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ON THE SHEAF OF THE FUNDAMENTAL GROUPS,

S. BALCI

Department of Math. Faculty of Science Ank. Univ. ANKARA.

SUMMARY

In a recent paper [1] we have constructed the sheaf of the fundamental groups of a
topological space and gave some characterizations, In this paper, we first give some characteri-
zations which are the converses of the characterizations in paper [1]. Finally, we cbtain some
results.

1. INTRODUCTION

Let X be a locally arcwise comnected topological space and
7, (X, x) be the fundamental group at x for any point x € X. Then

the disjoint union H = V 7, (X, x) is a set over X with natural
' xeX
projection ¢: H — X mapping each ox = [« ]x onto the base point x.

We introduced on H a natural topology as follows {4, 51}:
Let x € X be an arbitrary fixed point. Then there exists an arcwise
connected open neighborhood U = U(x). If [a]x € m(X, x) is an
arbitrary fixed element and y € W is any point, then there exists an
element[8], € =,(X, y) which uniquely corresponds to [a]x, since
(X, x) =~ 7,(X, y). Therefore we can define a mapping s: U -~ H
with s(y) = [B]y for any y € W such that ¢ 0s = 1y and s(x) = [«]x
e s(U) < H.

For each x € X all such sets s(U) form a system of neighborhoods
of [a]x € H which induces a topology in H.

In this topology s is continuous and ¢ is a locally topological map-
ping. s is called a section over U and the totality of section over U is
denoted by I'(U, H). For the definition of a section over any open set
W < X see [1].
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In this paper, we assume that topological spaces are locally arc-
wise connected.

2. CHARACTERIZATIONS.

Now, we give the following theorem.

Theorem 1. Let (H, ¢) be a sheaf over X, W < X an open set and s €
I'(W, H). Then ¢: s(W) - W is a topological mapping and s =:
(= [ (W) )7

Proof. If we consider the statement gos = ly, then (so(r|s(W)
os)(x) = so(nos) (x) = s(x), for each x € W.

Definitions 1. Let X,, X, be topological spaces and H,, H, be corres-
ponding sheaves. Then a mapping £*: H, - H, is called stalk preserving,
if for each stalk (H))x, = H, there exists a stalk (H,)x, such that

£*((H)x) < (H)x, 2]

2. Let f*: H, — H, be a stalk preserving and continuocus mapping.
Then the mapping {* is called a sheaf morphism between the sheaves
H, and H,.

3. letf*: H > H,be a sheaf morphism. If f* is a homomorphism on
each stalk, then it is called a sheaf homomorphism between the sheaves
H, and H,.

4. Let f*: H,; — H, be a sheaf homomorphism. If {* is a homemorphism,
then it is called a sheaf isomorphism between the sheaves H, and H,.

For the definitions which are not giving in this paper see [2].
We can now give the following theorems.

Theorem 2. Let the parirs (X,H,) and (X,,I,) be given. If the
mapping f*: H; - H, is given as a sheaf homomorphism, then there
exists a unique continuous mapping f: X, - X, such that the pair (f,
f*) is a homomorphism between the pairs (X, H,) and (X,, H).

Proof. To prove this theorem we must first find a mapping f from X,
into X,. However, for each (H))x, < H, there exists a stalk (H,)x, <
H, 5 f*((H)x,) < (H)x, since f* is stalk preserving. Therefore, to
any point x, € X, there uniquely corresponds a point x, € X,. If we
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denote this correspondence by f(x,) = x,, then we obtain a mapping
f from X, into X,.

Let us now show that the mapping fis continuous. Let W < £(X))
be an open set. We may be prove that the set -1 (W) is an open in X.
Since W is an open in X,, then there exists the arcwise connected open
sets Wiin X, i €1, such that W = iké[ W;. Thus s* (W) = iLéI 57 (W)

is an opcn set in H, for a section s? ¢ ' (W,H,). However, {*7!(s*(W))
= U, f*—1(s{2(W;) ) is an open set in M, since f* is continuous. Thus
€

there exists the arcwise connected open sets Vi in X, i € I, such that
f*-1(s2 (W)) = U . si' (Vi), where s;’s are sections over Vj, foreachi e,
ig

Hence o, (f*! (s¥(W)) = iUeI Vi is an open set in X,. Let us now

show that ! (W) = iL(JEI Vi.

