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SUMMARY

In this paper, the concept of a paranormed Bj-space is defined, where j —>1 is an integer,
and two Banach-Steinhaus type theorems are proved for the sequences of continuous linear
functionals on such space. For example, the necessary and sufficient conditions are given
Sor a sequence (A, (x)) of continuous linear functionals to be in the space of generalized
entire sequences, for each x belonging to a paranormed Bj-speace. These results are then
used to characterize the matrix transformations between the strong Cesaro summble sequence
space w(p) and the space of generalized entire sequences.

1. Introduction

In §. 2 we prove the theorems which are the generalizetions
of some results given in [10]. These theorems and some results
given in [10] are applied to characterize the classes (w(p), 1, (q)),
(w(p)s ¢ (@)): (W(P)> e(@), (W(D), W, (q)) and (w(p), woq)) for 0 <infp,
<px<1 and bounded q = (q), q>0,in § 3. N, R, C will
denote the set of natural numbers, real numbers and complex

numbers, respectively. By (x,) we mean the sequence (x, x,,....)
4
0
and by Z,x, we mean X x,.
k=1

X will denote a nontrivial complex linear space with zero
element 6 and a paranorm g for which the following conditions
are satisfied:
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g(0)=0, g(x)=g (), g (x+y)<g (x)+g (y) for every x, y € X
and AN, g (x-x,)—0 imply g (Ax~Ax,)—0, where 2, € C and x, € X.

Let Y be a subset of X, we denote the closure of Y in X by
Y. Y will be called everywhere dense in X if and only if Y = X and
nowhere dense in X if and only if Y contains no neighbourhood.

Extending the definitions of Sargent [1] and Maddox-Willey
[10], we can define a paranormed Pj-space as follows: Let (X,)
be a sequence of subsets of X and let j denote a positive integer.
If 6 € Xy, for k=1,...,j; and x, y € X, implies x F y € X,,; for
every n € N, then we say that the sequence (X)) is an o;-sequence.
If the sequence (X)) is an «;-sequence in X such that X = loToXn,

n=1

where each X, is nowhere dense in X then X will be called an
a;-space, otherwise B;-space.

Taking j=1 in this definition we can obtain «-and B-spaces
- which are given by Sargent in [1] and are generalized by
Maddox-Willey in [10]. By this definition, if X is an «-space
or a B- space then it is also an o;-space or a Bj-space, respectively,
but the converse of this does not hold for js£1. It is also easily
seen that every «;- space is of the first category and any complete
paranormed space is a B;-space for j>1.

For any a € X and §>0, we write
S(a, 3) = {xxx € X, g(x-a)<<3}.

Let GcX, if Lhull (G), the set of all finite linear combinations
of elements of G, is dense in X then G is called a fundamental
set in X. A sequence (b,) of elements of X is said to be a basis
in X if for each x € X there exists a unique complex sequence ()

such that g(x- b A b)) = 0 (n - o). Hence any basis in X is
x=1

also a fundamental set in X.

* » - . .
X will denote the set of continuous linear functionals on X.

A linear functional A on X is an element of X if and only if
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JA |y= sup {|A(x)]: g (x)<1/M} <co for some M>1.

If X is a space of complex sequences x = (%), then the
. +
generalized Ké&the-Toeplitz dual of X is denoted by X , L e.,

X' = { (o) : T o X converges for every x € X}.

We now list some sets of complex sequences which are consid-
ered in this paper ([2], [3]); if (po) is a sequence of strictly
positive real numbers, then

L) = {(x) : suplxPr<eo },

co(p) = {(Xk) ¢ limy [x |Pr= 0},

clp) = {(x) : limy |x—t|Pk= 0, for some t € C},

wo () = {() ¢ sup, (07 3 o P < ),
wo(®) = () : limg (07 B 1P = 03,

wip) = {(x) : lim, (™ il Ix, — t |P¥) = 0, for some t € C}.
k=

We write ¢; = (0, 0,...,0,1,0,0,....), where 1 is in the i th
place and there are zeros in the other places, and e = (1, 1, 1,.. 9,
and we write 1_(e) = 1_, ¢, (€) = ¢y, c( €) = ¢, w,(e) = W,
w, (¢) = w, and w (e) = w.

We now give some known results which will be useful in what
follows.

Lemma 1. w (p) is a linear space if and only if sup, p, < ¢o,
where p,>0 [3].

