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On Almost-Contmmty And Almost-A Contmulty
Of Real Functions ‘

E. OZTURK

Dpt. Of Mathematics, Faculty of Science, Ankara University, Ankara

SUMMARY

-'The purpose of this note is to' give some new concepts of continuity for real functions and
to investigate the relations between concepts of continuity.

1. INTRODUCTION

Let A — (ank) be an infinite matrix of real numbers and x — (xx)
be a sequence of real numbers. The sequence ((Ax)y) defined by

(AX),, = kZ ank X @
=1
is called the A-transform of x whenever the above series converges for
n =1, 2, ... .The sequence x is said to be A-summable to xgif the se-
quence ((Ax)n) converges to Xo. A is called conservative if x € ¢ impli-,
es ((Ax)n € ¢, where c is the linear space of convergent sequences. A is
called regular if it is conservative and preserves the limit of each con-
vergent sequence. A is called strongly regular if A is regular and
limn kz | anx — Anoky1 | =0 (2)
=1 :
[3]. Throughout this study R stands for real numbers and N de-

notes the set of positive integras.’

2. Definitions,

Let . m denote the linear space of bounded sequences,

A sequence x € m.is said to be almost convergent and s is called its genera- -
lized limit if each Banach limit of x is s [3]. The class F of almost con- -
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vergent sequences was characterized by G.G. Lorentz [3], who proved

that a sequence x = (xi) is almost convergent if and only if
ML NE S S ®

uniformly in n. We shall write F-lim x = s or Lim x = s, shorsly. We
denote by Lx the following sequence

1 B4pt
(——— 2 Xj).
P j=n
If the method A sums all almost convergent sequences then A is called

strongly regular [3]. It is clear that a convergent sequence is almost
convergent and its limit and generalized limit are identical.

We shall now speak of some basic concepts. Let X, Y be topological
spaces. Then f: X — Y is called continuous on X if and only if the in-
verse image of every open set in Y is open in X and f is called sequen-
tially continuous at a peint x, € X if and only if for every sequence
Xn > X, (in X) we have f (xp) — f (x0) (in Y). It is known thatif f: X Y
is continuous on X, then f is sequentially continuous on X, but not
conversely in general. Furthermore, if X, Y are metric spaces, then the
sequentially continuity on X implies continuity on X [4]. Thus the
concepts of sequential continuity and continuity coincide for R, since
R is a metric space with the usual modulus metric."

A function f: R — R is called c-continuous at the point x, € R if
(¢, 1) — lim f (xp) = f (%) whenever (c, 1) - lim x, = x, [6], where (c,1)
is the first Cesaro mean and (¢, 1) - lim x, = %, means that

X1+ X2+ ... 4+ Xq

n

> %o (1> ) ()

Similarly, A-coﬁtinuity of £ was defined by Jozef Antoni-Tibor Salat
[1]. '
We shal give some new additional definitions:

Definition (2.1). Let x = (x,) be a sequence in R. We shall say that
a function f: R — R is almost continuous at the point x, € R if
Flim (f (x)) = f (x0) whenever F-lim x = x,.
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Definition (2.2). Let A = (apy) be a regular matrix of real numbers
and x = (xp) be a sequence in R. We shall say that a function f: R— R
is A-almost continuous at x, € R if A-lim (Lf(x)) = f (xo) whenever
A-llim (Lx) =

Definition (2.3). Let the matrix A = (apk) and the sequence
x = (xn) be as the definition (2.2). We shall say that a function f: R— R
is almost A-continuous at x, € R if F-lim (A (f(x))) == f (xo) whenever
Flim (Ax) = : :

In the case of A is a unit matrix the definitions (2.2) and (2.3) are
equivalent.

3. Relations hetween the concepts of continuity,

Theorem (3.1). If a function f: R — R is A-almost continuous at
Xo € R then f is almost continuous at the same point.

