i = 1.2,..d(A) )
and point set { x,X,, ... X444 suchthat -1 <x <T... <Xga4
< +1 then g function alternates d(A) times.

Theorem 2: If approximation function F has property (Z)
at A and for an element { of C( [-1, + 1]), F(A,.) - f alternates on
{xX;» X2, ... Xq(ays;t then there exists property
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o(f) > min{|FAx,) - f(x) | : 1<k<d(A)+1}

Proof: Since the function F(A,.) — f changes altern'nlvely on
{X;» X,5eeee Xg(ayc1}» Bhere exists the property

Sgn (F(Ax) —f(x)) = - Sgn (F(Ax;,, ) - £(x;,)) (1)
where, j = 1,2, .... d(A)

Let K in theorem 1 as K ={x;; 1 <k<(d(A)+1} then one gets

of) = min}|F(Ax,) - £(x)] 5 1<k<d(A)+1}
In that case at least for an x, €K, one gets

S(A,B,x,) = (F(Ax,) - f(x,) (F(Ax,) — F(Bxy)) < 0
Otherwise F(A,.) - F(B,.) has d(A)+1 zerosin [-1, 41] according
to the property (1). This contradicts the hypothesis that F(A,.)
has property (Z) at A.

Definition 3: Approximation function F(A,.) has the property
of local Haar space, with null points of degree d(A) at A, if the fol-
lowing conditions are fulfiled:

(I) Approximation funtion F(A .) has continious partial
derivatives for each i, i = 1,2,.... n.

(IT) Setting

D(A,Bx) = (B,7FAX) = £ b _6_3“%13«)_
i1 i

we have

F(A+B,x) - F(A,x) — D(A,B,x) - R(A,Bx)
and when |B|is sufficiently small

R(A,B,x) = O(| B})

(II1) There exists a neighbourhood of element A which is
contained in P.

(IV) Linear space D(A,.,.) is a Haar subspace of dimention
d(A) in [-1,+1].

Remark 2: Approxima.ion function F has local Haar space
condition, only when D (A,.,.) obeys clasical Haar condition.

Theorem 3: If approximation function F has the local pro-
perty with null points of degree d(A) at A and function f be
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an element of space C([-1, 4+ 1]), and F(A,.) be the best ap-
proximation to f, then function F(A,.) — f alternates d(A) times.

Proof: Let F bhe the best approximation to f, then set ol ex-
treme points of F(A,x)-f(x), :

M,={x/xe [-1, +1]: |[F(A,) - fl= |F(Axx) - f(x) [
has atl least d(A)-+1 elements.

Under the above conditions there exist some points which
hold -1<x, <. Xqu4; <-+1 and set {X,,Xz..., Xga)qf 18 an
alternant of F(A..) — f. Otherwise there would be found a natural
number, m, and so we can separate [-1, 1] inio m -1 subin-
tervals such that each interval contains an extreme point and
F(A,x)-f(x) has same sign in these intervals.

The set of extreme points of F(A,x)-f(x), has d(A) 41 ele-
ments, hence, for k=1,2,... d(A), a non—zero element B of para-
meter space d’ can be found |2} sucht that

B.VFAx) = & b A g

i=1 6aj

(Axi)f(xy)

and so for all extreme points, x,

(F(Ax)£(x)) (B,VF(Ax) = |F(Ax)-f(x)]|?

and then
Sgn(B,VF(A,x)) = Sgn(F(A,x) - £(x))

This result contradicts the hypothesis of the best approxi-
mation fuction F to f.

Meinardus and Schwedt ([2] theorem 9) showed that a set
M, of extreme points, has at most d(A)-+1 points in [-1, -+1].

Opposition of the Theorem 2 is corect, provided the above

conditions are taken into account.

Now, combining Theorem 2 and Theorem 3 one can get the
following result:

Theorem 4: If F(A ) has property (Z) at A and local Haar
property with null points of degree d(A), then F(A,.) be the best
to f if and only if F(A,.)-f alternates d(A) times.



10 A. ABDIK - 8. YUKSEL

Theorem 5: If F(A ) satisfies the condition of Theorem 4,
and F(A.) is best, then it is a unique best approximation.

Proof: Suppose, F{A,) and F(B,.) are two approximatior
functions. We can take d(A) < d(B), without violating the
generality.

Let set of extreme points of F(A,.) ~f be {X,X,,.., Xqay:1}
(k = 1,2, ... d(A)+1). According to Theorem 3, the set {x .x,,...
Xgay1) 18 an alternant of F(A..)-f. Then we have

F(A’XJ-H) - f(xj+x) = - (F(A9xj) - f(xj))

where, j = 1,2,..., d(A). Hence using Equation 1 we get inequali-
ties system

F(Ax,) - F(Bx,) <
F(Ax:) - F(Bxs) >
)
F(Ax)- FBx) >0
F(A,x:) - F(B,x2) < 0

It is sufficient to investigate the first part,
F(Ax,)- FBx,) < 0
F(Ax) - F(Byx) = 0

If the inequalities had been certain, F(A,.) — F(B,.) would have had
d(A)+1 definite null points and from the Haar condition we
would have gotien result

| F(,) = F(B,.)
On the other hand, if the inequalities had been correct for a k,,
we would have gotten
F(Ax, ) - F(Bixy, ) # 0
Sng (F(Ax,) — F(Bx)) = (-1)*°
However, if (F(,.) ana F(B,.) are two approximation functions
and if we take
At) = (1-t) A +t B
B(t) =(1-t) B +t A
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then F(A(t),.) and F(B(t),.) are also approkimatlon functions.
If ve denote 3= B — A in
B(t) = B -1 (B - A)
we get
Bt) =B-13
where, parameter 3 is an element of space p.

Since D(B,.,.) satisfies Haar condition, each non-zero element
of D(B,.,.) has at most d(A)-1 null points at element 3 of para-
meter space P. So F(B,.) have local Haar property.

Using property (II) of local Haar condition in F(B,x)-
F(B-13,x) we get

F(B,x) - F(B-t3,x) = 1D(B,3,x) -+ R(B,3.%)
and adding the approximation fanction F(A..) to the each side
of this equation and denoting R(B,3, x) = 0 (t), we find

F(A,x) - F(B-t3,x) = F(Ax) - F(B,x) +tD(B,8,x) + 0(t)
We get the following system, for t > 0,

_F(Ax,) - F(B45x) < 0

F(A,x,) - F(B-t3,x) > 0

........................

Thus F(A,.) - F(B-t3,.) has at least d(A) null points in [-1, +1]
and when t is approaching to zero we get

F(A,)) = F(,.)

OZET

Chebyshev yaklagimi fizerine daha once vapilan gahgmalar aydinlatilmusg, [0,0]
iizerine en iyi Chebyshev yaklasiminin A+B* log (14-CX) oldugu ispatlanmig ve yeni
kavramlar yardimyla konu genellestirilmigtir.
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