1. Let x, € £%(W). Then there exists only one point x, ¢ X, 3
f(x,) = x,. Hence s*(x,) = ox, € s(W) = L 5i%(Wi) and there is an

element oy, € £*~1 (s3(W)) € f* (ox,) = ox,. 0x; € si* (Vi), for ani e,
since f*!(A(W)) = iUEI si' (Vi). Hence ¢,(ox,) = x; € Vi. Therefore

1 .
(W) < L Vi
2. Let x, € iUEI Vi. Then x, € V; and si'(x,) € (H,)x,, for anie

I. From here £* (s;'(x,) )x, € s(W) and ¢, (f* (si'(x,) )x, = x, € W. From
the definition of f, f(x) == x,. Therefore x, € f~'(W). Thus i%l V; <

£-1(W).

From (1) and (2) it is obtained that (W) = iLéI Vi

Thus the mapping f: X, -> X, is continuous. On the other hand,
it can be shown that the pair (f, £*) is a homomorphism between the
pairs (X, H,) and (X,, H,) [1], and f is unique, since fo ¢, = ¢,of*.



44 S. BALCI

Now, we can give the following theorem.

Theorem 3. Let the pairs (X, H)), (X2, H,) and (X, H,) be given.
If the mappings {*: H, > H, and {,*: H, > H, are sheaf homomrop-
hisms, then there exist a homomorphism between the pairs (X, H))
and (X;, H,) such that f = f, o f, f* = £,* of *.

Proof. Since the mappings f,*, {,;* are continuous, the mappings f,*
of * is also continuous. By Theorem 2, there is a continuous map-
ping f from X, into X,. Clearly, f,* of * preserves the stalks with res-
pect to f and f,* of * is a homomorphism on each stalk. Hence the pair
(f, £,* of *) is a homomorphism between the pairs (X, H,) and (X,,
H,). Now, let us show that f = f, of,. Since ,for any stalk (H,)x, < H,,
there is a stalk (H,)x, = H, > £* ((H))x, < (H,)x, and for any stalk
(H)x,. there is a stalk (H)x, 3 £* (H)x) © (Hy)xe (6%06,%)(H,)x,)
= L*E*((H)x,) < £,*(H)x,) < (H)x; and £ (x)) = x,. On the ot-
her hand f,(x,) = x, and f,(x,) = x,, since {,*((H,)x,) < (H,))x, and
£*(H)x,) < (H)x,. So, (fof))(x) = f,(fi(x))) = x,. Therefore f,
of = f.

Now, let C be the category of the sheaves of the fundamental
groups and sheaf homomorphisms and D be the category of the topologi-
cal spaces and continuous mappings. Then, we can define a mapping

T: C - D as follows:

For any sheaf H and every morphism £*: H, -~ H,, let T(H) = X
and T(f*) = f: X, - X,.

It is easily shown that,
1. If H, = H, and * = 11, then T(1n,) = 'x,=T(#H)).

2. If £*: H, -~ H, and £,*: H, > H, are two sheaf homomorphisms,
then T(f,* of *) = T(f,*)oT(f*).

Thus, the mapping: T: C - D is a covarient functor. Now, we can
state the following theorem.

Theorem 4. There is a covarient functor from the category of the shea-
ves of the fundamental groups and sheaf homomorphisms to the topo-
logical spaces and continuous mappings.
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Now, we can give the following theorem.

Theorem 5. Let the pairs (X, Hl) and (Xz’ H,) be given. If the map-
ping f*: H; - H, is a sheaf isomorphism, then there exists an isomorp-
hism between the pairs (X,, H,) and (X,, H,).

