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ABSTRACT

Previous studies on the Chebyshev approximation are enlightened, and the best 
Chebyshev approxixnation proved to be A+B*log (1 + ÇX) on [0,a] and it is generalized 
with the help of new concepts.

INTRODUCTION

The most general approximation problem, first presented in 
1970 by Barrodal [1], can be expres8 shortly as the foîlowing:

On the assumption that X is a topologic space and C(X) a 
set öf bounded and continious functions (have real and complex
values) on space X, C(X) space 

llg ir = s«p{ lg(x)l ';

can be set up by norm
X s. X }

Let P be a parameter space and F approximation function 
in C(X) corresponding an element A öf parameter space P such 
as F(A,.) = F [A]. There is an element, F [A], for f wlıichis in C(X) 
such that

p(f,X) = inf { ]|f- F[A*] ||; AeP },

with the condition öf
p(f,X) = ||f-F[A*]||

then A is called “best parameter” and the function F[A*] “best 
approximatiön” to f on X. Searching A* is the essential of Che
byshev problem.

- Department of Matheınatics, University of Hacettepe, Ankara
Department of Physics, Faculty of Science, University of Ankara. Tbis study 

is a part of Pb.D. thesis of Ş. Yüksel (University of Ankara, Faculty of Science, 1975).
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Solution of Chebyshev approximation problem is carried 
out by means of varying X, F and P. The conditions hold in for 
the solution of Chebyshev problem are important.

G. Meinardus and Schwedt [2 ] found out important theorems 
in 1964 ■which are used for the best approximation in Chebyshev 
problem. Then many scientists have studied on Chebyshev ap- 
roximation problem under various conditions [3]. C.B. Dunham 
[4], [5] proved that the best approxition would be A-j-B’log 
(14-CX) on [0, a].

In our study we set up new lemmas, theorems and definitions 
in order to enlighten the obscurities in previous studies and to 
prove the best Chebyshev approximation to be A 4-B* log (1 4“GX) 
on [0, a]. Furthermore, we have generalized it by means of new 
concepts.

1

EXTENSIVE SOLUTİON OF CHEBYSHEV APPROXIM-
ATION BY A+B*log(l-hCX)

Topologic concepts are invariant under an homomorphism. 
[-ı,+i] is homomorph to [0,a] so we can use [-1,4-1] instead 
of [0,a].

Let C( [-1,4-1]) be the space of defined and numerical func- 
tions on [-1,4-1] with norm

Ifell = sup[|g(x)|; - 1 

and with the condition
P = {A: A = (a,,,a2,a3)

+1}X

Consider the exis1ience of approximation function F, correspon-
ding to element f on the same space, C([-l,+l]). Let the appro-
Kİmation function has the form of

F(A,x) = a•1 H-a^log (I+Ujk)
for an element A of a selected parameter space, P. When Ijaj ||>1,
5F(A,.) II goes infinity so that the parameter a^ satisfies

-1 “»3

After selecting an approKİmation function F as above, finding
element A* for which ||f-F{A,.) || is minimum, gives solution of

+ 1
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Chebyshev problem. Sucb an element A* is called “best para-
meter” and F(A*,.) “best approximation” to f.

We can put approximation functions of the type 
F(A,x) = aj+a3İog(l+a3x)

into two groups:

1. Constant approximation
Constant approximation is such approximation functions

that correspond to parameters A 
Really in this case F(A,x) = a,.

(3^0,83) or A = (a|,a2,0).

2. Non-constant approKİmation
Now a2 5^ 0 and a 3 0, that is a^a^ /O. In this case ap- 

proximation function is evidently unique.

Lerama 1: The difference belween a constant approxima- 
tion and another approximation has at most one zero in [-1, -)-l ]•

Proof: Constant approximation
has the form A=(aj 0, a^) or

is F(A,x) = when A
A=(apa2,0), Now, let non-cons-

t ant another approximalion function

F(B,x) = bj+ b2 log(14-b3x)

Due to the definition, h,b, 7^ 0.
Consider that

d(x) = F(A,x) - F(B,x)
has two zeros in [—1, 4-1]' According to Rolle theorem

d'(x) = F'(A,x) F'(B,x)
has zero at leasi for one x value. That is

d'(x) == -
^>2^3

1 4“ b3X
= 0

This implies bı = 0 or b 3 = 0. However, this is a contradictiou
to the assumption that b^bj 0.

Lenıma 2: The difference between a non-constant appro-
ximation and a linear âpproximation has at most two zeros in
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_ Proof: Under the circumstances of -1 cfa, 
difference between

-)-l, considef the

F(A,x) = aj4-a2 log(l-)-a3x) and a^-|- ajX
Suppose d(x) = F(a,x) — a^—ajX has three zeros ın [—1,-]—1].