Lemma 2. Let H = max (1, sup,.py), and let 0 <infy p, <p, <
supj pix<<co . Then w (p) is a paranormed space with the paranorm
g which is defined by

M ) = swpe @ X

w(p) is also a complete space under the norm (1) [6].
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wo(p) and w_, (p) are also paranormed spaces under the
norm (1). It is easily showed that the sequence (e, e,. e,,...) is a
basis for the space w(p).

If we write

@) h(x) = sup, 2 2, 1x 2 1/ for all x e w(p),
we have
3) 27 gx) <k (x) < 2 g (%),

where X, is the sum over 2"<<k <2 and g is defined by (1).
Lemma 3. Let 0<p,<1 for every k € N and

M = {(ow): ) max, {(2* B_l)1 [P |y |} < oo, for some B>1},
r=1

where max, is the maximum taken over the range 2*<<k <2r¥,
+
Then w(p)" — J( [8].
Lemma 4. Let 0 <inf, p, < p, <1 for every keN and let denote
by M(p) the set of all sequences o = (&) such that

p> max, ]2r P

|og | < oo, where max, is over [2f, 2°*!). Then, for
r=o

an arbitrary a, o« € J{(p) and x € w(p) (with x, —— s (w(p)),
“) A (x) = as + I oy X
defines an element A of w (p)* and conversly every element of

w(p)* can be represented in this form [3].

The following Banach-Steinhaus type theorems were given
in [10].

Lemma 5. Let X be a paranormed space and let (A,) be a
sequence of elements of X*, and suppose q = (qy) is bounded.

Then, for some M>1, sup, (A "M)q“ < o implies (A,(x)) €1, (q)
for every x € X. If X is a B-space then the converse is true.

Lemma 6. Let X be a paranormed space and let (A;) be a
sequence of elements of X*.

(I) If X has fundamental set G and if q is bounded then the
following propositions
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(5) (Ap(b)) € ¢, (q) for every b € G
and

(6) limy lim sup, (A, )% = 0
together imply

) (Ap(x)) € ¢, (q) for every x e X.

(If) If q € c, then (6) implies (7).
(Iif) Let X be a B-space; then (7) implies (6) even if q
is unbounded.
Lemma 7. Let X be a paranormed space and let (A,) be a
sequence of elements of X* and suppose q is bounded.

(1) If X has fundamental set G, and if there is an s € X* such
that (A,(b) — s (b)) € ¢, (q) for all b € G and

(8) lim, limsup, (JA,—s[p I = 0
then
9 (As(x)) € ¢ (g) on X.

(1) If q € ¢, and if there is an s € X* such that (8) holds then
(9) is true. ‘

(ii) If X is a B-space and if (9) is true, then there is ans e X*
such that (8) holds.

Let X and Y be sets of sequence and let A = (a,) denote
an infinite matrix of complex numbers. We say that A € (X, Y)
if and only if X,a,, x, converges for every x = (x,) € X andn €N,
and (2, ay x,) € Y for every x € X.

Lemma 8. Let 0<p,<1. Then A € (w (p), ¢) if and only if

(i) There exists an integer B>>1 such that

1) € = sup, & max (B Prlay ) <o,
© (i) im, a,, = o exists for every fixed k,
(i) lim, 3, a, = o exists.

Using the same method of proof of Lemma 8 we can
get the following
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Lemma 9. Let 0<p,<< 1. Then A € (w(p), loo ) if and
only if there exists an integer B>1 such that (10) holds.

We shall frequently use the following inequalities.
Take a, b € C, if 0<p < 1 then
lal~bP<ja + bIP<[|al|?+ |b 7,

and we can write the following inequality which is known as
Minkowski’s inequality, if p>1 then

1 1 1
El ac+ b )P < @ a PP PP,
2. Theorems of - Banach-Steinhaus Type

In the next two sections q = (q,) will denote a sequence of
strictly postive real numbers.

Theorem 1. Let X be a paranormed space and let (A,) be a
sequence of elements of X* and suppose that q is bounded. If there
exists an integer M>1 such that

an  sup, @ 2 (JAch)™) <o,
then
(12) (A (x)) € wee (q) for every xe X.

IfXisa B;-space then the converse is also true.

