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ABSTRACT

Chebyshev approvimation problem with two null points, its best approximation 
and uniquenes8 are proved.

INDRODUCTION

Let CZ( [0, a ]) be a space of functions which are contini- 
ous in [0, ot] and vanish at a null point. And let this space is made 
up by norm

llgil { sup | g(x) I ; 0 X }

If parameter space P is selected such as an öpen subspace of
space R", then an element of P, has the form A = ( aj,..., a„).

Whenever an element f of CZ( [0, «]) is handled then the 
existence of approximation function F which is an element of 
CZ( [ 0, a ] ) is accepted such that F (A,.) = F where A is an ele­
ment of parameter space P. ,

The essential of Chebyshev approximation problem is to se- 
arch an element A* of parameter space P, such that e(A) =
||f-F (A,.) II be minimum. Such a parameter A* is called the best 
parameter and F(A*,.} the best approximation to f.

Chebyshev approximation with a null point is studied by
C.B. Dunham [1] in 1972. Dunham presented “DE LA VALLE 
POUSSIN” type result without proof, wich is useful in charac- 
terizing “near best approximation”. In addition, Dunham şaid 
that the existenee of Chebyshev approximation with a null point
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and its uniqueness without proof, because conception of local Haar 
property is not sufficient for the thcorcm which shows unigueness 
of best approximation.

a
In this stndy, the cases in which functions be zero at 0 and 

are investigated by new concepts. The theorems tvhich are not
proved by Bun h anı are presented here with proofs and “Che- 
byshev approximation problem with two imli points” is solved.

CHEBYSHEV APPROXIMATION WITH TW0 NULL
points

Let G([ 0, a]) be space of continious functions with real 
value on fO, a], define norm.

!l g il {sup |g (x)| : o < X a}
for the .space.

It is casily seen that linear space

and
CZo([0, a]) { f : feC(0, a): f (0) = 0}

CZ([0, «]) = ]g: geCZ„(0, a) : g (a) = 0}

are closed in C([0, a]).

Let R" a non-empty subset of P which is a parameter space. 
Suppose the existence of approximation function F which is 
element of CZ([0, a]) and obey the relation F(A,.) = F[A] = F 
for element f of P.

If there exist any element f of space CZ ([0, a ]) then, finding 
an element A of P, which makes

e(A) = ||F(A,.)-f II
minimum will be the essential of Chebyshev approximation prob­
lem. More clearly, we can write it such as the following

p(f) = İnf { II F (A,.) -f II : A eP}
= II F [A*] - f II

Such a parameter A is called the “best parameter” and function
F (A*,.) “best approximation to f

Definition 1 Suppose a
Let be c,,. Cj, ... , Cjj. e ir and cali

subset, {1, 01,..., 0„,...}ofC([O,a]).
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Pk=
k
2 Ci0i 
i-o

If for each element f of C ([0, a ]) and each number 6> 0 correspond 
to a natural number k such that

!l f - Pkll < e

tben set {1, 01, 02,...} is called “spanııer” in C( [0, a ] ).

Theorem 1 If the set { 1, 0ı, ... , 0
C(}0, k]) and

n’ ...} is a spanner in

o = 01(0) 0 2(0) = ...
0 = 0ı(a) == 0 2(a) = ...

(1)
(2)

are fulfilled, then the following properties are exist:

1) GZ„([0,a]) CZ([0,a])

2) Set {01, 0^,.. 0 n’ •••?} is a spanner in CZ([0, a]).

Proof 1 Letthe set{l, 0 ı, 0^, .. 
C([0, a]) and conditions be fulfilled.

0 n’ ...}be a spanner in

Suppose f e CZo([0, a]). So f e C([0, a
6 > 0 there are real numbers o’

II f Pkll < e

cı, ... , Cjj such that

(3)

]), then for each

Eguation (3) gives us property

I f(x) (Co + Cı0ı(x) + C2 07.W + ••• + Ck0k(x)) [ E

for each x e [0, a ]. The fact that f (0) — 0 gives [ c^ |
inegaality gives rise to c\,-— 0. As a result, we

I f (x) - (C101(x) +C202(x) + ,.. +C|,0k(x)) I

< e and the 
get relation
s

for each x e [0, a], If -vve 
above relation we get f (a)

put a instead of x, for each x > 0 in the
0 from the fact | f (a) | 6. The-

refore

CZ„([0, a]) == CZ([0, a])

Proof 2 On the other hand, if we use the proof technique
above mentioned, can be easily seen
0 n’ ...} be a spanner in CZ([0, a]).

