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ABSTRACT

Results on fixed points have been proved for single-valued and multi-valued mappings
satisfying a rational inequality.

I. INTRODUCTION

The well-known Banach fixed point theorem states that a cont-
raction mapping of a complete metric space into itself has a unique
fixed point. In recent years, this celebrated theorem has been exten-
ded and generalized in various way by putting conditions either on the
mapping or on the space. For a quite upto date information, books by
Singh [16] and Smart [17] are worth-mentioning.

More recently, Khan [8] has extended contraction principle th-
rough a symmetric rational expression and obtained the following re-
sult.

Theorem A. Let (X,d) be a complete metric space and T a selfmapping
on X for which

d(xTx) d(x,Ty) -+ d(yTy) d(y,Tx)

(*) d(TxTy) < K d(x,Ty) + d(y,Tx)

helds for all x,yeX, 0 << K < 1. Then T has a unique fixed point.

The mapping T satisfying (*) has been extensively studied by va-
rious authors e.g. Khan [8], [9], [10], [11], [12]. Fisher and Khan
[4], Ray and Singh |15] and Fisher [3].
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It was later shown by Fisher |3] that the Theorem A was incorrect
as it stood and needed the extra condition, d(x,Ty) + d(y,Tx) = 0
implies that d(Tx,Ty) = 0, for the theorem to hold. Fisher [3] also ga-
ve an example to support his result.

The purpose of this paper is to unify the results of Khan [8] and
Banach under the observation of Fisher [3].

II. RESULTS FOR SINGLE-VALUED MAPPINGS

We first prove a fixed point theorem for a bi-metric space (X,d, &)
where d and ¢ are two metrics on the set X,

Definition 2.1 (Ciric [1]). A mapping T of a metric space X into itself
is said to be orbitally continuous if lim T" x = wu implies that
-0

lim T (T x) = Tu for each x € X.

isc0

It is well-known that every continuous mapping of X into itself
is orbitally continuous, but the converse is not true (e.g. Ciric [1]).
Definition 2.2 (Jaggi [7]). For x, € X, let O(x,,T) denote the orbit
of T at x, where T is a self-mapping of a metric space X. Then T is said

to be xg-orbitally continuous if T: O(x,,T) — X, is continuous.

It is well-known that a mapping may be x -orbitally continuous
for some x € X without being orbitally continuous (e.g. Jaggi |7]).

Theorem 2.3. Let T be a self-mapping of a bi-metric space (X, d )
such that following hold:

(i) d(xy) < é(x,y), for all x,yeX

(ii) there are non-negative numbers «,3 with «--8 <. 1 and for
which T satisfies

a(x,Tx) o(x,Ty) + &(y,Ty) o(y,Tx) ax
a(x,Ty) -+ o(y,Tx) % + B ax.y),

o(Tx,Ty) < «

for all x,y € X, when o(x,Ty) + o(y, Tx) # 0.
Further, 8(Tx,Ty) = 0 if o(x,Ty) + (v, Tx) = 0;

(iif) there exists some point x, € X such that the sequence {T® x,}
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: - n
. 1 . » '
of interates has a subsequence {T x,} converging to £ with res-
pect to d.
(iv) T is xo-continuous with respect to d.

Then T has a unique fixed point.
Proof. Let x; = T™ x,, Then we have
&(xp,Xn,1) = (Txp_1, Txy)

(80sn-1, X0)8xn-1, Xn“)v%3(%n,xn+1)8(xn,xn) +B 9(xn_1, Xp)
O(xn_1, Xn41)-+0 (Xnaxn)
= (“‘l‘p) 8 (Xn_pxn) lf Xn—l # X“+1. HOWCVGI‘ ]f
Xn_1 = Xny1 then condition of theorem imply that x,_1 = Xn = Xny1

Thus xp_; would be a fixed point of T. Put k = (ax--8). Then k<1 says
that 1Tn Xo} is a Cauchy sequence with respect to 0.

So in view of (1) ITn x,} is also a Cauchy sequence with respect
to d. Due to (iv), it follows that {Tn x,} converges to £ with respect to
d. Now x,-continuity of T with respect to d yields

"TE = T(lim Tt x,) = lim Trtl x5, = &,
n-oo n-co
Thus £ is a fixed point of T. For unicity of &, consider 1 # & such that
= Ty. Then 8(E,y) > 0. Also,

o(n.E) = &(Tn,T%) < ; 3(1”%3(61;?1’.‘2& 5 32%’5%;?(”“’

| 8 o(n5),

< B o&n).