Prof. Suppose that there exists an integar M>1 such that
(11) heolds, and choose any x € X. By the continuity of scalar
multiplication in a paranormed space, there exists a number
K > 1 such that g (K™ x) << 1 /M, where the number M is that
of (11). Hence we have

2 S AR T = a3 KT A, (K x) (I
k=1 k=1

<K'n' 2 | A (K'x) I
k=1

Q

< K a7t 3 (A ™

for any n € N, where Q = sup, ¢, so that (12) holds.
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Now assume that X is a B;-space and (12) holds, and let Q =
sup, qi- We define the number j as Q if Q is an integer, and other-
wise the first integer which is greater than Q. Let us define

Xn= {(xg):xeXandn™ b | Ay (%) |1 < 9 for alln e N}
ke

for any m € N. Clearly 0 € X, for m = 1,...,j. By the definition
j =1, so using the Minkowski’s inequalitiy, we have

o 5 A GFy) (M <@ d A Myt

n 14
et A 1

by the linearity of each A . Now, if x,y € X, for any m € N, then
by this inequality we find

e 3: | A (xFy) 1T < (@ 4 iy = gmy

soxFye Xy Thus (X)) is an «;-sequence. Also X = f:j X,

m=1

Now let us consider the sets
Xpo = {xeX 0 3 [ A (0 [T < 2m)
k=1

Since each A, is continuous by the hypothesis, f, is also continuous
for each n € N, where

£, (x) = nt 2| A (x) 1T
k=1

Thus, for any m € N and every n € N, the sets X_,, are closed,

so that, foranym € N, X = N X_,,, is also closed and so X =X |
nelN
for every m € N. Since X is a B;-space there exists a B € N such

that X is not nowhere dense, whence there is a shpere S (a, )
< X; = X;. Hence if g (x-a) < § we have
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nt X | A¢ (x) |qk < 2B for every n € N,
1

so if g (x) < 3, by the Minkowski’s inequality, we have

(n7! él | Ay (x) | I¥) Lfj < (n™ f{il LA, (x Fa) | 99 1/j

+ @t 2] A @

— 9Bli L oBli 2.2 B/j

for every n € N and we obtain

a7t S| A (x) |9 < 2Bt

k=1

for all n € N. Taking M > 37' we find (11).

Remark. Now let us consider the condition (11) of Theorem 1.
If it holds then we find
(13 supy 07 (A ) <

from the following ine(iuality

n n—1
(A % <0t B (AT + (D)7 R (A )™
But it is clear that the converse of this result does not hold in
general. Thus the condotion (11) is sufficient for Theorem 1 and
(13) is the necessary condition for Theorem 1.

Since every B-space is also a B;-space, Theorem 1 holds when
X is a B-space. Furthermore, if 0 <q, <1 for every k €N, then it
is easily seen from the proof of theorem 1 that we can take B-
space in place of B;-space.

Theorem 2. Let X be a paranormed space and let (A,) be a
sequence of elements of X*, and suppose q is bounded.

(i) If X has fundamental set G then the following propositions
(14) (A,(b)) € w, (q) for every b ¢ G,
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(15)  limy lmsup, (@7 2 (Ah)™) = 0
together imply
(16) - (Ay(x)) € wy (q) for every x € X,
(ii) If q € c, then (15) implies (16).
(iii) Let X be a B-space then (16) implies (15).
Proof. (i) Suppose X has fundamental set G, conditions (14)

and (15) hold and let sup, q, = Q. Choose any x € X and any €>>0.
By (15), there exists M>1 and n, such that

a7l ¥ (1A« HM)qk < £/29, for all n > n,.
k=t
Since the 1. hull (G) is dense in X, there exist A,...,A, € C and

b b, € G such that g (x - E] M by) < 1/M, and by (14),
k=1

19 *

there is an n;> n, such that

n™t ﬂz | A; (by) [qi < /22 Lm R** for k = 1,...m,
=1

b

for all n > n, where R = max (1,20—1) and

Lo=max (L |01, I b Il T2 1% 12 1%
IAmIQ)‘ ‘

Hence, using the Minkowski’s inequality, we get

_ n qi IIQ _, A m qi 1/Q
™ 204 T) =072 [AK -2 Nk )
i= k=1

=1
L4 m q, 1
+ (n =21 |k§=:1 M Ay (b))

n m qk llQ
< (@t X | A; (x-X 7\kbk) 1)
=1 k=1
., b q; e
+ (n - k(= | 2 Ai (bk) | )

i=t 1
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n m q; 1Q
< (@'X lAi(X_‘Z‘)‘k by 17)
k=1

i=1
n m q;. vQ
+ (LR* a7 2 X [Aj(by) | )
i=l k=1

< (o™ i A (x - %1 M) |qi) e
k=1

=1
£ LR Eat S A, (b (9"
k=1 i=1

_, Ve
< 27t ¢

+ 21" = ¢

for all n > ni, so we have

n! % | A; (%) |qi < ¢, for all n> n,,

which implies (16).