Then derivative of d(x).

d'(x) = a2a3— Uj- a5a3X'5

has at most zeros in [-1,4-1].

For the approximation function, F(A,x) = a, -t-a^ log(l -|-a3x), 
to be definite in [-1, -)-l], l-|-a3X>0 is raguired. Then the right 
hand side of

(1 + a3x) d'(x) = aja,- a^- a3a3X■5“y

is a polynomial of first degree and has at most one zero. On the 
other hand if d' is identically zero then

and
a,‘5 = 0

^5^3 = 0
F(A,.) is another non-constant approximation, so / 0.
Then a^ = 0. Inserting this value in the above equation we
have a2a3 = 0. However, this a contradiction to the non—cons- 
tant approximation, F(A,.).

Lemma 3: The difference between a non~constant appro- 
ximation and another approximation has at most two zeros in 
(-1. +!]•

Proof: Let F(A,.) and F(B,.) be two non-constant approxi- 
mation functions.

Suppose d(x) = F(A,x)-F(B,x) has three zeros, so d'(x) 
has the form of 

d'(x)=F'(A,x)-F'(B,x) = (a;ijUj-babj) -|- (a2a3b,-a3b2b3)x
(l+a3x) (l+b3x)

which must have at most two zeros. F(A,x) and F(B,x) to be de- 
finite in [-1, -|-1] so that l-^a,x>0 and l+b3X>0 are required. 
Then the right hand side of
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ı^aj-b.bj) + (a^ajbj-ajb^bj)^(1 ■H-as») (1 +b3x) d'(x) = (a.
İs a polinomial of the first degree so that it has at most one zero 
and then d has at most two zeros.

On the other hand if d' is identical to zero, d musl be consr 
tant. In that case d has zeros if and only if d' =0. This is a. cont- 
radiction. More clearly

and
- bjbj = 0»283

a3b3(a2 b2) = 0
are reguired. Approxiınation functions are not constant, bence
a^ajT^^O and bjh, 0. From the second eguation we find a2=b.
and inserting it in the first equation we have a. = b, and d —‘3

a, - bj. Here again if d has zeros which imply a^ = bj then we 
get F(A,.) '= F(B,.) which contradicts the assumption.

Definition 1: Define linear space D (A,.,.) formed by 
0F(A,.) / 031, where i=l, 2, 3 and let the dimontion be d(A). Then 
d(A) evidently depends on A.

If each non-zero element of linear space D(A,.,.) has at 
most d(A)-l zeros at element B of parameter space P then the 
space D(A,.,.) has “Clasical HAAR” property.

A. linear space that has the property of clasical Haar is cal- 
led Haar subspace.

Lemma 4; If D(A,.,.) correspond a constant approximation 
there exists a parameter A witb 
two.

a Haar subspace of dimention

Proof: Let A=(apa2,a3), then it has Continious derivatives; 
8F(A,Ti) I

0F(A,x)
0a, 0a, = lOg(H-3,x) ■,

^2^

14-a3X

Let B = (bj,b2,b,), then 
form.

an element of D(A,.,.) has the folİ0wing

D(A,B,x) = S bı 
i=l

0F(A,x) 
031

= bj+bj log(I+a3x) + b, , 7—^ .1 1^

_ 0F^
032

^2^



6 A. ABDIK - Ş. YÜKSEL

If we select the approximation function F(A,.) as contant and
take A=(aj,0, aI3) then we have

D(A,B,x) = bj 4-b2 log(l +a3x)

It is evidently seen that D(A,B,x) is an element of linear space of 
two dimentions.

On the other hand, D(A,B,x) has at most one zero in f-1, +I ] 
according to Lemma I, under the condition that İ)(A,B,x) / 0.

In that case, D(A,.,.) is an “Haar subspace” of two dimeti-
ons for A = (a,,0, a‘3.

Lemma 5: If F(A,.) is any non-constant approximation then 
D(A,.,.) is a Haar subspace of dimention 3.

Proof: Since the approximation function F(A,.) is non- 
constant aj and aj are non-zero and

D{A,B,x) = bj+ b^ log (l+a3x) + bj a2X
1

is clearly an element of vector space of dimention 3. This shows 
that D{A,.,.) is a linear vector space of dimention 3.