Thus

(“B) ( > ) <0,
implying thereby é(£,y) = 0. So £ = 1.
Remarks (1) For o = o, Theorem 2.3 reduces to that of Maia [13].

(11) When B = 0 and ¢ = d, Theorem 2.3 is the main theorem of
Khan [8].

(i) If X is equipped with n metrics di, d,, ..., dn, & such that
d(xy) < di(xy) < dy(xy) < ... < dn, < 8xy) for every x,y € X,

then the conclusion of Theorem 2.3 still holds.
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Theorem 2.4. Let T: X — X be an orbitally continuous mapping on a
metric space X such that :

(i) d(Tx,Ty) < o | —2TACTy)+d(y. Ty)d(y,Tx)

d(x,
d(x,Ty) +d(y, Tx) +Bd(xy)

for all x,yeX, a4 = 1 («,3 non-negative reals) whenever d(x,Ty) -
d(y,Tx) # 0, and d(Tx,Ty) == 0 when d(x,Ty) 4 d(y,Tx) = 0.

(ii) For some x, € X the sequence {T™ x,} has a cluster point £cX.
Then £ is a unique fixed point of T.

Proof. If Tk-1 x, = Tk x, for some k € N, then Tt x, = Tk x, = £ for
all n > k, so the result follows.
Assume now that Tk-1 x, # Tk x, for all k € N, and let lim Tni

xo = & Then for Tn~1 x, and T0 x,in X we get

d(Tn x,,Tr+1 x4)

- { d(Tn- 1%, T )d(TR- 1x4, T Ix) -+ d(Thx 4, T0H 1x,)d(T0x,, T0x,)
=" d(TTx,, T8 1x0) - d(TPx,, TPx)

+ B d(Tn1x,,Tox,).

If d(Tn-1 x4, T0+1x5)+ d(TPx0,Tx,)=0, we find that
T(Tr-1x,) = T(T"x,). So Trx, is a fixed point of T.
Otherwise, above inequality reduces to
d(T? x4, ToH1 x0) < (a+4B) A(T1-1 x4, T2 xo).
Hence
d(Tn xo, ToH1 x6) < d(T-1 x4, T x,).

Therefore, the sequence {d(T™ x,, T2+1 x4)} is a decreasing and hence
is convergent sequence of positive real numbers. Further,

1§ nj+1
lim d(T Xos T Xo) = d(aa TE_,),

i
and
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ni nj+1 n n4i
(T %0, T x0)} < (T xo, T Xo) }
implies that

lim AT x0 T ' %) = d(E, TE).

n—w

Also, orbital continuity of T gives im T+l x, = TE,
is

lim T x, — T22 and AT 5, T T x)} € [T %0, T %)}

i~ o

Above relations show that
d(Tg, T2) = d(&, TE).

If d(&, TE) > 0, then one gets

d(¢,T2%)d(TE,TE) + BA(TE,T2).

d(TE,T2E) <« %

Then we have

arz1) < ( ) acry.

o
1-$
So

ATE, T2) < d(E, T2,
which is a contradiction. Hence £ is a fixed point of T which is clearly
unique.

Remark. For & = 0, our Theorem 2.4 extends a theorem of Edelstein
2]

Theorem 2.5. Let T be a continuous densifying mapping of a complete
metric space X into itself such that for all x, y € X there are real cons-
tants o;, (i = 1,2,3,4), « and B satisfying oy + o, + oo, = o + B
for which the inequality

a1 F(Tx,Ty)-F o, F(x,Tx)4o3F(y,Ty)+ o4 min {F(x,Ty),F(y,Tx) }

F(x,Tx) F(x,Ty) 4+ F(y,Ty) F(y,Tx)
F(x,Ty) + F(y,Tx)

holds for x, y € X whenever F(x,Ty) -+ F(y,Tx) # 0, and F(Tx,Ty) = 0,

+ BF(x,y).
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otherwise, a lower semi-continuous function F: X x X - [0, c0)
with the property F(x,y) = 0 if and only if x = y. If for some x, e X,
the sequence of iterates {T1 x,} is bounded, then T has a fixed point.
Proof. For y = Tx, we have

o F(Tx, T2 x) 40, F(x,Tx)+ o, F(Tx, T2 x)+a, min {F(x,T? x),F(Tx,Tx)}

F(x,Tx)F(x,T2x) 4 F(Tx,T2x)F(Tx,Tx)

< F(x,T2x) | F(Tx,Tx)

+sF(x,Tx).