(i) Suppose q € ¢, and (15) holds. Again, choose any x € X
and any ¢ > 0. Then, by (15), there exists M > 1 and n, such
that

0t 3 (JA )3 < €2, for all n > n,.
k=1

Since the scalar multiplication in a paranormed space is continuous,
then there is a K > 1 such that (g (K™x) < 1/M. Since q € ¢,

we can choose n; > n, such that K < 2 for alln > n,, so
we have

2t ¥ A () T<=n" 3 | KA (KTx) I
k=1 k=1

=t Y K | A, (K x) |G

k=1

<20 £ | A (K7 x) |
k=1
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<2n7 2 (JAg]yp

k=1
thus (16) holds.

(iif) Let X be a B-space and suppose (16) holds. Choose any
¢>0, and for any m € N, we define

Xp={xeX:n? 2 |24 (x) [T*<e/2, forall n > m }.

k=1
Clearly 6 € X,. Let x, y € X, for any m € N, then we write
| 270 Ay (xFy) | Tom [ 27040 A (x) F 2700 A(y) |
< (1270 A (x) |+ |27 A (y) |) T
< [2 max (270 A, (x) |, |27 A, (y) [)] ¢
= [max(| 2™ A, (x) |, [ 2™ A (y) [) 1%
= max (|27 A, () [T, | 27 A, (3) 1T,

so we have

n—xk%‘l | 27D A (xFy) qu

<07 Emax (| 277 A, (x) 115 272 A, () [T
k=1
<e /2
for alln > m+1, thus x F y € X, so that (X)) is an a-sequence.

e
Also X = U X,,. Since each A, is a continuous linear functional, we

m=t .

see that X, = X, for all m € N, in a similar way of the proof of
Theorem 1. Since X is a -space, there exists a BEN such that X is
nowhere dense in X, that is, there is a sphere S(a,d) = X; = X,.

Hence, if g (x-a) < 3, then we have n™ b | 278 A, (x) lqk < e/2
=

for all n> B, and



28 ' E. BULUT

-t i | 2B+ A (x) qu
k=1

<n7 £ max (127 A (x4a) [T5, | 277 A, (a) |T9)
k=1
<e /2 for all n > B-+1.
Now let us write p = 27+ § and choose M > p™'. Then if -

g (x) < p, by the subadditivity of g, we have g (287! x) < 4.
' Thus, if g (x) << 1/M, then we find

n 3 A ) [T =07 I 2mew a, @y (I
k=1 k=1
<g/2
for all n > B-1.
Since ¢ > 0 was arbitrary we obtain (15). This completes the
proof of Theorem 2.

It is obvious that ve can give a remark here like as at the
end of Theorem 1. If (15) holds then, in a similar way to the
remark of Theorem 1, we find ;

(17)  limy lim sup, [ (A, )] = 0.

. Thus, in the case q is bounded, (14) and (15) are sufficient conditions
for (16) If X is a B-space, 16) implies (15) so that (17). But (17)
may not be a sufficient condition for (16) in general.

3. Matrix Transformations

We now apply the above theorems and the lemmata 5-7 to
characterize the classes (w(p), los (), (W(P), o (9))> (W(p), ¢ (9))s
(w (p): Weo (q)) and (w(p), wo (q)-

Let p = (p) and q = (qy) be bounded sequences of strictly
positive real numbers. If Q = max (1, sup, qy) then it follows

by lemma 1 of [3], ¢, (q) = ¢, (Q7 q), Lo (q) = 15 (Q7" @) and
c(q) = ¢ Q7! q). For this reason without loss of generality we may
assume q, < 1 for alln € N for the following first three theorems.

Theorem 3 .Let 0 <m = inf, p, <px <land 0<q, <1 forall
k € N. The necessary and sufficient condition for A € (w(p), 1 (q))

(18) T(B) = sup, (£ max, (@ B /Pe|ay | Pho <o,

for some B > 1.
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Proof. We define, for each n € N,
(19) | A, (x) = g age X on w (p).

