COMMUNICATIONS

DE LA FACULTE DES SCIENCES
DE L’UNIVERSITE D’ANKARA

Série A, : Mathématiques

TOME 30 . , ANNEE 1981

A LA MEMOIRE D’ATATURK AU CENTENAIRE DE SA NAISSANCE

The Cousin and Poincaré Problems

by

Cengiz ULUCAY

4

Faculté des Sciences de 1'Université d’Ankara
Ankara, Turquie



Communications de la Faculté des Sciences
de P'Université d’Ankara

Comité de Rédaction de la Série A,
C. Ulugay, F. Akdeniz, 0. Gelebi, O. Cakar, R, Kaya,
Secrétaire de publication

0. Gakar

La Revue “Communications de la Faculté des Sciences de
I'Université d’Ankara” est un organe de publication englobant
toutes les disciplines scientifiques représentées & la Faculté.

La Revue, jusqu'a 1975 & Pexception des tomes I, II, III,
était composée de trois séries:

Série A: Mathématiques, Physique et Astronomie.
Série B: Chimie.
Série C: Sciences naturelles.

A partir de 1975 la Revue comprend sept séries:

Série A: Mathématiques
Série A,: Physique

Série A,: Astronomie
Série B : Chinue
Série C,: Géologie
Série C,: Botanique

Série C,: Zoologie

En principe, la Revue est réservée aux mémoires originaux
des membres de la Faculté. Elle accepte cependant, dans la mesure
de la place disponible, les communications des auteurs étrangers.
Les langues allemande, anglaise et francaise sont admises indif-
féremment. Les articles devront étre accompagnés d’un bref som-
maire en langue turque.

Adres: Fen Fakiiltesi Tebligler Dergisi Fen Fakiiltesi, Ankara, Turqume.



DEDICATION TO ATATURK’S CENTENNIAL

Holding the torch that was lift by Atatiirk in the hope of advancing
our Country to a modern level of civilization, we celebrate the
one hundredth anniversary of his birth. We know that we can only
achieve this level in the fields of science and technology that are -
the wealth of humanity by being productive and creative. As we
thus proceed, we are conscious that, in the words of Atatiirk, “the
truest guide’ is knowledge and science.

As members of the Faculty of Science at the University of
Ankara we are making every effort to carry out scientific research,
as well as to educate and train technicians, scientists, and graduates
at every level. As long as we keep in our minds what Atatiirk created
for his Country, we can never be satisfied with what we have been
able to achieve. Yet, the longing for truth, beauty, and a sense of
responsibility toward our fellow human beings that he kindled within
us gives us strength to strive for even more basic and meaningful
service in the future. ’

From this year forward, we wish and aspire toward surpassing our
N . . .
past efforts, and with each coming year, to serve in greater measure
the field of universal science and our own nation.
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SUMMARY

In this paper we Feproduce'the proofs of Cousin and Poincaré problems for the structure
_sheaf 4 [5] without making explicit use of flabby sheaf theory. We conclude with a Remark
in section 3. )

For the solutions of these problems we shall merely make direct
appeal to a property inherent to 4, i.e., sections defined in A can be
extended holomorphically to the entire region of definition.

 We recall the following

Definitions. Let G<= C", be a region (connected open set), and
A(G) the ring (C- Algebra) of holomorphic functions on G. Then the
set A of all convergent power series (germs) representing the elements
of A(G) is called a restricted sheaf over G.

It was proved in [1] that A is coherent as soon as G is a région of
holomerphy.

1. The First Cousin Problem. We first recall the following

Definitions. Since G is connected, A(G) is an integral domain, and
we can form the field of quotients M(G) whose elements are of the form
f/g, f, g € A(G) with non vanishing g. For any fixed z € G we can form
the quotient field M, of A, whose elements are of the form f, g, with
g,7%0, then

M=V M,
z2eG

is a sheaf with the topology generated by the sets
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{f,[g,: zeU<G open connected set, g,70, f, g € A(G)}
as follows: Let m be the class represented by f/g, f, g € A(G), then we
write m = f /g and m, = f, /g,. In the neighborhood U of z, m, defines

m|U = f|U/g|U

which in turn defines at every point { of U, my. The union over U of
these classes my defines an open set, and the collection of these sets
forms the basis of the topology in question.