If F(x,T2 x) = 0 then one gets F(Tx,T2 x) = 0 which gives
T(Tx) = Tx. Se(Tx) is a fixed point of T.
If F(x,T2 x) # 0, it is clear that x # Tx. So we get
Tx, T2 s e B :
F(Tx,T? x) < ( P F(x,Tx)
Hence

F(Tx, T2 x) < F(x,Tx), x % Tx.

Then from Theorem 5 of Iseki [6], we find that T has a fixed point.
Remark. Our Theorem 2.5 generalizes a fixed point Theorem of Furi
and Vignoli [5] as well as Theorem 3 of Khan [11].

Theorem 2.4. Let X be a complete metric space and {Tn} a sequence of
mappings of X into itself. Suppose there are non-negative reals o, with
a+@ <1 such that for all x, y € X the inequality

d(x,T1"x)d(x, T;%)+d(y, T;%)d(y,T"x)

U Tity) < T T3y Fay.T7%) edey)

holds whenever d(x,Tj%)+d(y,T,x) # 0, and further
d(T?x, T%) = 0 if d(x,T;%)+d(y,T,°x) = 0, where p.q are some
positive integers.

Then the sequence {T;} has a unique common fixed point.
Proof. Let xo € X be arbitrary. Construct a sequence {xn} as follows:
x; = T"%o, x; = Tj%, x; = TPx,, .. .

ie.



SOME FIXED POINT THEOREMS 1V 75

xp == TyP (x5_1), when n is odd
and
xp == Tp4 (xp_1), when n is even,

Then, by aroutine calculation, it follows that {x;} is a Cauchy sequen-
ce which has a limit u, {say) in X.

It is not hard to see that u is a unique common fixed point of the
sequence {Ty}. This completes the proof.

Definition 2.7. A self-mapping T on a metric space (X d) is said to be
non-expansive if

d(Tx,Ty) < d(x,y), for all x, v € X.

It is well-known (e.g., Smart [17] or Singh [16]) that a non-ex-
pansive mapping on a -complete metric space need not fix any point of
the space. For such mappings, however, we have the following common
fixed point theorem.

Theorem 2.8. Let T, T{,T, be three self-mappings of a complete metrie
space (X,d) where T is non-éxpansive. Also for all x,y e X, and non-
negative numbers o, § with a8 < 1, we have

(i) d(T"x,T,%)
b AT TT Px)d(Tx, TTy%) + d(Ty, TTy%y)d(Ty, IT;*x)
d(x,T,%y)-+d(y,T,x)

whenever d{x,T,%) -} d(y,T;’x) # 0, and d(T"x, T,%) = 0,
whenever d(x,T,%) + d(y,T;°x) = 0, for some positive integers p,q;

+8d(Tx,Ty),

(i) T commutes with T,q.
Then there is a unique common fixed point of T, T and T,.

Proof. Follows from Theorem 2.6. once we use the non-expansiveness
of T in (i). So Ty and T, have a unique commeon fixed point say £. Then
to show that £ is also a fixed point of T, consider

d(£,T%) = d(T,PETT,u)
~ d(TyPE,T,9(TE))
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{ _d(TE,TT,PE) d(TE,T,(T2)) + d(T2E,T,9T2%) d(T2E,TT,%8) |
d(TET,T2%) §- d(T?E,TT;"%) )

+ B d(T%,T2) = B d(TE,T2).

Again using non-expansive property of T and the fact § < 1, we find

< «

that TZ = Z. Hence £ is a unique common fixed point of T, T and T,.

This complettes the proof.

Remarks. (i) If T is the identity map, Theorem 2.8 reduces to Theorem
2.6. This would mean that T may have more than one fixed point, but
the common fixed point of T, Ty and T, is unique.

(ii) As remarked above, only non-expansiveness of T by itself
would not ensure a fixed point for T.