First let us show that (18) is necessary. Suppose A € (w(p), L, (q))
then the series in (19) is convergent for every n € N. Hence,
by the definition of Kéthe-Toeplitz duals of sequence spaces,

4 .
(ag5--+) € w (p) for each n € N. Now we define

fr:n(x) = Z:rank X, on W(p),
where the sum is over the range 2° < k < 2*'!. Clearly each f,,,
is linear on w (p). Since w (p) is a paranormed space by lemma 2,
there is a K > 1 such that g (K™ x) < 1/B, by the continuity of
scalar multiplication where B satisfies the condition of lemma 3.
Then, for each n € N and for every r > 0, we have

| fr,n(x) = Kf.,(K'x) | =K | f., (K™x) |
= K I Er ank (K—l Xk) l ~<— K zr I ank (K'_J Xk) |
/
— K2 @B [ay 1 @Bk | K x, |

1/p Pk)l/p

K max, {(Z'B™) * |a, [} 5, (2" B|K x| 5 ¥

A

K max, {(2* B™) "k|a, |} B27% | Klx | 'k

IA

< K max, { (2 BY)"k|a, | } Bg (K x).
where max, is the maximum taken over 2' < k < 27! and
g (x) =sup, 277X, | %, |pk), for 0 < p, <1, k =1,...,

and since g (K™ x) << 1/B, itis easily seen that 27*B | K™ x, IPk
< L. Thus, for each n € N and every integerr > 0, f.,, is bo-
unded, so that continuous functionals, i. e., for each n € N and
every integer r > 0 f_ e w(p)*. We also have

lim, 3 €, (x) = lim, & Sa, % = 5 a, x = A, (%)
=0 k=1

r=0Q

so that, for each n € N, A, is continuous, i. ., for alln € N,
A, ew(p)* by the corollary of Theorem 11in ([7], p. 114). Hence,
for each n € N, we can write
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(20) | A, (x) | < | Ayls (%) on w(p).

Now we show that, for each n € N,
21 Ay =C(mB) =3 2r gyl /P
( ) ” n ”B - (l’l, ) - o max, { ( ) I 3k |}

where B> 1 for which | A, |; is defined.

Choose any n & N. First suppose that B is a number such that

max, { (2 B P 0|} > (e 48) for all 1 = 0.
If we define a sequence x = (x,) as follows:

Xy = [log (3-Fr)]71 (2 B_‘)1 [Pien SgN Ay » X = 0 fork =% k(1),

where k(r) denotes an integer k in the interval 2° < k < 2""! such
that

(02) max, { (2 B P oy )y = @B PO ay ),
then, for this sequence, we have
277 5, | x, [P% = B! [log (3+1) ] PK® —» 0 (r —> ).
since 0 < m = in f, p, < p, < 1, so thatx e w (p), and also we find
— r Rl l/Pk 3 -1
2:‘1'ankxk_Inaxr{(2 B ) Iankl} [l()g( f—l’)]
= [ (341) log 3+1) 17,

so that the series in (19) is divergent. This is a contradiction. Thus
for each n € N,

C (n,B) = b max, {2(° B—‘)1 Jpx | ag | } << 0 for some B>1,

since (a,;,...) € w (p)" for all n € N.

If g (x) = sup, (2773, | x, ka) < 1/B,then (27" B | x, [Pk < 1for
all k € N and since sup, p, < 1, we find
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=] !
= § max, {(2° B_l)l/Pk lag| } 2 (277 B | x |pk)1lpk

(1]

< [C (»,B)] B g (x)
so we hawe

(29 | Ay < € @B) < .

Now for each n we take any integer s>>0 and define x € w (p)

by x, = 0 for k > 2!, x, ., = (2r B"l)1 [Pxcr SgN Ay (gyr and x; = 0
(k £ k;) for 0 < r < s, where k(r) is a number which satisfies the

condition (22). Since g (x) = sup, (277 X, | x; lpk) = 1/B, for this
sequence, we get

£ max, (@ BP0 ) < | Al

by (20), so that we find
(24) C (B) < | Aqls
Hence, wo obtain | A, |z = C (n,B) by (23) and (24).

By lemma 2, we know that w (p) is a complete paranormed
space so it is a 3-space. Thus, by lemma 5, it is seen that (18) holds.

Now, for the sufficiency, suppose that (18) holds for some
integer B > 1. Then there exists an integer M > 1 such that

C (n,M) = ;% max, { (2f M_I)I/Pkl ag| } < oo

for each n € N.