Definition 2 If there exist point set {xı, x.

that the set {0ı, 0 2’ * ” ’

, X|„ } such that
0 xı X, ... Xj^ a and
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II g II = I g (X,) I, g (x,) = (-1)* g(xı); i = 1,2, .. . m
for an element g of CZ([0, a]) then g alternates m times in [0, a]. 
If function g alternates m times but not m -j-l times then we will 
say that g alternates definitely m times.

Definition 3 Let A = (aj, a^, .. . , a„) and F(A,,) be an appro-
Kİmation function of CZ( [0, a]). Let i = 1, 2, ... , n and vector
space D(A,.,.) with dimention wh.ich is made
c)F(A,.) I Sap Evidently m

up of
n.

m

If the condition F(A,.) = F (B,.) reguires that F(A,.) - F(B,.) 
has m null points at [0,a] then approximation function F has 
property (CZ).

Now let us try to have result DE LA VALLE-POUSSIN 
type.

Theorem 2 If an approximation function F(A,.) of space
CZ([0,a]) has property (CZ) and function f is element ofan
CZ([0,a]) such that function F(A,.) - f alternates definitely m+1 
times ttıen each element B of parameter space P has the follovving 
property

Max { [ F(B, Xj) - f (xj) I : i = 0, ... , m}

> Min { I F(A,Xj) - f(xı) I : i = 0, ... , m}

Proof

1) Relation

( F(A,x,) - f(x,) ) (F(A,xO - F(B,xJ }

(4)

(5): o
is exist, otherwise

( F(A ,Xi) f(xj ) (F(A,x,) - F(B,xO ) > 0 

would be true. Function F(A,.) - f alternates

(6)

on space
{Xo, xı, ... , Accoding to Equation (6) it is clear that func­
tion F(A,Xj)-F(B,X|) will have the same alternant. Let us
assuHie F(A,x„) - f(xJ
so that the relations

F(A,xJ - F(B,x„) > 0

0 without violating the generality,

F(A,xı) - F(B,xı) 0
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prove that F(A,.) This requiresF(B,.) has zeros.m
F(A,.) = F(B,.) in accordance with the property (CZ). This result 
contrasts the assumtion (6).

2) Max ([ F{B,x,)-f (Xi) I ; i=0,l,..., m} = | F(B,x„)--f (Xj,) j >
m0 < p

Min |F(A,Xj) - f (xj)| ; i=0,l,..., m} = | F(A,xJ - f (xj [
0 mq

If the relation (4) was correct then we would have found
I F(B,x,) - f(xj I I F(A,xJ -f(xq) I (î)

It is clear that the inequality (7) is true for each Xj: i = 0,1 
and then we have

, m

I F(B,x,) - f (xj I I F(A,xO - f(xO [ (8)
If we add f (xj) to the second factor of relation (5) vre find, 
(F(A,xO - f(xa) ( (F(A,xO - f(xJ)-(F(B,xO - f(xO))

0

Function F(A,.) - f alternates on set {x„,

(5') 

xı,..., x„,}
so we can take F(A,Xo) - f (Xo) 
lity.

0 without violating the genera-

Under these circumtances from the inequality (5') we can 
find

(F(A,x„) - f(x„) ) < (F(B,x„) - f(x„) )

We know that F(A,Xo) - f (xo) 
positive. Hence we have

0, so F(B,Xo) - f (xo) is also

I F(A,xJ - f(x„) I < I F(B,x„) - f(xJ | 

However, this relation contrasts to the equation (8).

Definition 4 Let an element f of space CZ( [0,a] ) and F(A,.)
be best to f. For the best approxinıation to f necessary and suffi­
cient condition is that F(A,.) alternates definitely m-|-l times 
then it is said that F(A,.) has property (CS) with degree m+1

Deifinition 5 Let A (a,; 32,..., a„) and F{A,.) be an app-
roxinıation function at CZ([0,a]) and if the following condutions 
exist then approximation F(A,.) has local Haar property with
null points m degree at A.
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(i) öF(A,.) / 0aj are exist and continious for each i; 
i = 1,2, ... , n

(ii) Let

B = (bı,b2,... , b„) and D(A,B,x) = S b
1=1 'i

0F(A,x)
8 aj

When II B || is sufficientyl small and relation^

F(A-B,x) - F(A,x) = D(A,B,x) + R(A,B,x) 
is correct, then

R(A,B,x) O II B II

n

m

(İÜ) Element A has a neighbourhood ’vvhictı is contained by P.
(İV) Linear space D(A,.) is an Haar space with dimention 

at [0, a].