The sheaf so defined is called an r-sheaf of germs of meromorphic
functions over G. The germs are the elements m, of M, called the stalk
of M. A section over U is defined in the usual way, i.e., it is a continuous
mapping U - M which assigns to each point z of G a meromorphic
germ m, over that point. Moreover, the composition of this mapping
with the projection mapping M — G restricted to U is the identity map-
ping 1. ~ ‘

The sections are called meromorphic functions, and the collection
of the sections over U is denoted by M(U) or I'(U,M). Thus if m €T’
(G, M), then m |U e I'(U, M). In the sequel, the notation m = f/g €
I' (U, M) will always mean that f and g are the restrictions to the open
set U, of holomorphic functions in A(G), with a non vanishing g.

After these preparations, the first Cousin problem for the structure
r-sheaf 4 can be formulated as follows:

Given a global section of M |4, find a global section of M which
is mapped canonically on the given section.

Note that since M, is the field of quotients of A,, A, can be identified
with a subset of M,, and 4 with a subsheaf of M under the canonical
injection 1.

/

It is clear that the sequence

I T
@ O~ 4> M~ M/4"~ 0
is an exact sequence of sheaves of G- modules, then so is
* . L3

0-T (@, 4)" TG M) = TG M)

exact. N

Theorem 1.1. If G < C"is a region of holomorphy, then the sequence
of sections
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* *
0~T (G, 4) > (G, M)~ T (G, M|4)~ 0
is exact. ’

Proof. It will of course suffice to show that =* is surjective. We
shall fcllow the same pattern of proof as in [2, 3]. Let m € I' (G, M [4) |
be any given section, and z € G an arbitrary point. Then m (z) € M /A.
Since 7 is surjective there is an element (germ) ¢ € M such that & (o)
= i (2z). Hence there is a neighborhood U = U (z) < G and a section
m eI (U,M) with nom (z) = 1 (z) and rom = i |U. To summarize, for
every z € G, there is an open set U= U (2) < G and a section m over
U with nom = m|U.

Consider the collection U = {(U, m)} of all pairs (U, m) with rom ==
m | U. The collection U has the following additional property: let (Ui,
m,), (U, m) e U. () IfU; N U,= g, then there is a section m* in M
over U* = U,y U, whose image under = is m | U*, i.e., (U*, m*) € U.
(ii) Suppose U, N U, \i @ . The sequence of sections

0T (UinUyd)>T (U0 U, M)>T (U N U,, M/4)

is exact. Since 7 o (mi—m,) |Us n U, = 0, thereisby (1) ansel’ (Uin U,
A) with10s = m; — m, |U; N U,. By the very definition of 4, s can be ex-
tended holomorphically to a section s, € I' (U,, 4). Now, the section m*
over U* = U,y U, defined by

m; (z) zeU;

m* (z) =

(108, + m,) (z) zelU,

lies in I' (U,u U,, M), and nom* = @ |Uyy U,

.

Hence again (U*,m*) € U. If we define (U;,m;) < (U,,m,) to mean
U;cU, and m; = m, |Uy, then a partial ordering is defined in U. Now,
consuler all chains(U ,m) | ¢, in U with the property that either (U, ,m, )
< (Uipmy,) or (Uyymy,) < (Uy,,my,). Each chain has an upper bound:
U = llél U; and m |U; = m; which is an element of U. By Zorn’s lemma
there is a maximal element (U,m;) € U. In view of the property of
U, U; cannot be a proper subset of G. For, then there would exist z° €
G and a neighborhood of 2°, U (z%) =G so that (U*, = U, U U(z%), m*,
with m* | Uj =m) € U. Namely, (U, m)) < (U*;, m* ) thus violating
the max1mahty of (Ug,m,). Since G is a region of holomorphy U, cannot
contain properly G either. So U, = G.

v ~
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As an immediate consequence of theorem 1.1 we can state

Theorem 1.2. If G<=C" is a region of holomorphy with the structure
r-sheaf A, then the first Cousin problem is always solvable globally.

2. Second Cousin and Poincaré Problems,
a. Cech Cohomology. We recall the following definitions [4].

- Cochains of a Covering. Let X be a topological space and U = (U)el
be an open covering of X.

- Let S be a sheaf of abelian groups (or R-modules) over X. If q >

0 is an integer, and s = (1,,...,1,) is a finite sequence of elements in I,
then we set ‘
Us = Ulo"'Tq = Ulo §] cer Y U1q.