Since w (p) is a paranormed space, there is a K > 1 such that
g (K™ x) < 1/M by the continuity of scalar multiplication on
the paranormed space. Hence,

g (K x) = sup, 27 5, | K7 x [P < 1M,

and for this reason we can take 27! M | K™ x; ka < 1 for every
k € N. Thus, we have
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o)
Zkl Ank Xkl :rz Erl dnk Xkl
=0

M8

<% max, (@ MY P 0 | KE, (2 MK (P /P

=0

< K $ max, {(2r Myl Py, a,l M2 S, | K7 x [P
r=o0

IA

K [C(am) | M g (K™ x),
which implies that the series in (19) is absolute convergent for

each nelN, that is, (ay,,. . )ew (p)+ for each neN. Now we can show,
by a similar way of the proof of the necessity, that A, € w (p)*
for each n € N, where | A, |y = C (n, M). Then (A, (x)) €1, (q)
by lemma 5, so it is seen that A € (w(p), 1, (q)). This completes
the proof of the Theorem.

Remark 1. If 0 < inf, q < q < supg q = Q << o, then
we can take,

(25) sup, g max, {(2° B—1 /q") 1/p [ ag | }<< oo for some B > 1,

instead of (18).

Similarly we can show that this condition is also necessary

and sufficient for A € (w(p), 1 (q)). and also
L= 1 g 1
I Anls = 5 max, (@B Iy P o,

where B is a number for which | A, |; is defined. So in this case we
prove the sufficiency without using the result of lemma 5, as follows:
Since w (p) is a paranormed space and the scalar multiplication in a
paranormed space is continuous then there exists a K > 1such that
g (Kx)<B ™YY <B™, where v = inf q,. Then for any neN, we have

1A, () 197 = |3 ape % 170 < (3] g % 1) T

= (2 Zelan =)
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Ko (S ~1 1y 9n
< ’(rzzrlankl I x, K™))
=0

KO max, (2B I P s oy K PP e

< KO [ $ max, {(B I Py By g (kg 1T
< KO [ £ max, { (2 B P, 1y

< KO[1+ (£ max, {( B9 P 100 ) on wip),

so (A (x)) € 1_(q) for all x € w (p).

In fact, the condition (18) implies (25) without the restriction
infy, g, % 0. Suppose that (18) holds. Then there is a constant
H > 1 such that

( s max, { (2° B“l)1 /pkl ag | ) )q" < H for some B > 1,

=0

for all n € N. Hence we have
(% max, { (@B P By ) )T <
or

( Si max, { (2r B—l)l /pk H—l /qn , a, ! } )qn/Q <1

r=90 -

for all n € N, where Q = sup, q,. If we take M = B’ H, then

we have
Ml /qnpk — BQ /%Pk Hl /ank > B1 /Pk Hl /qn

or
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M_l /ank < B_l /Pk H_l /qn for all k, n eN .

Thus, from the above result, we find

% ~1/q.\1 /ps @ I peer1
S max, 21T P o < S ma, fm ! Per (T )

< ( iﬁ max, { (2r B—l)l /Pk I‘I_l /qn |ank I})qn /Q < 1’

for all n € N, so that (25) holds.

If0 < inf, q = v < qx < supy q < @ for every k € N, then
we can show that (25) implies (18) by the same method.

Theorem 4. Let 0 < inf, p, < p, < 1 for every k € N and let
g = (q,) be bounded. A € (w(p), c,(q)) if and only if

(26) lim, | a, an: 0, for bk = 1,...,

@D limg lim sup, ( § max, {(2 B P gy 1= 0,
and

(28) lim, | Seay "= 0.

Proof. Define A, by (19) on w(p). Suppose that A € (w(p), c,(q))
then A e (w(p), 1), since c,(q) < 1, (q). Thus, by lemma 9,
there is constant H such that

C(n,B)= ci_: max, {(2* B“l)1 [P [ap | } < H for some B > 1,

for alln e N. Now by the same method in the proof of Theorem 3,
we can show that A, e w(p)* for every ne N, where | A, |z = C(n, B)
and B is a number for which | A |; is defined.
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Since w (p) is a complete paranormed space, it is-seen that
(27) is necessary by lemma 6 (iii). Considering the sequences
e and e, it is easily seen that the conditions (28) and (26) are also
necessary.

Now suppose that the conditions (26), (27) and (28) hold.
We know that the sequence (e, ¢, e,,...) is a basis of w (p) and
it is also a fundamental set of w (p). Hence by (26) and (28),
A,(b) € ¢, (q) for every b e (e, e, e,,...). Then, by lemma 7 (i),
it is enough to show that

limp, lim sup, (] A, )%™ = o.

