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ABSTRACT:

Using functional analysis techniques, it is shown that the functional equation
fz+w) — B 1(z) = g(»

always has a solution in the spaces I’(p’q) (¢) and T(P,q) (¢,T) to which g belongs. Tt is
also shown that these spaces are Montel, The results of this paper generalize the corves-
ponding results of Whittaker [16], Scott [8] and Krishnamurthy [5].

1. Whittaker’s [10] classical theorem states that for any entire
function g of order p there exists an entire function f of the same order
such that the equation

1.1 f(z + w) — (=) = g(=)

is satisfied for all complex number z, where w starnds for any fixed non-
zero complex nuwber. This results is further improved and extended by
Scott [8] to the case of entire functions of order p and type T. Later on,
Krishnamurthy [5], using functional analysis techniques, generalizes
this result for the spaces I'(p,T), I'(p) and others where I'(p,T)
denotes the space of all entire functions having growth {p. T} and T'(p)
represents the space of all entire functions of order not exceeding p. He-
cently, Juneja and Srivastava [2, 9] studied the spaces of entire func-
tions of (p,q) order p as well as of (p,q) growth (p,T), in detail, which
generalize the spaces I'(p) -and I'(p,T) studied by Krishnamurthy. It is,
therefore, natural to study the functional equation (1.1), in a more ge-
neral form, in these new spaces. This is the purpose of the present paper
whieh is in continuation of our previous work [2, §].
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2. This section deals with a brief introduction of the spaces I (5,9)(p)
and ['(p,q)(p,T) studied by Juneja and Srivastava [2, 9].

Let (I'(p,q)(p).8) represents the space of all entire functions (inclu-
ding constants) whose index pair does not exceed (p.q) and whose (p,q)
order does not exceed p if «f index pair (p,q), where d is the metric to-
pology defined on I'(p,q)(p) which is generated by the family of norms
{If:x + 8], $>0)}. Any element f(z) = X apz2e [(,q)(p) is charac-

n

terized by the Equation

(2.1) lim sup {(logPI M (z, f))/log Mlr} < o or equivalently
Tr-®

(2.2) |ap |1/ expla=i] (log[P=213,)1/(¢+374) > 0 as n - oo for every 8>0,

where A — 1 for (p,q) = (2’2)

0 otherwise

M (r,f) = max | f(z) |

lzl=r
The norm [f; » 4+ 3| on it is defined as

(23) | p+ 5] = Zn jan| exp (n expli=2] (loglo21 2;)1/(e+374)
where for m = 0, 1, 2, .

explm]l x = exp (expMllx), expl™]Ix = loglnlx, loglolx = x

{ , ‘
and ), = - ; Np = [expld=31 1] + 1

0
(Note — X stands for X throughout. For the definitions of index
n n=0

pair, (p,q) order, (p,q) growth ete., see [3, 4]).

Let (I'p,q){p,T), d°) represents the space of all entire {unctions
(including constants) which are cither of index pair less than (p,q) or
are of (p,q) growth {p, T}, where d° is the metric topology defined on
T (p,)(p,T) which is generated by the family of norms {[f, o, T + 3 |,
3 > 0}. Any element f{z) = Zjapzt € ['(5,q)(g,T) is characterized by the
equation
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(2.4) 11{2 sup {(loglp™t1 M (x,f)/ (logla™11 1)} < T or equivelently

f{

[(p—-A)
(2.5) |ap|l/mexplal] ( M, log[D—Z])n)l . - 0 as n—co for every

T+3 3>0
1 ip=>3
(2.6) M, = Mu(p,q) = { \1/ep it (p,q) = (2,1)
(e—1)e 1

The norm |f, o, T2 on it is defined as
/ \ 1/ (p—A)
M, 10g[p«mn)

2.7)

£ T+ 5] =3 Jay
n

exp (n expla—2] ( ,

i

where Ay and A are defined as above.

Characterization of continuocus linear funetionals and the conver-
genee criteria in these spaces have also been obtained [2, 9], In fact,
it is shown that

Theorem 2.1 (a) Every continuous lincar functional ¥ defined on I' (p,q)(p)
is of the form W({f) = X ¢y ay, f(z) X ay 2% € g (¢) where
n n

(2.8) lim sup |ep[l/2 exp {-exp [¢72) (log[p=2]1 ) )l/e78+A} 1
n-®

for some § > 0, and conversely.