Definition 2.1. A g-cochain over U with values in S is a map f which
assigns to every sequence s = (1,,...,1;) of q--1 elements in I a section

of S:
f(s) eI’ (Ug,S)
over U,. Recalling that I" (U,,S) is an abelian group, (or R-module) then
the q-cochains form an abelian group, i.e,. the group product
@ 1 (U,.S)
extended over all sequences s of g+ 1 elements in I.

A g-cochain is called an alternating q-cochain if:

(a) f(s) = £ (1gseeslq) == 0 whenever two indices in the sequence
(1g9:--01y) are equal, or Uy, =" o

(b) £(s) is an alternating function of s, i.e., f(s) changes sign if two
indices in s are permuted.

The alternating q-cochains form a subgroun of (2). This subgroup
is dencted by C® (U,S).

We define a coboundary operator

d = 4% C* (U,8) - C*+' (U,S)
A

by setting ’

q+1

df) (gperonlyqyy) = Eo L E Gooenentjoones 1qiy) [ Utgeedgey

where i; means that the index 1 is delated.
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It is easy to see that d is a homomorphiém with 4%+ od? = 0.
Finally, we introduce
28 (U,8)y = if: £ e C* (U,S), d* £ = 0},
B*(U.S) = d: £ e C*' (U,9)}, C' =0
the group of g-cocycles and the group of g-coboundaries with values
in S respectively. Then BY <Z% One can therefore define
- HY(U,S) = 7% (U,S) /B (U,S)
which is called the q-th cohomology group of U with values in S
The Cech complex is defined by the sequence

o (U,S)"C1 (U,S) ”’C2 (U,S) ~
which is exact at every location q>1 if and enly if H? (U,S) = 0.

If fis a 0-cocycle, then f(1,) - f(1,) == 0in U;, N Uy for all1, and
1,, which means that the sections f(1,) and f (1,) coincide on Uz, N Uy,
and so altogether define-a single section f € I' (X,S). Conversely, esery
section f € I' (X, S) does so determine a 0-cocycle f. Hence

H (U,8) =~ T'(X,S).

b. Second Cousin Problem. Let X be a n-dimensional complex
manifold, R a commutative ring with 1 and S a sheaf of R-modules
over X. Finally, let U = (Un)el be an open covering of X.

We have the following [2]

Lemma 2.1, If X itself is an alement of the covering U then HY
(U,8) = 0, q > L.

Proof. We must show that if ¢ = ¢ (155...,1,) €4° (U,S), = 1, then
there is an f=f (1,...,1,_;) € C*! (U,S) such that df = ¢. Now, by hypot-
hesis there is an index o€l such that X = U,eU. Let ¢ € 2% (U,S), q=>1.
There is a cochain f € C%7! (U,S) defined by

£ (1gpeenty—,) = ¢ (a, Tgpeesalg ()

Since de = 0, we have
? N

0 = (de) (os 1gsee1g) = € (1g9ee0sly) —S.‘. (1) € (&5 1g9mensl jpenslg)e
j=o
Also,
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(@) (grerostg) = 3 (“LVE (gpeensl povty)
j=0

= 3 (1) ¢ (@1gpeensi ety

=0

.

= ¢ (1g9eesly)-
Hence df = c. Namely, the Cech cohomology seque%ice is exact at every
location q > 1, i.e., H* (U,S) = 0, q >1.
Lemma 2.2. Let G <C" be a region of helomorphy and U = (Urhel
an arbirary open covering of G. Then H® (U, S) = 0 for all q>>1.

Proof. Let ¢ € Z% (U,A4), q>>1. If W<G is an open set, then ¢c|We
28 (W NU,4) means WNU = { W NU1%£ o:Ure U} and (¢c|W) (5.
1) = ¢ (lg5ee1g) |W NUsg,..0,.

Next, let z° €G be arbitrary. Then there is 1, €l and an open neigh-
borhood W = W (2°) =Ui,. But then W<W NU. By lemma 2.1, H?
(W NU,A4) = 0, q=>1. Namely, there is an feC-1 (W N U,A4) such that
df = ¢|W. If V=G is an open set with the same property, i.e., there is
an f’' € C%1 (V NU,A) such that df’ = ¢|V, then

s = (££)[W NVe Z%1 (W NV NT,4).

Now, q = 1 implies Z°(W NV NU,4) = H° (WNOV U, 4) =
'(WNV,4)andsos el'(W NV, 4). But then s can be extended holo-
morphically to § € I' (V,4). We then set )

f (z) zeW
s*

@) 4+ i@ zeV.