By a similar way of the proof of the theorem 3, it is easily
shown that A, € w (p)*, where |A, |z = C (n, B) and B is an
integer B > 1 such that | A, |, is defined. Then the condition
required holds by (27), so we obtain (A, (x) ) € ¢,(q) for every x €
w(q) by lemma 7 (i), i. e., A € (w(p), ¢, (q))-

Remark 2. If 0 <inf, q, = v < q < sup, q < o, then we
can take the following condition instead of (27) in the Theorem 4:
(29) limy lim sup, ( 3 max, {(2r B—l /q") ! /Pkl agll)=0
By the way of the proof of the Theorem 3 and 4, we can show that
(26), (28) and (29) are necessary and sufficient for A e (w(p), coq))-
We can also show that (27) implies (29) and if inf, q, # 0 then
(29) implies (27).

Theorem 5. Let 0 < inf, p, < p, <1 for every keN and let gec,.
A € (w(p), ¢(q)) if and only if (27) holds.

Proof. This follows, by the methods of Theorem 4, from
lemma 6 (ii) and (iii).

Theorem 6. Let 0 < inf, p, < p, < 1 for every k € N and let
q be bounded. A ¢ (w(p), ¢ (q)) if and only if

(30) sup, (| a,q| + iﬁ max, { (2F B“‘)I/Pklankl 1) <ee,

for some B > 1,

and there exists a sequence (og,2, ...) such that
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(31) lim, | ay — a | ™ =0, for k=0, 1,...

and
NG . _ 5] rp—t 1 /Pk _ 9n
(3"‘) hm’B lim sup, ( !ano %o | + ‘g‘ max, {(2 B ) ]ank Ok I}) =0

Proof. Define A, by
(33) An (X) = apo t (x) + Zk ank Xk on w (P)7
where x, - t (w(p)).

First, suppose A € (w(p), ¢ (q)). Then, by the definition of

Kothe-Toeplitz dual of a seqeunce space, (a,,...) € W (p)+ for
each n € N. Also by lemma 4, A, € w (p)* for each n € N, where

ES . |
68 1Auk = ol 5 max (@B P ayl )

and B > 1 is an integer for which | A, |z is defined. Hence there
exists a ] € w (p)* such that lim, | A| (b) —1(b) | = O for every
b € (e, e,...) and

limg lim sap, (| A, -1 ”B)q": 0,
by lemma 7 (iii). Then, by lemma 4, we can write

1 (x) = oo t (x) + Zp o Xy

where o = () € w (p)Jr and o, is an airbitrary real number and
] 1
11 = 1ol + 8 max, { @B /P ) 3.

Thus, we have (U,(x)) € c,(q) for U, = (A, - 1) € w (p)*, so that
U € (w (p), ¢, (q)). Then the necessity of the conditions are seen
by the same method of Theorem 4.

Now to prove the sufficiency of the conditions, we must
show that the conditions of the theorem imply

| oo | -+ ? max, { (2° B“l)l/pkl o{kll } < e for some B > 1.
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Then, by lemma 4, a function 1 which is defined by
Fx) = ao t (x) + Zp o xi

defines an element of w (p)*. In fact, if we suppose that the
conditions hold, then we have ~

| o +,;§ max, {(Zr Bql)l/pkl oy | } = | %o=a5, t+ 8po I

+ 8 max, (@ BYYP | a4 anl )
S /P«
S l ano'—aol + ? max, { (21- B ) I ank"“kl }
) 1
+ 1 aol + 5 max, { (@ B a0

<1+ supy (lage | + £ max, (@B /P a1} <o

for sufficiently large B and n. Also the condition (30) implies

(app--.) ewW (p) bylemma 3 and A, ew (p)* by lemma 4, for each
n € N, where A, satisfies the condition (34). Thus, under the given
hypothesis, using the result obtained above, we find Ue(w(p), ¢,(q))

by Theorem 4, where U, = (A, - 1). Hence | A, (x) -1 (x) |In
= | U, (x) |q"l — 0 (n > ) on w (p), that is, A € (w(p), ¢(q))-
~ Theorem 7. let 0 < inf, p, < px < 1 for every k € N and let
q be bounded. A € (w(p)), w, (q)) if and only if
(35) sup, (n™! 3 [ C (i, B) ]qi ) < oo,
i=1

where

C(i,B) = b maxr{(2‘B"’)1/pk | oy | }<<oo, for some B > 1.

Proof. Let A, be defined by (19) on w (p). Suppose that
Ae (w(p), w,,(q)). Then A, ew (p)* for each n € N, where | A, |
= C (n, B) and B is an integer for which | A_|; is defined.
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Since w (p) is a complete paranormed space, it is a -space so
that is a (;-space. Thus, by the convers part of Theorem 1, (35)
holds.