(b) Every continuocus linear functional ¥ defined on I'(,q)(p,T) is

of the form W(f) = 2 caap, f(z) = Z apz? € T(p,q)(p,T) where
n n
logla—11] lc [1/m)(e—4) M,
2.9) lim s o8 z ; :
(2.9) hrlln%lup Togl 2Ty < and conversely

Theorem 2.2 Convergence in (I (p,q)(p),d) and {I"p,q)(p,T), d°) are equi-

valent to uniform convergence over compact subset of

Dy = {z: |z]| > a} relative to the function
|z -21(logla—11¢)p+3
exp < J exp” (l(;b tyere dt) and
&

CXP( J"ZI expP721((T+3) logla~1lt)e
a

: dt) respectively

for each § > 0 where a = max (1, expld—21 1)
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Theorem 2.3 Convergence in (I'(p,q)(p),d) and (¥ p,q){p,T), d°) are equi-
valent to the convergence in normed spaces (I'g.qe) |

oo (eT), |

Nl
. p-F0]) and

» 0, T4-3) respectively for each 3>0.
Now we state few well known results.

Lemma 2.1 [7; pp. 227]: The following two propertics of a set Ein a to-
pological vector space are equivalent: (a) E is bounded (b) If {x,}is a
sequence in K and {t,} is 2 seguence of complex number Y’ such that
th > 0 as n — oo, then tyxy =0 as n — o.

Lemma 2.2 [7; pp 681: In a locally convex space X, every weakly be-
unded sot is strongly bounded.

Lemma 2.3 [6; pp. 41 : A subset X, of a complete metric space X is
relatively compact if and only if X contains finite e-net for the set X,
for arbitrary ¢ > 0.

3. In this section, we prove that the spaces {'(p.q) (¢).4) and

(Tp>qy (p,T),d°) are Montel. First we prove

Theorem 3.1 Let E < I'(,,q)(p) and f(z) = X, apz" be an arbitrary ele-
ment in E. Then E is bounded if and only it

(3.1) the scquence {a,; is bonnded, uniformly for all f ¢ E, and

(3.2) given ¢ > 0, whatever may be f € E, for each § > 0, there exists
no(e, 8) such that

| ap [tRexplail Joglom2l )1/ (p+874) << ¢ for n = mno.
Proof (Sufficient Part) In virtue of Lemmas 2.1 and 2.2, it is sufficient

to show thatif fi(z) = X ay{p) 20 is an arbitrary sequence in E and
n

{tp}is a sequence of complex number such that t) - 0, then V' (tpf,) > 0

as p - oo for all continuous linear functional ¥ on I'ip.q)(p). Because of

Theorem 2.1 (a), ¥ (15f) = X tpau(p) cn where {cn} satisfied (2.8).
n

By (2.8), given 7 > 1 there exitss ni(n) such that for some § = 31

1
(3.3) len|t/fexp {~expla2iinglp—2lpy)1/(e¥8 =)} < — for n = ms

7

However, by (3.2}, given ¢ (0 < & < 7) and § == 31, there exists
P

fp (g, 31), independent of such that
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(3 .4) lan(p) 1llﬂexp[q_l](llog[p“l]ln)l/(P"‘Sl’A) < e for n > ng.

Choose N == max (ng, n1). In virture of Eq. (3.1), (3.3) and (3.4), it
follows that X jay® ¢y is bounded, ghe bound being independent
n

of p. Thus |V (tyfp) | < niitp| - 0asp - oo for every V. So E is bounded.

(Necessary Part) Suppese E is bounded in (I'g.q)(p), d) so for
every § > 0, the norm If, o - 8} is bounded becanse of the result
[7, Theorem 1.37 pp. 26} \‘vh(‘l‘, f ¢ E. So fixing &, we have

o0
sol + B fan] exp (u expl=s) (logh )2, UGHY) < g, for all
f(z) = L anz“ € E. This immediately implies that a,} is uniformly
bounded for all f ¢ F.

Now, suppose (3.2) fails to hold. Then, for a given ¢ > 0 and some

o0

3o, these exists a sequence {f,} of K,
D=1
fy(z) = % ap®) z0 and a corresponding sequence of positive integers

ny, o, .... 1y < npy < ....) such that

|a p(p) [1/“11 expli=1l(loglo- 2Tpp) 1/ (P8, A) >¢, p= L2,.. clearly
P << np . Define

0 for n # n,, n,y

_ P — —
(3.7) en = |an®) | sgn (a, @) for n=mnp, p=12

Consider, for § < 3§,

I‘Q‘nll/n

expld—il(loglp—21),)1/(+574) which is zero because of

Hw sup

n-w

(3.5), (3.6) and (3.7). This implies, because of Theorem 2.1 {(a), that
Y defined by ¥ (f) = X cpa, is a continuous linear functional de-
n

. 1
fined on I'¢,q)(¢). Choose t, = —, so it goes to zero as p > oo but
: p
¥ (tpfp) = X tp Cnanfp) = Tp > cnan(p) > fp Cnp an(p) = 1

n n
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does not tend to zero as p — oo, This implies E is not weakly bounded
and so not strongly bounded. Hence a contradiction to the nypothesis
completes the proof.