Theorem 3 If approximation function F of space CZ([0, a]) 
has local Haar property at A and F(A,.) be best to element f of
CZ( [0, a ]) then in that 
m+l.

case F has property (CS) with degree

Proof Suppose F has not property (CS) witiı degreem+1. 
Now, function F(A,.)-f alternates at [0, a] less than m-{-l. There 
is relation

F(A,0) -f(0) = 0

So there is a number y such that

J F(A,x) -f(x) I e(A) /2 : 0 < x < y < «

wh.ere e(A) II F(A,.) - f II

At the point a. we can write

F(A,a) - f(a) = 0

So there exist S 0 such that

[ F(A,x) - f (x) [ e(A}/2 ; 8-< x i/.

If approximation function F(A,.) is best to f at [0,«] then 
F(A,.) will be best to f at the interval [•/,§ ] ( [2], Theorem 3)

Under these circumtances of the function F(A,.) - f alter­
nates m-|-l times at [0,a] then F(A,.) - f also alternates m+l 
times at the interval [y,§ ] ( [3], Theorem 5).



CHEBYSEHEV APPROKIMATION WITH TWO... 35

If the function F(A,.)-f alternates less than m 4-1 times we 
find an element B of parameter space P with the help of Theorem 
2, under the condition y < x < S, such that

II F(B,.) - F(A,.) II 

( F(B,x) - f(x) I . e(A)
Then we have

I F(B,x) - f(x) I I F(B,x) - F(A,x) I + I F(A,x) - f(x) | 

e(A)/2 + e(A)/2 
e(A)

From this and the fact that e(B) = || F(B,.) - f || we have
e(B) e(A). However this contrasts to the best approximation.
As a result, function F(A), f alternates definitely m+1 times.

Gombiıling Theorem 2 and 3 we get the following result:

Theorem 4! If approximation function F(A,.) has the pro­
perty (CZ) and local Haar property wrth nuH points degree m, 
then, necessary and sufficient condition for approximation func­
tion F(A,.) being best to f is that F(A,.) has property (CS) with 
degree m-1-1.

Theorem 5 Let approximation function F(A,.) has the con­
dition of Theorem 4. If F(A,.) is best it will be unique.

Proof Let us choose y and S, y < x S, such that

[ F(A,x) - f(x) I e(A) 12

If approxation function F(A.,} be best to f at the interval 
[0, a], F(A.,) is also best to f at [y, S] ([2] ; Theorem 3)

In that case, if function F(A.,) — f alternates m-j-l times 
at interval [0,a] and alşo alternates 
([3]; Theorem 5)

m 4-1 times at £y»S1]

So it is sufficient to prove the theorem at interval [y,§ ].
Let us suppose F(A,.) is not the best and unique approxima- 

tion to f at the interval [y,S ], take two approximation functions
as F (A,.) and F(B,.).

Function F(A,.) - f alternates m+1 times at the interval 
[Y,S] so there is the property;
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- = - (F(A,Xj ,)-f(xı_.)) ; i = 0,1,..., m
In accordance with the Theorem 2 we get

F(A,x„) - F(B,x„) 0
I’(A,xı) - F(B^ı) > 0

If there exist definite inequality. then function
F{A,.) - F(B,.)-vvill have definite m 4-1 null points at [y,§ ] and 
from Haar condition one can get equation

F(A,.) F(B,.)
F (B,.J has local Haar propertyD (B,.,.) fulfills Haar condition so 

in the case of equality.
Let 0 < t < 1 and C be an element of parameter space P, 

if we apply property (ii) of local Haar condition to function
F (B,x) - F {B-tC,x)

we will get
F(A,X) - F(B-tC,x) = F(A,x) - F(B,X} 4-tD(B,C,x) 4* R(B,C,x)

If we choose t sufficienity small we will have system
F - F (B-tG,x„) < 0
F (A,xı) - F (B-tC,xı) 0

Function F(A,.) - F(B-tC,.) has m null points at the interval, 
and while t approaching zero, F(A,.)= F(B,.) equality will be 
exist.

Here, function F(A,.) is the best unique approximation to 
f at the interval [y,S]. If there had been another best approxi- 
mation at [0,« ] it would have also been best approximation at 
[Y,S], thet is impossible.
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ÖZET

İki noktada sıfır olan Chebyshev yaklaşım problemi, en iyi yaklaşımı ve bunun tek- 
ligi ispatlanmaktadır.
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