Now assume that (35) holds. Similarly A, € w (p)* for each
n € N. Hence, by Theprem 1, (35) implies (A, (x)) € w,, (q) so that

A e (w(p), w. ()

If we condider Remark 1, we see that (35) is sufficient for
A € (w(p), w, (q)). But the following condition can be taken as
a necessary condition for A € (w(p), w(q)):

(36)  sup, {07 [ € (m, B) |17} <o

Thus, Theorem 7 can be stated as follows: Let 0 <inf, p, <py <1
for every k € N and let q = (qy) be bounded. If (35) holds, then
A e (w(p), W, (q)), and if A € (w(p), w,, (q)) then (36) holds.

Theorem 8. Let 0 < inf, p, < px < 1 and let q be bounded.
A € (w(p), w, (q)) if and only if

(37) lim, (03 | ay|5) =0, for k = 1, 2,...,
=1
38)  limy, (0 2 | 3 aylT) = 0,
=1
and
(39) limy lim sup, {n' ¥ [ C (i, B) 111} = o,
i=1

where C (i, B) satisfies the condition of Theorem 1.

Proof. Let us define A, by (19) on w (p). First suppose that
(37), (38) and (39) hold. Then A, € w (p)* for every n € N, where
I A, |z = C (n, B) and B is an integer for which | A, | is defined.
Since w (p) is a paranormed space and the sequence (e, e, €,,. . .)
is a basis, (37) and (38) imply (A,(b)) € w,(q) for every
b (e, ¢,, €,,. . .) In this case, the above result together with (39)
satisfy the hypothesis of Theorem 2. Thus, (A (x)) € w, (q), so
that A e (w(p), wo(q)), by Theorem 2 (i).
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Now suppose A e (w(p), W, (q)). Similarly, A, ew (p)* for
every n € N, where | A, |z = C (n, B) and B is an integer for
which | A, |l is defined. Since w (p) is a complete paranormed
space and therefore it is a B-space, we see that (39) is a necessary
condition for A e (w (p), wy(q)) by Theorem 2 (iii). If we consider
the sequences e, and e, thenwe also see that (37) and (38)
are necessary conditions.

Remark 3. As in Remark 1 and 2, it is easily seen that (37),
(38) and (39) are sufficient conditions while the following
condiditions are necessary for A e (w(p), wo(q)):

(40) lim, 07! a, |18 = 0, for k = 1, 2,.. .,
(41) lim, (07| Sa. 1) = o,
and

limg limsup, {n™* [ C (n, B) 11 = 0.
It is obvious that a similar remark to Remarks 1 and 2 for
q and [C (n, B) ]qn can be given here.

Theorem 9. Let 0 < inf, p, < p < 1 for all k € N, and let
qec, A€ (wip),w, (q)) if and only if (39) holds.

Proof. Using the methods of Theorem 8, this follows from
Theorem 2, parts (ii) and (iii).

Ttis easily showed that (39) is sufficient and (42) is necessary for
A e w(p), wo(q)

OZET

X kompleks lineer paranormlu bir uzay ve X in alt ciimlelerinin bir dizisi (X)) ol-
sun.j >>1 bilinen sabit bir tam sayvyr gostermek iizere, n=u,...,j igin eeXn olmast x-+y
€X )+ olmasini gerektiriyorsa (X, ) dizisine o.-dizisi adiny verdik. Eger (X)) dizisi X
c;}ie bir o;-dizisi ve her bir X, X de hig bir yerde yogun olmayan bir ciimle olmak iizere X =
U X, yaxilabiliyorsa X e bir o usayt aksi halde bir Qj-uzayz dedik. Bu tip uzeylar iize-

n=1
rinde siirekli lineer fonksiyonellerin olusturdugu diziler igin Banach-Steinhaus tipi iki te-

orem ispatladik. Ornegin, paranormlu bir Byveya B-uzayina ait her x elemanu igin siirekli
lineer fonksiyonellerin bir (A (x)}) dizisinin kuvvetli Cesaro toplanabilir diziler uzayinda
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olmast igin gerek ve yeter kosullar verildi. Ispatladigimiz bu iki teorem ve diger Banach-
Steinhaus tipi teoremler kullanilarak; kuvvetli Cesaro toplanabilir dizi uzeylarindan diger,

baz tip dizi uzaylarina olan matris déniigiimleri, yani

(w(p)s s (1)), (10(p), (). (w(p), c(a.)) (w(p), (we; (1)) (w(p). (wo(q))

matris siniflary karakterize edildi.
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