Remark 3.1 The corresponding theerem for the space I'(p,q)(p.T) can be
obtained of we replace the condition (3.2} by.

(3 .8) Given > 0, whatever may be f ¢ E < T'p,q)(p,T), for eachd > 0,
there exists no (¢, 3) such that

la. i1/n e (M g Y £ -
) 3 - - gib721), b .
1an ! eXP (T+8 0g n) < g tor n > ng

The proof runs on the same lines.

Lemma 3.1 (a) Let E be a bounded set in (I'p,q)(p),d), then givene > 0
there exists, for each § > 0, an n, (g, 8) such that for whatever may be
flz) = Z ays® e E < Tp,qy(p)

n

[es)

|
% apz®, p+ 3

n=nz

< e

(b) Let E be a bounded set in (I'p,qy(p.T), d°), then given ¢ > 0
there exists, for each § > 0, an n, (¢, §) such that for whatever may be
f(z)y = X apzt e E

n

o

2 anzn) Py T + 8 H < &.

n=n?

The proof follows from Theorem 3.1 so we omit it.
Now, we have main theorem of this section.

Theorem 2.2 The spaces (I'p,q)(p), d) and (I'p,qy (p,T), d°) are Momntel
spaces. In other words, they are barrelled spaces in which every boun-
ded set is relatively compact.

Proof. Since these spaces are Frechet so are barrelled. Itis now remained
to show that every hounded set E in these spaces is relatively compact.
But by Lemma 2,3, it is enough to show that these spaces contain, for
arbitrary ¢ > 0, a finite ¢ -net for the subset E of the space in question.
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For this, aseume E is a bounded subset of the space in question and

o be a metric on E. Let f = X apc, € E where ey(z) = 22 for n =
n

Ng-1

0,1,2...., Define S == {{; = £ ayey such that « ( 3 apen, 0)
n=0 n=n0
< &g/2}.

This is possible because of the Lemma 3.1 and the Theorem 2.3.

Clearly S is finite dimensional set with bases eg, €1, .., eno—1 and also

. R e .
bounded. So S is compact. Therefore there exists an —— mnet in S

2
which is obviously an ¢ -net for the whole of E, because, if f = X apen € E
n
no_1 c
and f; = X ajeq € S then for some g in the 5 net for S, we
n=o0
have

a(fi—g,0) < /2. So

a(f—g,0) < o(f—11,0) + «(fi—g,0) < e
This completes the proof.

4 . In this section we give few lemmas which are used in the final
section. First ve have

Lemma 4.1 1f B is a continuous linear endomorphism of any one of the
spaces (I',q)(p), d) and (Fp,qy(e,T), d°), then U = B — 81, where §
is any nonzero complex number and I is the identity transformation,
maps bounded closed sets onto closed stts.

Proof. Let K denote any one of the space under consideration and sup-
pose E is a bounded closed setin K. Forfy e E, n = 12,3 ..., let

lim U(fy) = go. Since B is continuous and the spaces in question
n->%

are Montel so it maps bounded set {fy} into a relatively compact set
{B(fs)}. Hence there must exist a subsequence {B(fn;)}, say, which
converges 1o an element by € K (say). Since B £ = B(fni) — U(fu), it
follows that

1
lim f5; = —
e M B
lim U(fni) = go. Hence the lemma.

is®

ho—
(ho—go) € E as E is closed. Thus U ( O;\ go) =
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Using Lemma 4.1, we can easily prove the following Lemma on the sa-

me lines as adopted in [1, Theorem 5, pp, 489].

 Lemma 4.2 The operator U = B — ul, where B, 8 and I have the same
meaning as in Lemma 4.1, has a closed range and so is an onto mapping
whenever the range is also dense in the space in question.

Lemma 4.3 Let @y and ¥y be two positive indefinitely increasing funec-
tions such that ¢ (x)/¥ix) - 0 as x - oo, then for m = 1,2, ...;
(expIml g y(x) — expmI ¥ (x)) - — o0 as x > o0. The proof is straight
forward, hence omitted.

5. (Throughout this section, Iet K stands for any one of the spaces
(Fwsalp),d) and (Fpa(e,T),2°).