Proof. It follows from the Theorem 2 that, there exists a continuous
mapping f from X, into X,. Let us now show that f is a bijection. In
fact, for any two elements x, y, € X, if f (x,) = f (y,) = x,, then there
it a stalk (H)x, x, € X, 3 £4((H)x,) — £#(H)y) — (H)x How-
ever, this is impossible, since f* is one-to-one. Therefore x, = y,. On
the other hand, for each stalk (H,)x,, there exists a stalk (H,), >
f*((H,)x,) = (H,)x, since f* is onto. It follows from this reason that, for
each x, € X,, there exists an element x, € X, 5 f(x,) = x,. Hence f is
a bijection. By Theorem 2, there is a continuous mapping g: X, - X,
since f*~! is continuous. It is similarly shown that g is a bijection. On
the other hand, it can be shown that g = f-. Therefore f is a_homeo-
morphism.

Clearly, £*—* preserves the stalks with respect to f. Thus, the pair
(f, f*) is an isomorphism.

Let F = (f, f*) be an isomorphism between the pairs (X,, H,) and
(X, Hy). If W, = X, is an open set and I' (W, H,) is the set all of the
section over W,, then f* o s'of!: f (W,) = H, is a continuous map and ¢,
o (f*os! of ') = lgw,), for a section s' € I'(W,, H,). Hence f* os'of!
€ I'({(W,), H,). Therefore we can define a mapping f,: '(W,, H) -
F(f(W,)), H)) as follows:

K s' e (W, H), then let f (s') = f*os'of-.
f, is a homomorphism. In fact, if s', s, € I(W,, H,), then
f (s'. s') = f*o(s'y . s!) of .

On the other hand, for any x e f (W1)»

(o (s - 8) of 1) (x) = £* (s, - s'2) (F'(x)

= f* (s, (7 (x)) . 82 (f7'(x)))

= £* (' (7'(x)) - * (',(f'(x))
= ((f*os' of ') . (f*os',0of ")) (x).
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Therefore f, (s!, . s',) = f,(s'1) . f, (s,). Moreover f, is a bijection.
In fact, if s',, s}, € I' (W, H)) are any two sections and f, (s') =
f,(s',), then f* os',of ! = f*os',of ! and s', = s',. On the other hand,

if ¢ e T(f(W)), H,), then f*~ os? of € ' (W,, H,) and f, (f*~! os’of)

= s%. Therefore f, is an isomorphism.
Now, we can state the following theorem.

Theorem 6. Let F = (f, f*) be an isomorphism between the pairs (X,
H), (X,, H,) and W, < X, be an open set. Then I' (W, H,) is isomorp-
hic to I'(f(W,), H,).

Now, let (X, H) be a pair, W < X be an open and F= (ly, 1y)
= I(xg)- Then f, = 1T ) Moreover, if (X, H,), (X,, H,) and
F F
(X,, H,) are any pairs and (X,, H,) = (X,, H), (X, H,) = (X,H),
F.,oF, *
then (X,,H) =~ (X,,H,). By Theorem 6, I'(W,, H)) =~ T'({,(f(W,)),
H,), for an open W, < X . It is shown that f, = f  of, .

-y

Now, let C be the category of pairs and isomorphisms, D be
the category of groups and isomorphisms. Then, we can define a
map T: C — D as follows:

If (X,, H) any pair and F = (f,f*) any isomorphism and W <X,
is an open, then let T ((X,, H)) = I' (W,, H)) and T (F) = {,: I(W,,
H) > T(EW,), H,).

Thus, we can state the following theorem.

Theorem 7. There is a covarient functor from the category of pairs
and isomorphisms to the category of groups and isomorphisms.

OZET

Bu makalede, daha énceki bir cahgsmamizda vermis oldugumuz bazi karakterizasyon teo-
remlerinin kargitlan teskil edilip ispatlar: verilmig, daha sonra da bir topolojik uzayin esas grup-
larinin demetinde kesitler ele ahnarak teskil ettikleri gruba ait baz &zellikler elde edilmigtir.
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