Clearly s* e I'(Wy V,4), and since d§ = 0 it follows that ds* =¢|WU V.
Hence

H(WyuV) n U4 =0
If g >>1 then we proceed by induction on q. We therefore assume
H' (WuV) n U4 =0. |
Accordingly there is an h € %2 (W NV N U, 4) such that dh =s.
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Therefore,
h (1gee1y_p) € T (W OV N U014, A)
can be extended holomorphically to
B (tgpevertg_p) €T (V 0 Utgpeuny 14_y» A)-
Let
£ (1ppeetg_p) (2) z2eW N Ulpyuent

a1

U 4 db) (gseeenty ) (2) 26V 0 Ungrety . .

Then £* € C3-* ((Wu V) n U,4) and df* = ¢|Wy V. Hence Ha((Wy
V) n U,4)=0.

As in theorem 1.1, we may comsider the collections { (U*, s*)},
respectively {(U*, £*)} of all pairs (U*, s*), respectively (U*, f*), such
that s* eI’ (U*, 4), ds* = ¢|U*, q = 1, respectively f* e C4-* (U* N U,4),
df* = ¢|U* q > 1. These collections are partially ordered by set
inclusion, and every chain has an upper bound which is an element
of the collection. By Zorn’s lemma there is a maximal element (U,
8,), respectively (U, ), such that s, eI’ (U, 4), ds =¢| U, q=1,
respectively £, e C*(U,4), df;, = ¢| Uy, g > 1. Tt is clear that an element
is maximal only if U, = G. Hence ¢ € B® (U,4). Namely, the Cech co-
homology sequence is exact at every location q > 1, i.e.,

H (U,4) = 0, q = 1.
H? (G,A) being the inductive limit of H (U,4), [4] we may state

£* (1greennty_) (@) =

Theorem 2.1. If G<C" is a region of holomorphy and A the struc-
ture r-sheaf over G, then

H'(6,4) = 0,q > 1.

To solve the second Cousin problem for the structure r-sheaf A,
let M* = M- {0} be the sheaf of germs of invertible meromorphic func-
tions. M* contains as a subsheaf the sheaf 4* whose elements consist
of those germg m, of M* that are invertible holomorphic functions in
some neighborhood of z. Thus the germs of A* are units in A*. The
sheaves A* and M* are multiplicative abelian groups. The sections of
I' (G, A*) are the nowhere vanishing holomorphic functions on G. The
quotient sheaf D = M* [A* is called the sheaf of germs of divisers in
G, the sections in D being called divisors. The second Cousin problem

=
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can then be formulated exactly as the first one: Given a global section
of D, find a global section of M* which is mapped canonically on the given
section. By analogy with the solution of the first Cousin problem we
may consider the exact sequence

1> A* » M* > D - O.

The induced long exact cohomology sequence is
£

1 - IG,4*) - [(G,M*) 5 I'G.D) 3 H! (G,4*) -~ H' (G,M*) —» ...
The second Cousin problem will then be solved for all divisors if n*is
surjective, i,e., H! (G,4*) = 0. However, very little is known about this
group. To study the group H'(G,4*) we introduce as usual the exact
sequence

OsZ>ASA* 1 -
of sheaves of Z-modules, where Z denotes the constant sheaf of the ad-
ditive group of integers and

e: f > 27l

The associated long exact cohomology sequence is

B}
= H! (G,4) ~ H' (G, A*) - H? (G,Z) > H? (G,4) —~ ....

By theorem 2.1 the groups on the left and right being both 0, 5 is
an isomorphism: o

H' (G,4*) ~ H* (G,2).
Combining the maps y; and 8, we have
c: ' (G,D) - H? (G,Z), ¢ = sor.

This map is surjective, and the second Cousin problem will be solved for
those divisors belonging to the kernel of ¢. More precisely, the homo-
morphism ¢ associates to every divisor d € I'(G, D) a 2-dimensional
integral cohomology class ¢ (d) € H? (G,Z) called the characteristic class
or the Chern class of d, and the second Cousin problem # solvable for
those divisors whose Chern class vanishes. Therefore

Theorem 2.2 The second Cousin problem for the structure r-sheaf
A, can be solved for all divisors if and only if H? (G, Z) = 0 (or H' (G,4¥)
= Q).
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Recall that the germs of D = M* | A* are equivalent classes of germs
of meromorphic functions, where germs represented by meromorphic
functions m,, m, are equivalent at z € G if and only if m, /m, is a unit
of A*. Now, let d = I'(G,D) = H° (G,D) be a divisor on G. This means
that there exists a cover U = (U)),;; of G and meromorphic functions
m; € H° (U;, M*) with ©* (m,) = d|U; and m, /m; e H° (U; N U;, 4%).
Every collection of pairs {(U;,m,)} for a cover U = (U,);;; with m,

-€ H° (U;, M*) and m,; /m; e H° (U; NU;, 4*) determines a divisor d € I’
(G,D). One calls {(U;,m,)} a d-representing Cousin data.