In this scction, we consider the functional equation

(5.1)  flz-}wi) — B8 f(z) = g(z)

where wq and ( are any nonzero complex numbers and the entire function

g e K.
For f e K, define
(5.2) (Buf)) (2) = f(z + w1), z e C.

Obviously, B, is linear. By equations (2.1) and (2.4), it follows that B,
is an endomorphism of K.

We now establish

Theorem 5.1 The operator B defined by (5.2) is continuous in the to-
pology of K.

Proof. (For the space U'(,q){p)): Let fy — 0in (I'p,q){p),d) Then, by
Theorem 2.2

% J' 1 z4wy | exp[p“ﬂ (log[qﬁll t)P*S

(5.3) fu(z+wi)| exp n dt z - 0

i
as p —>» oo uniformly in Dy, for each 3 > 0. To show that B, is continu-

ous, we have to prove that

exp [D—Z](log [Q“l]t) e+’
t

S Iz
(5.4) |fa(atwy)| exp i a_[

dt §~%oas
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n — oo uniformly in Dy, for each 8’ > 0. Thus, in order that (5.3) may
imply (5.4), we need only to show that for each § < &'

[24w1 | S (b—2)(lpzla—111)e+S
(5.5) I, = exp% J' 1l expl—z (It% t)
a,

dt

B lz] expl—2i(logla—1lt)p+d’
a t

is bounded wuniformly in D,. Clearly,

d’C—Jl2

[ )

exp [D“Z](log[(}“l]t)gﬁ*'&

{ (lz1+1w1 D) explP2)(lggle—11t)e+d
Io < exp 3 “ it (log )

a

[z |
where J; = [
a

t
Thus
[z 71 [p—2] [a—1] i +3 )
T, < oxp jz explv=2lloglt=il(e+ [wy |))#*8 0 4
a—| W, | t
. ~ old— )
= exp r\ xp P og T TR g
a,—jwlj t
iz] exp[D‘Z](]og[Q‘l](t_{_ lw‘1 I))P“"S
)00 :
a ;
exp[p—z](log[q*llt)wB’ ] e
T .
Or

Iz [=
(5.6) I, < exp§n+ fz ' J"é(t) dtg,
a
where v being a constant and
Jlo(t) = {QXP[D"Z](Iog[Q'l](t+ ‘Wl l))P*”S—exp[D’Z](log[Q“l]t)P‘LB'}
Let @4(r) = (logla™il(r+ |w,|))e*d and

Yi(r) = (loglatlrje*s’. Clearly _1%1(%)_»0
1
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as r - o0, 5o by Lemma 4.3, J1%(r) - —~ o0 asr > o0, Hence, howsoever
large v (>> 0) may be, there exists r, such that for r > ro, J19(r) < — 71.
Therefore, by (5.6)

{

dt

r
N+ M2 — 1 J — €, 7, = constant
TO

I < exp "

r

= exp ( n -+ — n1 log i = 0 (1), uniformly in D,.

To
This completes the proof.
The procf of Theorem 5.1 for I' ,q)(p,T) is similar and hence omitted.
Next we have

Lemma 5.1 Let Uy, defined by U; = B; — BI, be an operator from K

to K. Ther the range of Uy is dense in K.

9]
Proof. Since§ en % , en{z) == z1, is a basis in K so any element f € K
n=0
can be expressed as f = X ape;. Now
n
(Uilenj)(z) = (z+wi)? — B 2 = ay (say).
The elements e, ¢1, ¢ .... can all be represented as finite lineear combi-

nations of {0y} and so every element f € K can be uniquely written as
f= X2 ap an. Sef= 2 a’y Ugey) = lim U, <§ a’nen> which
n n p-® n=0

shows that U (K) is dense in K.

Finally, we have

Theorem 5.2 For every g € K, there exists an f ¢ K satisfying
Hr-tvw1) — 8 £(0) = (o)

where w, and $§ are any nonzero complex numbers.

Proof. Theorem 5.1, Lemma 5.1 and Lemma 4.2 give that the mapping
U; = B, — Pl is onto. Se for every g € K there exists f in K such that

Uf) = g = (B:—BIf) (z) = g{z) for every ze C
o £ (rbws) — B 1) = (a).

Hence the thecrem.
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Remarks 5.1 It is clear that if the entire function g in (5.1) is of (p q)
-growth {p,T} then the solution f of Equation (5.1) must also be of (p,q)
growth (p,T). Similar remarks applies if g € I'p.q)fp)-

For p = 2 and q = 1 the functional Equation (5.1) has boen es-
tablished by Krishnamurthy [5]. Alsoforf = 1, = 2 and q = 1 we
get results of Whittaker [10] and Scott [8].
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