Proof. Let x = (xp) be a sequence in R such that Lx converges to
Xo. Sinee f is A-almost continuous at x, € R

A-lim (Lx) = x, implies A-lim (Lf(x)) = f (xo0),

and so,

Lim x = x, implies A-lim (Lx) = x, implies A-lim (Lf(x)) = f(x,).
Hence,

Lim x = x, implies A-lim (Lf(x)) = f (xo), .

that is, we have A-lim (Lf(x)) = f (x,) for very sequence Lx converging
to Xo. On the other hand, every subsequence of Lx converges to x,
since Lx converges to xo. It is easy to see that to each subsequence of
Lf (x) there corresponds a subsequence of Lx which is convergent to
Xo. Therefore, A- sums every subsequence of Lf(x). Hence the sequence
Lf(x) is convergent [2]. Moreover the sequence Lf(x) must converge
to f (xo) since A is regular and A-lim (Lf(x)) = f (x,) This completes the
proof. :

Theorem (3.2). Let f: R — R be an almost continuous function at
Xo € R. Then f is continuous at x, if and only if

f (xny1) — f (x) = 0 (0> o) )
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for each sequence x = (xpn) converging to X,.

Proof. Necessity. Let f be continuous at x, € R. Then.

Xp —> Xo (n+— 00) implies f (xy) — f(x¢) (n— ). Hence, for every
number ¢ > o there exists n, (¢) such that

£ (xn) — £ (x0) | < -

for each n > ng (). Therefore, for n > ny (z) we have
H (xny) —£(xn) | < [ (xnp1) — £ (%0) | £+ [£(xn) —£(%0) | <.

Sufficiency. Let the sequence x = (x5) converge to X, and f be an
almost continuous function at x, € R. Then for any number c > o, we
can choose a number p large enough such that .

. |%(f(xn)+f(x11+x)+ e G ) — £ (%0) | < 5= (6)

for all n € N.
Let us tak g; = _ET’ (p > 1). By (5), for the number ¢1 > o
p-

we select a number n, so large that

(.f(xn) — f(Xn+1) | <=z1

for allrn > mng. Therefore, for n > n, we get
[ f(xn) —f(xnip 1) | <(p—1)en M
Let max (no, p) = M. By (6) and (7) ,for n > M we have

f(xp) + ... + f(xnip_1)

HE (xn) — £ (x0) | < | £(xn) — o

R e N

p
1 IRt c
< —Ipflm)— > flx) 1+ o
P =
1 n4p-1 e
< o 2 M=) |+ 5

=n
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<*~a+2+ +@—Uﬁr+“f“P_.

This completes the proof

‘

_In a recent paper, we have defmed the new methods of summabl-
llty by a suitable rearrangement of the elements on each row of a gi-
ven matrix summability method [5] In connectlon Wlth thls we can
give the following:

Theorem (3.3). Let A = (apk) be a strongly regular matrix and

f: R — R be a function such that the sequence f (x) is bounded whenever

= (xg) is bounded. Then the concepts of the A-continuity and the

Am —continuity corresponding to those permutation functions each of

which has a symmetrical mapping (see, definition in [5]) on disjoint
blocks of the poesitive integers, are equivalent.

Proof. We showed in theorem 2.1 [5] that for every bounded se-
quence x = (xx) we have

limy | (Ax)p — (A x)y | = o. (8)

Let Ax -lim x, = x, and f be A-continuous at x, € R. We shall
show that Arx -lim f (x,) = f (x,). Since f is A-continuous at x, € R we
have

A-lim x, = x, implies A-lim f (xp) = f (o).

By (8) and since A-lim f (xp) = f (xo), we get Ax -lim f (xp) = f (xo).
Hence, f is A -continuous at X, € R. In the same way one can prove that
f is A-continuous at x, € R if the function fis Ax -continuous at
Xo € R. This completes the proof.

OZET

Bu makalede, reel funksiyonlar igin baz yeni siireklilik kavramlan tarif edilmekte ve bu
stireklilik kavramlan arasindaki bagintilar incelenmektedir.
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