Definition 2.2. A divisor d on G is principal if there exists a mero-
morphic function m defined on G such that the divisor it defines is e%ual
to d. One writes in this case d = (m).

Thus for any m e I" (G, M*), the d1v1sor 7* (m) € I' (G,D) is principal.

Definition 2.3. A divisor d on G is called positive (or integral) and
is denoted by d > 0 whenever there is a d-representing Cousin data
{(U;, m))} where m; e I" (G, A) for all i. '

Thus a meromorphic function m € I' (G, M*) is holomorphic if and
only if #* (m) = d = (m) > 0.

Note that every divisor can be uniquely written as the difference
of two positive divisors, with no common prime omponents.

With these definitions theorem 2.2 takes the form

Theorem 2.3. Let A be the structure r-sheaf of a region of holomorphy
G<C" A divisor d eI (G,D) is principal if and only if 3 (d) € H!(G,4*)
= 0 or equivalently if and only if its Chern class ¢(d) vanishes. -

c. Poincaré Problem. The Poincaré problems: Given a region G,
is every function meromorphic in G a quotient of two functions holo-
morphic in G ? (and coprime at every point ?), can also be solved for
the structure r-sheaf 4. However, a positive answer to the question in
parenthesis can only be given under the hypothesis H* (G, Z) = 0.

Indeed, let m e I (G, M), m;ﬁO, be a meromorphic function. Then
m € ['(G, M*) and so =* (m) = (m) € T'(G,D). We may write uniquely
(m) = d* - d- with 0 < d+, d- e T (G,D). Now, H? (G.Z) = 0 implies
the existence of meromorphic functions f, g € I' (G, M*) such that =*
(f) = d*, n* (g) = d-. Hence {, g are holomorphic with =* (f /g) = d+ -d-,
_and therefore m = f/g. 7
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3. Remark. All the results so far obtained are valid of course for a
Stein or a Florack manifold which are both regions of holomorphy.

Since every finite dimensional Stein manifold is (i) holomerphically separable and is charac~
terized algebraically by the fact that (ii) ev ery non trivial linear functional is a point functional
with finitely generated maximal ideal 3], it follows from our definition of a Florack manifold
(it is a manifold satisfying conditions (i), (ii)) that a Stein manifold is a Florack manifold. Con-
versely, every Florack manifold is a Stein manifold. To see this, we observe the follow ng:

1. Firstly, it is sufficient to show that a Florack manifold is holomorphically convex.-We
say that a manifold X is holomorphically convex, if (x;) is a discrete sequence in X (it is a sequen-
ce which tends to the ideal boundary point “ ), then there oxists a function f holomorphic
on X which is unbounded on (x;).

2. Secondly, to fix the ideas, let G be a region (epen connected set) in, C. Then every non
trivial linear functional m on A (G) is a point functional m,, a € G. Namely,

m ifacG
m =
0ifagG,l.e.,acdG.

The triviality of m implies that G is holomorphically convex. Indeed, let (z;) be a sequence
in G with limit a € & G. Then f () = 1/(z-a) is holomorphic on G and (| f (z;) ]) is unbounded.

Similarly, if G is X, then m = 0 implies the existence of a unit in A (X) lying in the maxi-
mal ideal and vanishing at “ ¢2”, and there by the existence of a function holomorphic on X
with pole at “ «”. Upon this remark we eonclude that

Theorem 3,1, Two Stein manifold of dimension n X, X’ are holomorphically equi-
valent if and only if there is a ring isomorphism between A(X),A(X’) that preserves the
constant,

Proof, Since a Stein manifold is a region of holomorphy then every mom trivial
linear functional on A(X) is a point functional with f!mtely generated fixed maximal ideal,
The conclusion follows. [6]

OZET

Bu makalede, Cousin ve Poincare problemleri yeniden ele alinmis olup bu kere yumusak
demet teorisi kullamlmadan ¢bziimlenmistir.
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