Let D(A,B,x) be 
(bpbjîbj) 0. Since

a non-zero element of D (A,.,.) lhen B =

D'(A,B,x) = (b^aj H- b,a,) b.'2^3'^

(1 + «3^)^

has at most one zero in [-1 , +1] then D(A,B,x) has at most 
two zeros. On the other hand since D'(A,B,x) = 0 then b^aj^-
b3a2 = 0 and b^a,’ = 0. Using a2 / 0 and 
tances, we have bj=0 and b, =0. That is

D(A,B,x) = b,

»3 / 0 circums-

From the assumption B = (b,, ba, bg) 0 it is necessary to 
be bj/0. Ih that case D (A,.,.) is a Haar subspace of dimention 3.

Remark 1: If A corresponds to a constant approximation 
function, Lemma 1 shows that d(A) =2. 0therwİ8e Lemma 3 
gives d(A) =3.



ON THE CHEBYSHEV... 7

Now, to obtain a result of DE LA VALLEE POUSSIN type
which is useful in characterizing Aear best approximation”, let
us consider a compact-Hausdorf space, X and prove some the- 
orems.

Let us consider a compact Hausdorf space X, and a set C(X) 
of ali continious functions on X. If P be a parameter space and 
f be any element of G(X) then S(A,B;x) is defined such as

S(A,B,x) (F(A,x) - f(x)) (F(A,x) - F(B,x))

where A and B are elements of P. Now, let us prove that 

p(f) = inf { II F(A,.) - f II ; AeP } 
has a sublimit.

Theorem 1: Let A be an element of parameter space, P. If for 
each element, B, of P, there is a closed subset, K, of X such that

min { S(A,B;x) ; xeK} ^0
ihen

p(f) min { |F(A,x) - f(x) | ;

Proof: Suppose p (f) (7 then

P(f) !l F(B.,) -f II < a

K }X e

such that there exists an element, B, of P. Hence for the ele- 
ments x of K

I F(A,x) - f(x)| - |F(B,x) - f(x)|>0
and
S(A,B,x) I F(A,x) - f(x) p- (F(A,x) - f(x))(F(B,x) - f(x)) 

|F(A,x) - f(x) i (İF(A,x)^f(x) I - |F(B,x)-f(x) |)>0
This contradicts the hypothesis.

Definition 2; For 
exist

a g element of space C( [-1, + 1 ]) if there

(-İ)*g(Xi); (iIg(’^ı) l=hll ’ g(xj) l,2,..,d(A) }
and point set { X,,Xl’ ^d<A)+l } such that-1 <X|<.
< +1 then g function alternates d(A) times.

Theorem 2: If approximation function F has property (Z) 
at A and for an element f of C( [-1, + 1 ]), F(A,.) - f alternates on

X2, ... then there exists property

.’^(J(A)+1
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P(f) min{|FA,Xk) - f(x„) I : l<k<d(A)+l}
Proof; Since the function F(A,.) - f changes altern.stively on
X;2,-- X,d(A)+ı}5 there exists the property
Sgn (F(A,Xj) - f(x.)) 

where, j = 1,2, .... d(A)
- Sgn (F(A,Xj^, ) - f(xj+,)) (1)

Lel K in theorem 1 as K ={xjj; 1 <k<d(A) +1} then one gets

P(f) min| |F(A,x,;) - f(x,;) | ; l<k<d(A)+lj
In that case al leasi for an Xp eK, one gets

S(A,B,Xp) (F(A,Xp) - f(xp)) (F(A,Xp) F(B,Xp)) 0
Otherwise F(A,.) - F(B,.) has d(A)-|-l zeros in [-1, 4-1 ] according 
to the property (1). This contradicts the hypothesis that F(A,.) 
has property (Z) at A.

Definition 3: Approximation function F(A,.) has the property 
of local Haar space, with null points of degree d(A) at A, if the fol- 
lowing conditions are fulfiled:

(I) Approxımation funtion F(A,.) has continious partial 
derivatives for each i, i = 1,2,.... n.

(II) Setting 

D(A,B,x) (B,vF(A,x)) = 2 
i-l

bi
gF(A,x) 

öaj
we have

F(A-HB,x) - F(A,x) = D(A,B,x) R(A,B,x) 
and when |jB |j is sufficiently small

R(A,B,x) O(„B)j)

(III) There exists a neighbourhood of element A which is 
contained in P.

(IV) Linear space D(A,.,.) is a Haar subspace of dimention 
d (A) in [-1,4-1],

Remark 2; Approxima,ion function F has local Haar space 
condition, only when D (A,.,.) obeys clasical Haar condition.

Theorem 3; If approximation function F has the local pro
perty with null points of degree d(A) at A and function f be 
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an element of space C([-l, + 1]), and F(.4.,.) be the best ap- 
proximation t o f, then function F(A,.) — f alternates d(A) times.

Proof; Let F be the best approximation to f, then set ol ex- 
treme points of F(A,x)-f(x),

MA = {x/xe [~1, +1] : ||F(A,.) f||= |F(A,x) - f(x)|}
has al least d(A) -)-l elements.