(iii) In Theorem 2.8 one can take a sequence of self-mappings
{Tn} of X so as to prove that T, Ty, T, ... have a unique common
fixed point.

III. RESULTS FOR MULTI-VALUED MAPPINGS

Lastly, we prove multi-valued version of several results obtained
previously. Throughout this section, we follow the notations of Nadler
[14]. For a metric space (X, d), A < X, B < X, and ¢ > o, we write

(i) CB(X) = {A: A is a non-empty closed and bounded subsst

(i) N(A,e) = {xe X: d(x, a) < ¢ for some a € A};
(iii)) D(A,B) = inf {d(a,b): a € A, b € B};
(iv) H(A,B) = inf {¢ > 0: N(B,c) < A and N(A,c) > B}.

The space CB(X) is a metric space with respect to the distance
function H(A,B) called the Hausdorrf metric.

Theorem 3.1. Let X be a complete metric space and F:X - CB(X) a
continuous multi-valued mapping. Suppose that F satisfies the inequ-
ality

+ B d(xy)

< ” $ D(x,Fx) D(x,Fy) +4- D(y,Fy) D(y,Fx)
H(IFy) = ( D(x,Fy) + D(y.Fx)



SOME FiXED POINT THEOREMS IV 7

forx,ye X, 0 < «,f with« + 8 < 1, whenever D(x,Fy) - D(y,Fx) # 0,
and H(Fx,Fy) = 0 when D(x,Fy) + D(y,Fx) = 0. Then F has a fixed

point.

Proof. Let x, € X be arbitrary and x;e FX,. We may assume that
H(Fxo, Fx;) > 0, since otherwise x; € Fx;, which implics that x; is a
fixed point of F.

Let a be any real number with 0 < a < 1 and K = «4-8. Since
H(Fx,, Fx;) < K™ H(Fxo,Fx;) and x; € Fx,, by the definition of H,
there exists x, € Fx; such that

d(xp,x;) < K™ H(Fxo,Fx;).
Let H(Fx;,Fx,) > 0. Then H(Fx;,Fx,) < K™ H(Fx;,Fx,), which imp-
lies the existence of x; € Fx_ with the property

d(x,,x;) < K™ H(Fx,Fx,).

Continuing in this fashion, we produce a sequence {xn} of points of X
such that

Xp.1 € Fxp and d(xp, xpn,1) < K™ H(Fxy_, Fxy).

Now we shall prove that {x,} is actuaﬂy a Cauchy sequence in X.
For this consider the inequality

d(xp, xp.1) < K™ H(Fxpy_;, Fxy)

<K [ o %D(xn_l,Fxn_l)D(xn_l,Fxn)—{—D(xn,Fxn)D(xn,Fanl) ’
- D(Xn_laFXn) —+ D(XnoFXn_l)
+ 8 d(xn_1.Xn) |

< K2 (a4B) d(xn_1, xn) < K™ d(xp_1, Xn), when D(xy 3, Fxy) # 0.
Clearly, xp € Fxp_; = Fx, when D(xp_;, Fxp) = 0, This implies there-
fore that xy is a fixed point of F. ‘

From K'™® < 1 and d(xp; xn,1) < K'™ d(xn_1, Xn), we observe
that {xp} is a Cauchy sequence in X and has a limit z, say, Now
D(z,Fz) < d(z,xn.1) + D(xn.1, Fz)
< d(za Xn+1) + H(FX“, FZ)

D(%n,Fxpn) D(xn,F,) + D(z,Fz) D(2,Fxy)

<d(2%n 1)+ D(xp,Fz) + D(z.Fxn)

+ 8 d(xn.2).
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) _{ d(xn.Xn 1) D(x0,F2) 4 D(2,F2) d(z,xn,1)
d(Z,Xn+1) + JC) D(Xn,FZ) ¥ D(Z,FXH) u

A

+Bd(xy,2).

Letting n tending to infinity; we get D(z,Fz) = 0,

As Fz is a closed subset of X, it follows that z e Fz. Thus z is a

fixed point of F, and the proof is complete.

Remarks.

(i) For o = 0, Theorem 3.1 reduces to a result of Nadler [14«]

(i) Where 8 = 0, we get a multivalued version of the main theo-

rem of Khan [8].

(111) We observe that the continuity requirement of the mapping

T in Theorem 3.1 can be waived if o == 0.

10.
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