Under the above conditions there exist some points which
hold -1<X| ^d<A)+ı <+l and set {xj,X2,..., XjJ(A)+,} Ts an
alternant of F(A..) - f. Otherwise there would be found a natural 
number, m, and so we can separate [-1, +1] into m+1 subin- 
tervals such that each interval contains an extreme point and 
F(A,x)-f(x) has same sign in these intervals.

The sel of extreme points of F(A,x)-f(x), has d(A)+l ele
ments, hence, for k=l,2,.,. d(A), a non-zero element B of para
meter space d' can be found [2] sucht thal

tB,VF(A,xJ) = S
i —1

bi
8F(A,X|,) 

Saj F(A,Xk)-f(xk)

and so for ali extreme points, x, 

(F(A,x)-f(x))(B,VF(A,x) = |F(A,x)-f(x)!
and then

2

,Sgn(B, VF(A,x)) = Sgn(F(A,x) - f(x))
This result contradicts the hypothesis of the best approxi- 

malion fuction F to f.
Meinardus and Schwedt ([2] theorem 9) showed that a set 

of extreme points, has at most d(A)+l points in [-1, +!]• 

Opposition of the Theorem 2 is corect, provided the above 
conditions are taken into account.

Now, combining Theorem 2 and Theorem 3 one can get the 
following result:

Theorem 4; If F(A,.) has property (Z) at A and local Haar 
property with null points of degree d(A), then F(A,.) be the best 
to f if and only if F(A,.)-f alternates d(A) times.
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Theorem 5; If F(A,.) satisfies the condition of Theorem 4,
and F(A,.) is best, then iı is a unique best approximation.

Proof: Suppose, F(A,.) and F(B,.) are two approximation 
functions. We can take d(A) < d(B), without violating the 
generality.

Let set of extreme points of F(A,.) - f be {xj,X2,.., 
(k = 1,2, ... d(A)-!-l). According to Theorem 3, the set {Xı,Xj,...
X,d<A)+ı} is dn alternant of F(A..)-f. Then we have 

F(A,Xj+,) - f(xj^,) = - (F(A,Xj) - f(xp)
where, j = 1,2,..., d(A). Hence using Equation 1 we get inequali- 
ties System

F(A,x,) - F(B,Xj) < 0
F(A,X2) - F(B,X2) > 0

or
F(A,x,) - F(B,xJ
F(A,X2) - F(B,X2)

0
0

It is suffıcient to investigate the first part,
F(A,xJ - F(B,x,) 0
F(A,X2) - F(B,X2) > o

If the inequalities had been certain, F(A,.) - F(B,.) would have had 
d(A) —hl definite null points and from the Haar condition we 
would have götten result

F(,.) == F(B,.)
On the other hand, if the inequalitıes had been correct for a k^, 
we would have götten

F(A,x,,„ ) - F(B,Xk„ ) 0
Sng (F(A,x,„) - F(B,x,„)) = (-1)'“’

However, if (F(,.) and F(B,.) 
and if we take

are two approxim.ation functions

A(t) (1-t) A + t B
B(t) = (1-t) B + t A
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then F(A(t),.) and F(B(t),.) 
If ve denote S= B - A in

are also approximatıon functions.

B(ı) = B - t (B - A)
we get

B(t) = B - t S 

where, parameter S is an element of space p.
Since D(B,.,.) satisfies Haar condition, each non-zero element 

of D(B,.,.) has at most d(A)-l null points at element S of para
meter space P. So F(B,.) have local Haar property.

Using property (II) of local Haar condition in F(B,x)- 
F(B-tS,x) we gel

F(B,x) - F(B-tS,x) = ıD(B,S,x) + R(B,S,x) 
and adding the approximation function F(A..) to the each side 
of this eguation and denoting R(B,S, x) = 0 (t), we find

F(A,x) - F(B-tS,x) = F(A,x) - F(B,x) +tD(B,S,x) + 0(t)
We get the following system, for t

, F(A,Xj) - F(B-tS,xJ 
r(A,Xj) - F(B-tS,x2)

0,

0
o

Thus F(A,.) - F(B-tS,.) has at least <i(A) null points in [-1, -)-l] 
and when t is approaching to zero we get

F(A,.) = F(,)

ÖZET

Chebyshev yaklaşımı üzerine daha önce yapılan çalışmalar aydınlatılmış, [0,a] 
üzerine en iyi Chebyshev yaklaşımının A+B* log (1 + CX) olduğu ispatlanmış ve yeni 
kavramlar yardımıyla konu genelleştirilmiştir.
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